
PP2A as a master regulator of the cell cycle

Nathan Wlodarchak and Yongna Xing
McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA

Abstract

Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell 

cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating 

almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes 

by the formation of structurally distinct families of holoenzymes, which are regulated spatially and 

temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of 

three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA 

synthesis and mitotic initiation. These processes are all crucial for proper cell survival and 

proliferation and are often deregulated in cancer and other diseases.
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Introduction

Numerous proteins are involved in regulating the complex processes in cell division, and 

kinases and phosphatases are the primary regulators. Several kinases and phosphatases are 

well understood and reviewed in detail (Belle et al., 1990; Bononi et al., 2011; Fisher et al., 
2012; Holt, 2012; Hunter, 1995; Mochida & Hunt, 2012). It is clear from early work that the 

initial focus on cell cycle regulation was kinases, and phosphatases were thought of merely 

as housekeeping enzymes. More recently, phosphatases are increasingly appreciated for their 

tight regulation and specific action on key players in the cell cycle (Janssens & Goris, 2001; 

Virshup & Shenolikar, 2009). One of the most versatile and important phosphatases involved 

in cell division is protein phosphatase 2A (PP2A). PP2A regulates every stage of the cell 

cycle in several critical pathways and, not surprisingly, has been widely implicated in tumor 

suppression (Eichhorn et al., 2009). As such, PP2A is being actively investigated as a 

therapeutic target (Sangodkar et al., 2015). This review is an attempt to aggregate the 

numerous substrates dephosphorylated by PP2A and discuss its regulatory activity in major 

pathways at each stage of the cell cycle.
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Protein phosphatase 2A: a complex and diverse family of phosphatases

Background

Eukaryotic phosphatases can be divided into three super families: the serine/threonine 

phosphatases (PSPs), the tyrosine phosphatases (PTPs) and the dual specificity phosphatases 

(DSPs) [reviewed in (Shi, 2009; Hunter, 1995; Virshup & Shenolikar, 2009)]. There are 

around 100 PTPs, approximately equivalent to the number of tyrosine kinases in the 

genome. Over 400 serine/threonine kinases are expressed in the human proteome (Manning 

et al., 2002), exceeding that of PSPs by more than 10 fold. Serine/threonine phosphorylation 

constitutes more than 98% of total protein phosphorylation inside mammalian cells; 

however, the number of genes encoding PSPs (7) is very small. This controversy is 

reconciled by the fact that some of the PSPs form a large number of diverse oligomeric 

complexes. In particular, PP2A forms ~100 heterotrimeric holoenzymes and protein 

phosphatase 1 (PP1) forms ~400 heterodimeric holoenzymes. Some kinases also form 

oligomeric complexes, such as cell cycle dependent kinases (CDKs) and mTOR, on a scale 

much smaller than PP2A and PP1 though, underlying that complex and tight control of both 

kinases and phosphatases are important for cellular processes.

The PSPs are further divided into three families: phosphoprotein phosphatases (PPPs), 

metal-dependent protein phosphatases (PPMs) and aspartate-based phosphatases (Figure 1). 

The PPP family is the largest family of phosphatases, and many PPPs are involved in cell 

cycle regulation, including PP2A (Hunter, 1995; Shi, 2009; Virshup & Shenolikar, 2009). 

The PPP family phosphatases have a structurally conserved active site configuration. Two 

catalytic metal ions are coordinated by six conserved residues [two aspartate (D), one 

asparagine (N) and three histidine (H) residues], and a catalytic water molecule. Phosphate 

binding is coordinated by one conserved histidine and two arginine (R) residues. The 

dephosphorylation reaction proceeds via an SN2 mechanism with the activated water serving 

as a nucleophile to attack the phosphate group attached to Ser or Thr residues (Shi, 2009). 

PP2A is one of the most complex members in the PPP family, regulating diverse 

physiological and cellular processes such as neuronal stabilization, cardiac muscle function 

and the cell cycle. As such, it is implicated in many human diseases such as Alzheimer’s 

disease, cardiac disease and cancer (Eichhorn et al., 2009; Heijman et al., 2013; Kotlo et al., 
2012; Martin et al., 2013). PP2A affects such variety of processes due to the formation of 

diverse heterotrimeric holoenzymes.

Regulation and activation of PP2A

Each PP2A holoenzyme is formed by a combination of three subunits: a common catalytic 

(C or PP2Ac) subunit containing the active site, a regulatory (B) subunit which confers 

substrate specificity and a common scaffolding (A) subunit that holds B and C together (Xu 

et al., 2006). There are two isoforms, α and β, for both A and C, and they share high 

sequence homology. The α isoform for each is expressed at a much higher level and is the 

predominant isoform studied in PP2A research. In addition to A and B subunits, cellular 

PP2Ac is also found associated with α4 protein and TOR Signaling Pathway Regulator-like 

(TIPRL) (Nakashima et al., 2013). Extensive efforts on understanding the structural and 

biochemical basis of PP2A regulation illuminated a linear pathway for the biogenesis of 
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PP2A holoenzymes (Figure 2). The exact function of α4 on PP2Ac has been difficult to 

unravel. Our recent structural evidence suggests it preferentially binds to the partially folded 

PP2Ac and stabilizes it for stable latency (Jiang et al., 2013). α4 stabilizes PP2Ac in part by 

protecting it from ubiquitination by Midline 1 (MID1) and preventing its subsequent 

degradation (Liu et al., 2001; Short et al., 2002). This provides a pool of latent PP2Ac for 

the biogenesis of diverse heterotrimeric holoenzymes while simultaneously preventing the 

unregulated phosphatase activity of free PP2Ac and protecting cells from nontargeted 

dephosphorylation (Jiang et al., 2013).

Consequently, PP2A must be activated before being assembled into active holoenzymes. The 

phosphotyrosyl phosphatase activator (PTPA), now known as PP2A-specific phosphatase 

activator, plays a critical role in PP2A activation (Guo et al., 2014). PTPA stabilizes an 

active conformation of the active site and facilitates the loading of catalytic metal ions (Guo 

et al., 2014). PP2A together with PTPA forms a combined ATP-binding pocket, which 

orients the γ-phosphate of ATP to directly chelate catalytic metal ions. Following activation, 

the phosphatase active site catalyzes ATP hydrolysis. This is crucial for efficient loading of 

authentic catalytic metal ions and acquisition of pSer/Thr-specific phosphatase activity (Guo 

et al., 2014). Evidence suggests there is a Zn2+ ion in the active site and that ATP is required 

to load a Mg2+ ion into the second position to activate PP2A (Guo et al., 2014).

PP2Ac also undergoes post-translational modification on its unstructured carboxy-terminal 

tail (Janssens et al., 2008; Lee & Pallas, 2007); phosphorylation on T304 and Y307 and 

carboxymethylation on L309 (Low et al., 2014). The latter is reversibly controlled by PP2A-

specific methyltransferase known as leucine carboxy methyltransferase (LCMT-1), and by 

PP2A-specific methylesterase 1 (PME-1) (Stanevich et al., 2011; Xing et al., 2008). PP2A 

methylation is essential for cellular function, and cells will undergo apoptosis in the absence 

of LCMT-1 (Lee & Pallas, 2007). Reduction in LCMT-1 expression or over-expression of 

PME-1 can promote transformation through Akt or S6K pathways (Jackson & Pallas, 2012). 

Methylation is crucial for the formation of stable heterotrimeric B/PR55 family 

holoenzymes inside cells (Longin et al., 2007), but it is not required for in vitro assembly 

nor is the carboxymethylated PP2Ac tail visible in the PP2A-Bα structure (Xu et al., 2008). 

Carboxymethylation is also not required for in vitro assembly of PP2A-B′ holoenzymes, but 

B′ holoenzyme structures show the carboxymethylated tail is situated in an area between the 

A–B interface with several negatively charged residues, suggesting a possible role of 

methylation in charge neutralization (Cho & Xu, 2007; Xu et al., 2006). Although PP2Ac 

carboxymethylation is not strictly required for holoenzyme assembly in vitro, it is clearly 

required for proper in vivo holoenzyme assembly (Lee & Pallas, 2007; Mumby, 2001). 

PP2Ac methylation also fluctuates during the cell cycle, indicating that regulation of PP2Ac 

methylation and holoenzyme assembly is required for cell cycle regulation (Janssens et al., 
2008; Yu et al., 2001).

Structural diversity of holoenzymes

Protein phosphatase 2A (PP2A) can act on a wide range of substrates via its diverse 

holoenzymes, each containing a distinct B subunit from four families: the B (PR55), B′ 

(PR56), B″ (PR72) and B‴ (Striatin) (Shi, 2009). Currently, the identified regulatory 
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subunits are encoded by 15 genes which can be alternatively spliced to yield 26 different B 

subunits (Eichhorn et al., 2009). A summary of subunit nomenclature can be found in Table 

1. These subunits share sequence homology within each family, but have little-to-no 

sequence homology between the families (Eichhorn et al., 2009). No specific “recognition 

motif” has been identified for PP2A substrates, and the recognition is likely due to structural 

elements inherent to each subunit. The structure of the core dimer of PP2A revealed 

important insights on how holoenzyme assembly and activity are regulated (Xing et al., 
2006). The core of PP2Ac contains two central β-sheets flanked by α-helices, with the loops 

connecting to the β-sheets forming the active site, and the active site loops harbor six 

conserved residues that chelate catalytic metal ions. The active site loops are highly dynamic 

(Guo et al., 2014; Jiang et al., 2013). As such, all holoenzyme (and core enzyme) structures 

solved to date required potent inhibitors such as microcystin LR (MCLR) or okadaic acid 

(OA) to stabilize the active site for crystallization (Wlodarchak et al., 2013; Xing et al., 
2006; Xu et al., 2006,2008,2009).

The A-subunit consists of 15 Huntington-elongation-A-subunit-TOR (HEAT) repeats 

arranged in a horseshoe shape. PP2Ac binds to the ridge region of repeats 10–15 and the 

regulatory subunits bind to the ridge of the N-terminal repeats. The A-subunit can undergo a 

large degree of conformational changes, explaining how so many structurally diverse B 

subunits can form active holoenzymes with the same A–C dimer (Wlodarchak et al., 2013). 

The B′γ1 holoenzyme was the first holoenzyme structure solved (Xu et al., 2006). Similar to 

the A-subunit, the B′γ1 subunit is also a HEAT repeat protein. The structure of the Bα 

holoenzyme demonstrated a much wider conformation for the A-subunit than the B′ 

holoenzyme, with little interaction between the B and C subunits (Xu et al., 2008). The Bα 

subunit is a 7-bladed β-propeller with a hairpin that extends to interact with the side face of 

the N-terminal HEAT repeats of the A-subunit (Xu et al., 2008). Recently, the high-

resolution structure of a B″ holoenzyme associated with PR70 and two structures of B″ 

family subunits in isolation were finally solved (Dovega et al., 2014; Wlodarchak et al., 
2013). These structures show that the B″ subunits are distinct from other families and consist 

of a multi-domain arrangement with two prominent calcium binding EF hands and a 

hydrophobic interacting motif. One of the EF hands directly contacts the top ridge of the 

scaffold subunit and is important for A–B″ binding (Dovega et al., 2014; Wlodarchak et al., 
2013). The N-terminal hydrophobic motif binds to the N-terminal side surface of the A-

subunit while the C-terminal domain interacts with PP2Ac. These tripartite contacts between 

AC and PR70 force the A-subunit into a tight conformation, and this is required for 

enhanced substrate-specific dephosphorylation (Wlodarchak et al., 2013). These 

observations suggest that precise orientation of substrates is dependent on subtle structural 

features and compact conformation of the holoenzymes derived from large conformational 

changes in the A-subunit. Future structural and functional studies are required to illuminate 

these mechanisms in more detail.

Given the diversity of holoenzyme structures, it is no surprise that PP2A has been suggested 

or confirmed to dephosphorylate over 300 substrates (Table 2). Most of these substrates are 

involved in cell cycle regulation, and although some of PP2A-mediated dephosphorylation 

cause positive regulation of proliferation pathways, the majority of PP2A-mediated 

dephosphorylation events play a negative regulatory role. PP2A is implicated in a wide array 
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of human diseases due to its prominent function in the cell cycle and many other essential 

cellular processes.

The cell cycle initiation: signaling pathways

The initiation of the cell cycle is controlled by many diverse and complex signaling 

pathways. There is a large and incredibly detailed body of information on each of these 

signaling pathways elsewhere. Presented here is a brief review on three critical signaling 

pathways, Wnt, mTOR and MAPK, with a focus on the role of PP2A in their regulation.

Wnt signaling pathway

The Wnt pathway is involved in the regulation of cell proliferation and polarity as well as 

embryonic development. It facilitates the initiation of the cell cycle by activating the 

transcription of critical promoters of cell division such as cyclin D1 and c-Myc (He et al., 
1998; Rimerman et al., 2000). In the absence of Wnt signaling (Figure 3A), the protein β-

catenin is degraded by the action of a complex composed of axin, adenomatous polyposis 

coli (APC), glycogen synthase kinase 3β (GSK3β) and casein kinase 1 (CK1) [reviewed in 

Clevers & Nusse (2012) and MacDonald et al. (2009)]. GSK3β and CK1 phosphorylate β-

catenin, targeting it for ubiquitination and proteasomal degradation (Amit et al., 2002; van 

Noort et al., 2002). APC and axin have unique domains that bind to CK1 and GSK3β to 

serve as scaffolds to increase β-catenin phosphorylation, and these scaffolds are often found 

mutated in cancers (Dajani et al., 2003; Kinzler et al., 1991; Nishisho et al., 1991). Wnt 

signaling (Figure 3B) is activated when extracellular Wnt binds to the receptor frizzled and 

co-receptor LRP 5/6. An intracellular complex is then formed with the receptors disheveled, 

axin, CK1 and GSK3β, which then prevents the phosphorylation and subsequent degradation 

of β-catenin (Julius et al., 2000). β-Catenin can then accumulate in the nucleus and bind to 

TCF family transcription factors and activate Wnt responsive genes (Behrens et al., 1996). 

These include critical promoters of cell division such as cyclin D1 and c-Myc (He et al., 
1998; Rimerman et al., 2000).

β-Catenin is the central substrate in Wnt signaling, and its regulation is highly dependent on 

phosphorylation and dephosphorylation. The phosphorylation events are sequential, with 

CK1 phosphorylating S45 followed by GSK3β phosphorylating T41, S37 and S33 (Amit et 
al., 2002; van Noort et al., 2002). Phosphorylation at S37 and S33 allows the ubiquitin ligase 

β-transducin repeat containing protein (β-TRCP) to bind β-catenin and target it for 

degradation (Latres et al., 1999). In addition to phosphorylating β-catenin, CK1 and GSK3β 

can phosphorylate APC and axin which increases the affinity of β-catenin for these scaffolds 

(Ferrarese et al., 2007; Ha et al., 2004; Jho et al., 1999). These phosphorylation events are 

disrupted when the complex is perturbed by Wnt signaling. β-catenin, APC and axin can be 

dephosphorylated by phosphatases such as PP2A and PP1, and this event can also increase 

β-catenin levels. PP1 increases β-catenin levels by dephosphorylating axin which reduces its 

affinity for GSK3β (Luo et al., 2007). Unlike PP1, PP2A has a dual and opposing role in β-

catenin regulation (Figure 3). The PP2A-Bα holoenzyme has been shown to directly interact 

with and dephosphorylate β-catenin to enhance Wnt signaling (Zhang et al., 2009). In 

addition to dephosphorylating the residues relevant to destruction, this holoenzyme can also 
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dephosphorylate residues S552 and S675, the functionality of which has yet to be elucidated 

(Zhang et al., 2009). The B55α holoenzyme can also directly bind axin, likely through a 

different domain than the one that PP2Ac can bind (Zhang et al., 2009). In contrast, the 

PP2A B′α holoenzyme has been implicated in negative regulation of Wnt signaling (Figure 

3). B′α can bind to the destruction complex through APC. Overexpression of B′α results in 

decreased β-catenin levels and the amino terminus of β-catenin being required for this effect 

(Seeling et al., 1999). In addition to β-catenin regulation, PP2A negatively regulates Wnt 

signaling through GSK3β both directly and indirectly (Figure 3). GSK3β is inhibited by 

phosphorylation on S9 by AKT (Leung-Hagesteijn et al., 2001). DNAJB6 with Heat Shock 

Cognate 40 (HSC40) can recruit PP2A to GSK3β where it can directly dephosphorylate S9 

and activate GSK3β (Mitra et al., 2012), which targets more β-catenin for destruction 

(Kumar et al., 2012). PP2A also inhibits Protein Kinase B (AKT or PKB) (Kumar et al., 
2012), which indirectly activates GSK3β by downregulating phosphorylation on S9. This 

pathway also provides an important intersection with the mTOR pathway, another critical 

cell cycle initiating pathway.

Mechanistic target of rapamycin (mTOR)

The mTOR pathway is involved in many diverse cellular processes. It is stimulated by amino 

acids, cellular metabolism, and growth factors, and results in increased growth, metabolism 

and biomolecule synthesis (Laplante & Sabatini, 2012). These are crucial for accumulating 

enough cellular components required for cell division. Due to the multifaceted role of 

mTOR in cell regulation, it is an intensely studied pathway with major implications in 

cancer, heart disease and even some neurological diseases such as autism (Chen et al., 2014; 

Fruman & Rommel, 2014; Laplante & Sabatini, 2012; Sciarretta et al., 2014;). Rapamycin 

was known to have toxic effects on yeast, and the responsible genes (DDR1&2/TOR1&2) 

were discovered in 1993, with the protein being discovered 1 year later (Brown et al., 1994; 

Cafferkey et al., 1993; Kunz et al., 1993). Two complexes are formed with the mTOR 

catalytic protein: mTORC1 and mTORC2 (Shimobayashi & Hall, 2014). Both complexes 

contain some shared as well as some unique components. The shared components are the 

tti1 and tel2 scaffolds, deptor and mLST8 (Shimobayashi & Hall, 2014). mTORC1 contains 

the unique proteins raptor and pras40, whereas mTORC2 contains rictor, mSin1 and 

protor1/2 (Laplante & Sabatini, 2012; Shimobayashi & Hall, 2014). Deptor is an inhibitor of 

both mTOR complexes and suppresses the function of S6 kinase 1 (S6K1), AKT and Serum 

and Glucocorticoid regulated kinase 1 (SGK1) (Peterson et al., 2009). Deptor is highly 

overexpressed in some multiple myelomas, and this overexpression can induce AKT 

function due to loss of feedback inhibition of phosphoinositide-3 kinase (PI3K) from 

mTORC1 (Peterson et al., 2009). Raptor and rictor help regulate substrate specificity to 

mTORC1 and mTORC2, respectively. Raptor binds with mTOR in the mTORC1 complex 

and is necessary for binding and phosphorylation of S6K1 and 4E-BP1, which in turn induce 

protein synthesis and proliferation (Kim et al., 2002; Nojima et al., 2003). GβL (also known 

as mLST8) is found in both mTORC2 and mTORC1 and is essential in stabilizing the 

interaction of mTOR with raptor (Kim et al., 2003; Laplante & Sabatini, 2012).

Both complexes are regulated by highly diverse processes. Wnt signaling can activate both 

mTOR complexes, as can stimulation by insulin (Inoki et al., 2006; Shimobayashi & Hall, 
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2014). Wnt can stimulate mTORC2 directly through the GTPase RAC1 and stimulates 

mTORC1 indirectly by inactivating glycogen synthase kinase 3β, which is necessary to 

activate an mTORC1 inhibitor, tuberous sclerosis complex 2 (TSC2) (Inoki et al., 2006; 

Shimobayashi & Hall, 2014). Insulin, long known to stimulate protein synthesis, activates 

mTOR through a central molecule, phosphatydilinositol-3,4,5-triphosphate, produced by 

PI3K (Hsu et al., 2011; Shimobayashi & Hall, 2014). This molecule can directly stimulate 

mTORC2 and can indirectly stimulate mTORC1 by activation of AKT which inhibits TSC2 

(Klippel et al., 1997; Shimobayashi & Hall, 2014). Free amino acids activate mTORC1 via 

binding to RAS-related GTP binding protein (RAG) heterodimers, causing a global 

conformational change (Sancak et al., 2008). The RAG complex associated with amino acids 

can recruit mTORC1 to the lysosome where it is activated by binding to RAS homolog 

enriched in brain (RHEB) (Sancak et al., 2008; Shimobayashi & Hall, 2014).

Although the mTOR regulation pathways are well established, the downstream substrates of 

mTOR are not very well characterized. Mass spectrometric studies have identified 93 

potential substrates in human embryonic kidney cells and 174 potential substrates in mouse 

embryonic fibroblasts (Hsu et al., 2011). Very few of these substrates have been studied in 

detail. The best known substrates of mTOR are the ribosomal S6 kinase (S6K) and eIF4e 

binding protein 1 (4E-BP) (Shimobayashi & Hall, 2014). Many proteins that are involved in 

growth and proliferation are encoded by mRNAs that have secondary structures in their 5′-

UTR (untranslated region) that inhibit scanning by the 40S ribosomal subunit [reviewed in 

Ma & Blenis (2009)]. Phosphorylation of 4E-BP by mTORC1 can inhibit its binding to 

eIF4E, which is necessary to recruit the pre-initiation complex (Burnett et al., 1998; Ma & 

Blenis, 2009). An important component of the pre-initiation complex is eIF4B, which upon 

phosphorylation recruits eIF4A, a family of RNA helicases that facilitate efficient unwinding 

of secondary mRNA structures. eIF4B phosphorylation is mediated by S6K after 

phosphorylation and activation by mTORC1 (Burnett et al., 1998; Ma & Blenis, 2009). 

These mTOR substrates both work in concert to translate these structured mRNAs to 

enhance growth and proliferation. mTOR regulates autophagy by the phosphorylation of 

Unc 51-like kinase 1 (ULK1). Autophagy is promoted by ULK1 when activated by 

phosphorylation on S317 and S777 by AMP activated protein kinase (AMPK) (Kim et al., 
2011). mTOR phosphorylates ULK1 on S757, which prevents AMPK phosphorylation and 

subsequent activation (Kim et al., 2011). Recently, LIPIN1, a protein that helps promote 

lipid biosynthesis, was identified as a potential mTOR substrate, but more work is needed to 

further characterize this substrate (Yuan et al., 2012).

There is evidence that PP2A can associate and dephosphorylate S6K, and the same report 

indicated that mTOR can inactivate PP2A, providing two modes of S6K activation (Peterson 

et al., 1999) (Figure 4). PP2A has also been shown to affect mTOR activity by regulating 

AKT. AKT, which inhibits TSC2, requires phosphorylation on T308 and S473 for activation, 

and the PP2A B′α holoenzyme has been shown to dephosphorylate AKT on T308, thereby 

inactivating it (Kuo et al., 2008) (Figure 4). Upstream of AKT, driven by insulin signaling, is 

insulin receptor substrate 1 (IRS1) which is necessary to transduce insulin receptor signaling 

to PI3K (Carlson et al., 2004). PP2A can dephosphorylate IRS1, leading to its stabilization 

and mTOR can inhibit PP2A activity toward IRS1 potentially directly phosphorylating IRS1 
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at S307, leading to IRS1 degradation (Carlson et al., 2004; Hartley & Cooper, 2002) (Figure 

4).

Multiple reports have indicated that mTOR can negatively regulate PP2A activity, and most 

of this negative regulation supports mTOR activation through insulin signaling and PI3K. In 

contrast, PP2A can negatively regulate mTOR when amino acids are not present. MAP4K3 

can signal to activate mTOR when amino acids are present, and autophosphorylation on 

S170 is necessary for this activation (Yan et al., 2010). When amino acids are withdrawn, 

PP2A dephosphorylates S170 and prevents mTOR activation by this pathway (Yan et al., 
2010) (Figure 4).

The role of PP2A in mTOR activation is further regulated by its regulatory proteins. TIPRL 

can overcome amino acid withdrawal and stimulate mTOR activation by inhibiting PP2A 

phosphatase activity. However, the yeast homolog, TIP41, has a negative effect on mTOR 

activation by binding to TAP42 (Nakashima et al., 2013). In contrast to observations in 

yeast, the association between PP2Ac and α4, the mammalian homolog of TAP42, is not 

dependent on mTOR, indicating that the functions of TIPRL and α4 in mTOR signaling are 

not conserved and remain to be deciphered (Yoo et al., 2008).

The mTOR pathway is a critical pathway to initiate cell growth, and the regulation of this 

pathway is exceedingly complex, involving many feedback loops and antagonistic 

partnerships, especially with PP2A. mTOR has been intensely investigated and is frequently 

targeted for potential treatment of diseases such as cancer. Nevertheless, there are still 

important gaps in our understanding of mTOR substrates, regulation and crosstalk with other 

signaling pathways. Further study will deepen our understanding of growth signaling and 

possibly lead to significant drug development.

Mitogen activated protein kinase signaling pathway

Mitogen-activated protein (MAP) kinase pathways help regulate many cellular functions 

such as proliferation, differentiation and apoptosis. There are four families of MAP kinases: 

ERK1/2, ERK5, JNK and p38 [reviewed in Hommes et al. (2003), Imajo et al. (2006), 

McCubrey et al. (2007), Meloche & Pouyssegur (2007)]. When activated, MAP kinases 

phosphorylate downstream substrates to induce cellular responses. MAPKs are activated by 

upstream kinases (MAPK kinases), and those MAPKKs are activated by further upstream 

kinases, MAPKK kinases (MAPKKKs) (Imajo et al., 2006). These kinases are activated by 

cellular growth signals, cytokines or stress signals. ERK5, JNK and p38 generally have pro-

apoptotic functions and are activated by stresses, whereas ERK1/2 promotes proliferation 

and transformation (Imajo et al., 2006; Meloche & Pouyssegur, 2007; Wu, 2007). The 

ERK1/2 pathway was the first MAPK pathway discovered and is the best studied. Growth 

factors such as epidermal growth factor (EGF) or fibroblast growth factor (FGF) bind to 

their respective receptors and recruit a complex of SRC homology-2-containing protein 

(SHC), growth factor receptor bound protein 2 (GRB2) and son of sevenless (SOS) (Egan et 
al., 1993) (Figure 5). This complex changes Ras conformation, disrupting GDP interaction 

and promoting GTP association which activates Ras and recruits Raf (MAPKKK) to the 

membrane bound complex (Freedman et al., 2006; Milburn et al., 1990), where Raf is 

activated by dimerization and phosphorylation (Rajakulendran et al., 2009). Raf then 
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phosphorylates and activates MEK1, which subsequently phosphorylates and activates 

ERK1/2 (Crews et al., 1992; Wu et al., 1996) (Figure 5). ERK1/2 phosphorylates 

transcription factors Jun and Fos which can then translocate to the nucleus and bind DNA to 

initiate transcription of genes involved in cell cycle regulation such as AP-1, which in turn 

can promote cyclin D1 expression (Monje et al., 2005; Weber et al., 1997). ERK1/2 can also 

phosphorylate and stabilize c-Myc, which can then enhance its transcriptional activity 

toward cell cycle promoting genes such as cyclin D1 and CDC25A (Mathiasen et al., 2012; 

Meloche & Pouyssegur, 2007).

The ERK1/2 MAPK pathway and its downstream substrates are also regulated by the action 

of phosphatases. There are at least 11 MAPK phosphatases (MKPs), which are split into 

three families based on cellular localization. There is significant cross-activity between the 

MKPs and all four of the MAPK pathways, and many of the MKPs, such as MKP-1 and 

MKP-3, have an overall transforming effect and are implicated in many cancers [reviewed in 

Wu (2007)]. MKP-1 has been the best studied of the MKPs, and is implicated in a variety of 

cancers. One of the mechanisms implicated in maintaining cell survival is its ability to 

prevent stress-induced apoptosis by preferentially dephosphorylating p38 and JNK, 

inactivating two critical stress-induced apoptotic pathways in the cell (Franklin & Kraft, 

1997; Franklin et al., 1998).

Protein phosphatase 2A (PP2A) appears to have a role primarily in negative regulation of the 

ERK MAPK pathway (Figure 5). SHC is an important member of the complex that binds 

growth receptors and activates Ras (Egan et al., 1993). PP2A can bind to the phospho-

tyrosine binding domain of SHC and negatively regulate Ras activation (Ugi et al., 2002). 

After growth factor stimulation, T317 phosphorylation of SHC can dissociate PP2A and 

allow downstream activation (Ugi et al., 2002). It is currently unknown whether PP2A 

actively dephosphorylates SHC or which regulatory subunit is responsible for PP2A’s 

inhibitory effect (Ugi et al., 2002). PP2A can also directly inactivate ERK by 

dephosphorylation (Letourneux et al., 2006) (Figure 5). This is mediated by the B′β and B′γ 

subunits, which can also be phosphorylated by ERK if IEX-1 is expressed, thus reversing 

PP2A mediated inactivation (Letourneux et al., 2006). Sprouty2 is an inhibitor of FGF 

stimulated ERK activation. Sprouty2 is normally phosphorylated and cannot bind Grb2, and 

phosphorylation on T55 allows c-Cbl to bind and target sprouty2 for degradation by the 

proteasome (Lao et al., 2007). Upon FGF stimulation, sprouty2 is dephosphorylated by 

PP2A, which exposes the Grb2 binding motif on the C-terminus (Lao et al., 2007) (Figure 

5). When bound to Grb2, ras is unable to be recruited to the complex and be activated, thus 

downregulating ERK activation by FGF (Egan et al., 1993). PP2A binds to sprouty2 

between residues 50–60, competing with c-Cbl binding and thus activating and protecting 

sprouty2 (Lao et al., 2007).

PP2A can also positively regulate ERK MAPK signaling. EGF receptors are targeted for 

ubiquitination and degradation by c-Cbl, which requires phosphorylation on various residues 

(McCubrey et al., 2007). This interaction is disrupted upon recruitment of SRC homology 2 

domain containing inositol polyphosphate phosphatase, SHIP2 (Zwaenepoel et al., 2010). 

PR130, a PP2A regulatory subunit from the B″ family, forms a holoenzyme which can form 

a complex with SHIP2 and is required for SHIP2-mediated stabilization of EGFR 
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(Zwaenepoel et al., 2010). Mapping studies indicate that the catalytic domain of SHIP2 

interacts with the EF hands of PR130, and mutation in this region disrupts the stabilizing 

effect of PR130 holoenzyme on EGFR (Zwaenepoel et al., 2010). It is currently unknown 

whether catalytic activity is required for this effect and whether PP2A-PR130 

dephosphorylates EGFR, SHIP2 or other associated targets. Downstream of growth factor 

receptor, the kinase suppressor of ras (KSR1) is a critical positive regulator of ras signaling 

(Ory et al., 2003). It is a necessary scaffold to transduce the activation signal from ras-1 to 

MEK to ERK. PP2A-Bα holoenzyme is associated with the KSR1 complex and is required 

for MEK activation (Ory et al., 2003). When phosphorylated, S392 of KSR1 associates with 

14–3-3 protein and remains cytoplasmic. PP2A-Bα directly dephosphorylates KSR1 at S392 

which is then freed from 14–3-3 and can translocate to the membrane, an event required for 

MEK activation (Ory et al., 2003) (Figure 5). Similarly, PP2A and PP1 have been shown to 

positively regulate Raf-1 activity by dephosphorylating S259, allowing 14–3-3 release from 

Raf-1 and membrane translocation (Jaumot & Hancock, 2001) (Figure 5). PP2A-B′β and -B

′δ can also positively regulate MAPK signaling in neuronal PC12 cells through action on 

TrkA. PP2A enhances autophosphorylation of TrkA likely by dephosphorylating an 

inhibitory Ser/Thr, allowing Ras activation by TrkA and sustained MAPK signaling (Van 

Kanegan & Strack, 2009).

Taken together, the role of PP2A in regulation of MAPK pathway is complex and other as-

yet-unidentified regulatory proteins may be involved. Signaling scaffolding proteins, such as 

KSR1, are crucial for coordinating spatiotemporal control of the function of kinases, 

phosphatases and other signaling molecules. The role of PP2A in both positive and negative 

regulation of MAPK are likely crucial for fine-tuning and precise control of this pathway. 

There is also crosstalk with many of these pathways as well as other cell cycle promoting 

pathways, highlighting the importance of phosphatases in regulating the initiation of the cell 

cycle and the complexity by which they do so.

Cell cycle progression: Rb and the G1-S transition

In G1 phase, cell cycle initiation pathways, such as those mentioned above, initiate growth 

and transcription of factors, such as cyclin D1, that control cell cycle progression. Before the 

cell can transition from G1 to synthesis (S) phase, it must pass through a critical cell 

checkpoint to ensure that the cell is ready for DNA synthesis. The master regulator of this 

checkpoint, and first discovered tumor suppressor protein, is the retinoblastoma tumor 

suppressor protein (Rb).

Rb phosphorylation

Retinoblastoma tumor suppressor protein (Rb) is an approximately 105 kDa protein 

consisting of three functional domains: an N-terminal structured region, a two-part central 

pocket region and a C-terminal unstructured region (Harbour & Dean, 2000). There are two 

other proteins structurally and functionally related to Rb: p107 and p130. Together, these 

proteins make up the pocket protein family and have all been implicated in diverse cellular 

processes such as cell cycle progression, apoptosis, senescence, differentiation, and 

angiogenesis [reviewed in Indovina et al. (2013)]. These proteins bind and inactivate E2F 
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transcription factors, with Rb binding E2F 1–3, and p107/p130 binding E2F4 & 5 (Figure 6) 

(Indovina et al., 2013; Kolupaeva & Janssens, 2013). E2F 1–3 are transcriptional activators 

and mostly express cell cycle genes such as cyclins E and A, and CDC25 [reviewed in 

Harbour & Dean (2000), Indovina et al. (2013), Nevins (2001)]. E2F4 & 5 are 

transcriptional repressors and are involved in maintaining genomic stability and redundant 

functions with Rb [reviewed in Dominguez-Brauer et al. (2010) and Plesca et al. (2007)]. 

The pocket proteins bind to E2F transcription factors along with their dimerization partners 

(DPs), preventing their translocation to the nucleus and transcriptional activation (Rubin, 

2013). The pocket proteins are phosphorylated by cyclin/CDK holoenzymes on numerous 

residues, weakening the interaction between them and the E2Fs, causing dissociation and 

E2F transcriptional activation [reviewed in Kolupaeva & Janssens (2013) and Rubin (2013)] 

(Figure 6). Rb is phosphorylated by cyclin D/CDK4 and cyclin E/CDK2 in G1, and 

numerous phosphorylation events gradually lead to the release of E2F transcription factors 

(Brown et al., 1999). One possible mechanism for this gradual release is due to the 

association of E2F with multiple domains of Rb (Rubin et al., 2005). The pocket domain 

alone is not sufficient for E2F dimerization, as the C-terminal region of Rb adopts a stable 

conformation upon association with E2F1-DP and increases the binding of the complex 

more than 36 fold (Rubin et al., 2005). Loss of this interaction pre-disposes Rb-E2F to 

dissociate, and this region is phosphorylated by cyclin D/CDK4/6 early in G1, thus 

providing a model for how sequential phosphorylation events dissociate Rb-E2F (Rubin et 
al., 2005). Rb levels do not change throughout the cell cycle, indicating that phosphorylation 

events need to be reversed to reset Rb after cell division (Kolupaeva & Janssens, 2013).

Phosphatases in Rb regulation

The specific roles of kinases in Rb phosphorylation have been well established; however, the 

role of phosphatases in Rb regulation continues to be discovered. Protein phosphatase 1 and 

PP2A are the primary phosphatases that regulate Rb (and p107/130) function (Kolupaeva & 

Janssens, 2013). PP1 is responsible for complete dephosphorylation of Rb after mitosis, 

whereas PP2A functions throughout the cell cycle, dephosphorylating Rb and p107/130 in 

response to various stimuli [reviewed in Kolupaeva & Janssens (2013) and Kurimchak & 

Grana (2012)].

Protein phosphatase 1 (PP1) and PP2A are both known to dephosphorylate Rb, and PP1 

appears to compete for the same CDK docking sites (Alberts et al., 1993; Hirschi et al., 
2010). Such competitive interaction has also been suggested between CDKs and PP2A for 

p107 (Kolupaeva et al., 2013), and when CDKs are elevated they outcompete phosphatases 

causing an irreversible cell cycle progression signal switch. CDKs compete with 

phosphatases and switch the signal toward hyperphosphorylation and irreversible 

progression of the cell cycle (Garriga et al., 2004). In support of the competition hypothesis, 

specific overexpression of Bα induces p107 dephosphorylation (Jayadeva et al., 2010). Bα 

can directly associate with p107 but has little affinity for pRb, therefore, additional 

holoenzymes may be required to mediate cell cycle arrest by pocket protein activation 

(Jayadeva et al., 2010).
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In contrast to constitutive competitive interactions, extracellular signaling or stress factors 

can induce PP2A-modulated dephosphorylation of the pocket proteins with no significant 

changes in CDK activity or PP2A expression (Cicchillitti et al., 2003). Sustained FGF 

signaling can arrest cell growth in chondrocytes, which is the opposite to the effect in most 

other cell types (Kolupaeva et al., 2013). FGF signaling leads to Bα dephosphorylation, 

increasing Bα affinity for p107, and chondrocytes have a large constitutively expressed Bα 

population (Kolupaeva et al., 2013). Phosphorylation of Bα allows increased association of 

PP2A-Bα holoenzymes with p107 and subsequent dephosphorylation and cell cycle arrest 

(Kolupaeva et al., 2013). The extracellular factor all-trans-retinoic acid (ATRA) appears to 

induce PP2A-specific dephosphorylation of p130 (Purev et al., 2011). Upon ATRA 

treatment, PP2A can bind to and dephosphorylate p130, protecting it from ubiquitination 

and degradation (Purev et al., 2011). PP2A can also mediate p130’s translocation to the 

nucleus due to dephosphorylation of S1080 and T1097, exposing the NLS and allowing 

binding by importins α and β (Purev et al., 2011; Soprano et al., 2006). Under oxidative 

stress conditions, the PP2A-PR70 holoenzyme can dephosphorylate Rb, and this activity is 

dependent on Ca2+ stimulation (Magenta et al., 2008) (Figure 6). One potential underlying 

mechanism is that oxidative stress induces an influx of Ca2+, which stimulates PR70 

holoenzyme formation and results in specific Rb dephosphorylation by PP2A-PR70, 

although further investigation is needed.

The regulation of pocket proteins by dephosphorylation is complex and results from the 

interplay between competition with CDKs and specific mitogenic or stress stimuli. There 

may also be crosstalk between various signaling pathways in this process, as pocket proteins 

are central effectors through which many pathways funnel. S phase induction by Rb 

represents a commitment by the cell to DNA synthesis and phosphatases continue to be 

important in regulating this process.

DNA synthesis and regulation of the origin recognition complex

Once the cell passes the G1-S checkpoint, it is committed to the process of synthesizing 

DNA. The genome in eukaryotes is far too large for synthesis to proceed in a linear fashion 

from one end to another, so synthesis proceeds from discrete origins of replication. In yeast, 

these origins are defined by specific DNA sequences; however, human origins are likely 

defined by DNA structural features [reviewed in Hyrien et al. (2013)]. Excluding DNA 

recognition, the origin recognition complex functions in a conserved manner and is highly 

regulated.

ORC assembly and regulation

The origin recognition complex (ORC) is a large protein complex that binds to DNA at the 

origins of synthesis and recruits all of the proteins required to unzip and polymerize DNA 

[reviewed in Bell (2002) and Duncker et al. (2009)]. There are and ORC proteins (ORC1–6) 

that bind to DNA at the origins [referred to as autonomously replicating sequences (ARS) in 

yeast] (Duncker et al., 2009). These proteins all bind and hydrolyze ATP, and ATPase 

activity is required for their assembly and recruitment of other complex members (Bell & 

Stillman, 1992). In late G1/early S, cell division control 6 protein (Cdc6) binds to the ORC 
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proteins and is the critical component for further ORC assembly (Liang et al., 1995). Cdc6 

facilitates the loading of Cdt1 and ORC6 to ORC1–5 which then facilitate the loading of the 

mini-chromosome maintenance proteins (MCM2–7) (Nishitani et al., 2000). Cdc6 also has 

ATPase activity, and hydrolysis of ATP leads to conformational changes, which increases the 

binding affinity of the MCM proteins for the complex (Shin et al., 2003). The MCM proteins 

are helicases, and when properly bound they begin to unwind DNA for replication. The 

MCM proteins are subsequently phosphorylated by Dbf4/Cdc7 which allows the recruitment 

of RPA and Cdc45 to the unzipped origin, facilitating the loading of DNA polymerase which 

then synthesizes new DNA (Sheu & Stillman, 2006; Tanaka & Nasmyth, 1998).

Regulation of Cdc6 by phosphorylation

For error free cell division, DNA must be synthesized once and only once. One of the chief 

ways the cell regulates this process is by allowing the origins to fire only once. This 

restriction is accomplished by the tight regulation of Cdc6. In the absence of 

phosphorylation near its N-terminal destruction motifs, the anaphase-promoting complex/

cyclosome (APC/C) targets Cdc6 for ubiquitination and proteasomal degradation (Mailand 

& Diffley, 2005). In G1, Cdc6 is phosphorylated by cyclin E/CDK2 on S54 and S74, 

protecting it from degradation and allowing it to be transported into the nucleus and to bind 

to the ORC (Jallepalli et al., 1997; Mailand & Diffley, 2005) (Figure 7). After origin firing 

in early S phase, Cdc6 is acetylated by general control non-derepressible 5 (GCN5) and 

phosphorylated by cyclin A/CDK2 on S106 (Paolinelli et al., 2009; Petersen et al., 1999). 

These modifications tag Cdc6 for nuclear export where it is degraded in the cytoplasm. Cdc6 

degradation can only happen when the protective residues are dephosphorylated, and PP2A-

PR70 has been shown to dephosphorylate Cdc6 in vivo (Davis et al., 2008). Our recent study 

showed that Cdc6 is specifically dephosphorylated by PP2A-PR70 holoenzyme and not 

others (Wlodarchak et al., 2013). PP2A-PR70 binds Cdc6 near the phosphorylated residues, 

likely due to a charge recognition pattern, and a compact holoenzyme conformation is 

critical for optimal enzymatic activity (Wlodarchak et al., 2013). The in vivo timing and 

location of PP2A-PR70 dephosphorylation is not fully characterized, but it likely occurs 

after origin firing to prevent re-assembly and possibly before origin assembly to regulate 

synthesis (Figure 7).

Mitosis: PP2A as a gatekeeper from mitotic entry to mitotic exit

Inhibition of PP2A is required for mitotic entry

The transition from G2 to M phase is elicited by many factors and pathways, but one of the 

most critical events is the activation of CDK1, which is concomitant with the inactivation of 

PP2A-B55 holoenzyme (Mochida et al., 2009). The role of CDK1 was discovered over 40 

years ago, but the complex regulatory pathways in which it is involved continue to be 

studied (Fisher et al., 2012). CDK1 is kept inactive by phosphorylation of S14 and Y15 by 

Wee1 and Myt1 (Mueller et al., 1995). During the G2→M transition, CDK1 is activated by a 

group of dual-specificity phosphatases, Cdc25a, b and c (herein collectively referred to as 

CDC25), which themselves are subject to a complex regulatory network involving several 

kinases and phosphatases (Lammer et al., 1998) [reviewed in Johnson & Kornbluth (2012)]. 

Before mitotic entry, CDC25 is phosphorylated on S216 by CaMKII and can also be 
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phosphorylated by Chk1 to arrest the cell cycle (Hutchins et al., 2003). This allows 14–3-3 

protein to associate with CDC25 and prevent its nuclear translocation (Margolis et al., 
2006a). Chk1 also phosphorylates PP2A-B56δ on S37 which subsequently enhances its 

activity toward pT138 of CDC25, keeping CDC25 inactive (Margolis et al., 2006a). At the 

end of G2, CDK2-cyclin E phosphorylates CDC25 T138, decreasing the affinity of 14–3-3 

to CDC25 (Margolis et al., 2006a). The decreased affinity allows gradual 14–3-3 

dissociation, and the free 14–3-3 becomes bound in a phospho-keratin sink (Margolis et al., 
2006a). The re-exposed S216 can then be dephosphorylated by PP1, preventing 14–3-3 re-

association (Margolis et al., 2003,2006b). The now active CDC25 can dephosphorylate pT14 

and pY15 of CDK2, subsequently activating it (Gautier et al., 1991). Once CDK1 is active, it 

can phosphorylate CDC25 at S214, enhancing the affinity of CDC25 for PP1 and causing 

activation of additional CDK1, leading to rapid mitotic progression (Margolis et al., 2006b) 

(Figure 8).

Protein phosphatase 2A (PP2A)-B55 holoenzyme provides additional mechanism for the 

complex CDK1 regulation. Before mitotic initiation, PP2A-B55 dephosphorylates Wee1 and 

Greatwall kinase, keeping both inactive (Harvey et al., 2011; Hegarat et al., 2014). It can 

also dephosphorylate and subsequently inactivate CDC25 at mitotic exit (Forester et al., 
2007; Johnson & Kornbluth, 2012). In addition, cyclin A-CDK2 begins to phosphorylate 

Greatwall kinase at T194 and activate it at the G2→M transition (Hegarat et al., 2014). 

Greatwall phosphorylates ENSA that subsequently binds to and inhibits PP2A-B55, 

preventing CDC25 repression (Mochida et al., 2010). As more CDK1 is activated, a positive 

feedback loop ensures PP2A-B55 inactivation. CDK1 also phosphorylates Greatwall and 

FCP1, keeping a majority of ENSA phosphorylated and bound to PP2A-B55 (Hegarat et al., 
2014). Furthermore, CDK1 inactivates Wee1 and, without the antagonistic effect of PP2A-

B55, ensures its activation (Watanabe et al., 2005). This complex network of regulation and 

positive feedback loops serve to inactivate PP2A while activating CDK1, rapidly driving 

entry into mitosis.

PP2A in reorganization of cellular structures during mitosis

Protein phosphatase 2A (PP2A) holoenzymes play a critical role in regulating reorganization 

of cellular structures during mitosis, including nuclear envelope breakdown, rearrangement 

of intracellular organelles, such as the endo plasmic reticulum and the Golgi apparatus, 

assembly of mitotic chromosomes, assembly of the mitotic spindle and attachment of 

cytoplasmic microtubules to kinetochores, which are crucial for proper partitioning of 

cellular materials into emerging daughter cells during cytokinesis. A significant amount of 

knowledge on cellular reorganization during mitosis had been reviewed (Wurzenberger & 

Gerlich, 2011). Here, we primarily focus on the function of PP2A in these critical processes.

Nuclear envelop breakdown and reassembly is tightly coordinated with mitotic 

phosphorylation and dephosphorylation (reviewed in Guttinger et al. (2009)). Nuclear 

envelop breakdown was facilitated by CDK1-dependent phosphorylation of lamin proteins 

and subsequent disassembly of the nuclear lamina (Peter et al., 1990), and phosphorylation 

of nucleoporins-mediated disassembly of nuclear pore complexes (Laurell et al., 2011). 

PP2A (Schmitz et al., 2010) and its closely related PP1 (Thompson et al., 1997) play a role 
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in nuclear envelope reassembly during mitotic exit with unclear mechanisms. It remains to 

be determined whether lamin and nucleoporins are the specific substrates of PP2A. 

Disassembly and reassembly of the Golgi apparatus is also driven by mitotic 

phosphorylation and dephosphorylation. While phosphorylation of Golgi matrix protein 

GM130 induces disassembly (Wei & Seemann, 2009), PP2A-mediated dephosphorylation of 

GM130 induces Golgi reassembly during mitotic exit, which involves PP2A-B55α 

holoenzyme (Lowe et al., 2000; Schmitz et al., 2010).

Mitotic chromosomal assembly is regulated by condensin I and condensin II, which belongs 

to a class of conserved condensin complexes that play essential roles in mitotic chromosome 

condensation by collaborating with other chromosomal components (Hagstrom & Meyer, 

2003; Jessberger, 2002). PP2A interacts with condensin II and plays an essential role in 

targeting condensin II to chromosomes (Takemoto et al., 2009). Intriguingly, this process 

does not require the phosphatase activity of PP2A (Takemoto et al., 2009). Chromatin 

decondensation requires PP1 and its regulatory subunits Repo-Man (recruits PP1 onto 

mitotic chromatin at anaphase protein) and PNUTS (phosphatase 1 nuclear targeting 

subunit) (Landsverk et al., 2005; Vagnarelli et al., 2006). The role of PP2A in this process is 

less characterized. Nonetheless, a recent study showed that a midzone-associated Aurora B 

gradient monitors chromosome position along the division axis and to prevent premature 

chromosome decondensation by retaining Condensin I until effective separation of sister 

chromatids is achieved (Afonso et al., 2014). Both PP1 and PP2A phosphatases counteract 

this gradient and promoted chromosome decondensation (Afonso et al., 2014).

Proper kinetochore–microtubule attachments are tightly controlled by Aurora B-mediated 

phosphorylation and PP2A/PP1-mediated dephosphorylation. Aurora B phosphorylates 

multiple substrates at the kinetochore to destabilize and correct erroneous kinetochore–

microtubule attachments (Welburn et al., 2010). While PP1 is considered the major 

phosphatase counteracting Aurora B (Carmena et al., 2012), the PP2A-B56α holoenzyme 

also plays a critical role in stabilizing kinetochore–microtubule attachments by counteracting 

Aurora B phosphorylation (Foley et al., 2011). Pseudokinase BUBR1 seems to play a critical 

role in integration of kinase and phosphatase activities to ensure proper formation of stable 

kinetochore–microtubule attachments (Suijkerbuijk et al., 2012). Phosphorylation of a 

conserved KARD domain n BUBR1 by PLK1 (polo-like kinase 1) promotes direct 

interaction of BUBR1 with the PP2A-B56α phosphatase (Suijkerbuijk et al., 2012), a 

potential mechanism for the recruitment of PP2A-B56α to the inner kinetochore prior to 

microtubule attachment (Foley et al., 2011). Removal of BUBR1 from mitotic cells or 

inhibition of PLK1 reduces PP2A-B56α kinetochore binding (Suijkerbuijk et al., 2012), 

suggesting that PLK1 and BUBR1 cooperate to stabilize kinetochore–microtubule 

interactions by regulating kinetochore localization of the PP2A-B56α holoenzyme.

PP2A in spindle checkpoint, regulation of APC/C-CDC20 and mitotic exit

The rise in APC/C-CDC20 activity initiates mitotic exit by targeting several mitotic 

determinants for degradation, resulting in the formation and separation of two interphase 

daughter cells. APC/C is kept inactive by the spindle assembly checkpoint until all 

chromosomes attach to microtubules originating from opposite spindle poles [reviewed in 

Wlodarchak and Xing Page 15

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2016 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Musacchio & Salmon (2007)]. The early mitotic inhibitor 1 (Emi1) and 2 (Emi2) play a 

critical role in inhibition of APC/C, and PP2A-B56 holoenzymes was found to promote the 

inhibitory activity of Emi2 and maintain the spindle assembly checkpoint, which was 

antagonized by the activity of CDK1 (Tischer et al., 2012). CDK1-mediated phosphorylation 

of APC/C inhibitory proteins primes its own inactivation. At mitotic exit, APC/C-CDC20 

induces proteasomal destruction of cyclin B, and inactivates mitotic CDK1 (Sullivan & 

Morgan, 2007). Inactivation of CDK1 is expected to lead to reactivation of PP2A-B55 to 

mediate dephosphorylation of CDK1 substrates at mitotic exit.

Adenomatous polyposis coli (APC)/C-CDC20 also mediates the degradation of securin to 

initiate chromosome segregation. Securin inhibits the protease separase; removal of securin 

allows separase to cleave the sister chromatid cohesion 1 (SCC1) subunit of the cohesin 

complex (Sullivan & Morgan, 2007). Cohesin function is also regulated by PLK1 and PP2A. 

PLK1 promotes dissociation of cohesin from chromosome arms by phosphorylating the 

cohesin subunit SA2 during prometaphase (Sumara et al., 2002). Shugoshin 1 recruits 

PP2A–B56 to protect SA2 against PLK1-mediated phosphorylation and thereby maintains a 

pool of persistent cohesion, and prevents premature separation of sister chromatids (Kitajima 

et al., 2006; Tang et al., 2006; Tanno et al., 2010; Xu et al., 2009).

With limited information on specific substrates targeted by diverse PP2A holoenzymes, the 

above knowledge likely merely represents a small fraction of PP2A function during mitosis. 

More questions need to be addressed regarding how PP2A holoenzyme activity is 

temporally and spatially controlled for tight regulation of numerous events during mitosis.

Concluding remarks

The cell cycle harbors complex and intricate processes and may be the most studied aspect 

in biology. This highlights its importance in understanding the origins of most of human 

disease and what can be done to intervene for therapeutic purposes. Great strides have been 

made in understanding the complex players of the cell cycle, and the importance of 

regulation by reversible phosphorylation cannot be underestimated.

The role of PP2A in regulating the cell cycle is only beginning to be investigated. It is 

involved in most major cell cycle initiation pathways as well as in regulating major 

checkpoints during cell cycle phase transitions. PP2A is implicated in dephosphorylating 

many more cell cycle pathway substrates than could be discussed here (Table 2), further 

highlighting its importance to properly functioning cells. The kinases involved in regulating 

the cell cycle typically exert their action through transcription-level changes and/or 

regulation of protein stability, whereas the cellular level of PP2A scaffold and catalytic 

subunits are stable throughout the cell cycle. Although PP2A expression differs from that 

leading to “canonical” kinase regulation, PP2A is one of the primary cell cycle regulating 

enzymes due to the dynamic nature of its holoenzyme assembly, activation and inhibition. 

As discussed, it is a major target in several key pathways, both for protein activation and 

inactivation, and it is frequently targeted for inhibition due to its antagonistic effects in these 

pathways. Although kinases may have taken center stage in the study of cell cycle 
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regulation, the intricate connectivity between these kinases and PP2A shows its importance 

in the tight regulation of these processes.

In addition to its wide involvement in cellular processes, PP2A is a complex group of 

enzymes, and its assembly and activity are highly regulated making it challenging to study. 

No PP2A-substrate binding consensus sequence has been identified yet, indicating that 

structural and biochemical information is required to understand the mechanisms by which 

PP2A regulates substrate dephosphorylation. Currently, high-throughput assays are being 

explored to identify substrates and characterize protein–protein interactions significantly 

faster than traditional methods. These large scale assays combined with structural and 

biochemical characterization will provide an unprecedented amount of information to the 

PP2A field and possibly identify new targets of cell cycle regulation. These new targets may 

be incredibly useful in developing drugs or biomarkers for preventing, diagnosing or treating 

human disease, and more refined knowledge on existing PP2A-substrate interactions may 

help improve current treatments.
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Figure 1. 
Serine/threonine phosphatases are classified based on biochemical mechanism. They are 

divided into three families, the aspartate-based phosphatases, the metal-dependent protein 

phosphatases and the phosphoprotein phosphatases. The phosphoprotein phosphatases have 

similar active site configurations and require catalytic metal ions in the active site. PP2A is a 

member of this family. Adapted from Stanevich (2013). (see colour version of this figure at 

www.informahealthcare.com/bmg).
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Figure 2. 
PP2A biogenesis and holoenzyme assembly is regulated by unique factors. α4 protects 

inactive PP2Ac from ubiquitination by MID1. Activating metal ions are loaded by PTPA, 

and active PP2Ac binds to the scaffold subunit (A). The C-terminal tail of PP2Ac can be 

methylated by LCMT-1 and reversed by PME-1. Active, methylated PP2A-AC can then 

form holoenzymes with one B subunit. These available B subunits are divided into four 

families: B, B′, B″ and B‴, each with unique characteristics and regulation. (see colour 

version of this figure at www.informahealthcare.com/bmg).

Wlodarchak and Xing Page 35

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2016 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.informahealthcare.com/bmg


Figure 3. 
PP2A positively and negatively regulates the Wnt signaling pathway. (A) Wnt OFF. In the 

absence of Wnt signaling, a complex of Axin, Apc, GSK3β and CK1 phosphorylate β-

catenin, targeting it for proteasomal degradation. PP2A-B′α promotes β-catenin degradation 

by removing an inhibitory phosphorylation on GSK3β. PP2A-Bα can directly 

dephosphorylate β-catenin, promoting the activation of wnt responsive genes. (B) Wnt 

signaling ON. In the presence of Wnt ligand, Wnt receptors LRP5/6 and frizzled sequester 

the Axin, GSK3β and CK1, preventing the phosphorylation of β-catenin. β-Catenin 
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accumulates and translocates to the nucleus, promoting the transcription of Wnt responsive 

genes. Figure adapted from MacDonald et al. (2009). (see colour version of this figure at 

www.informahealthcare.com/bmg).
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Figure 4. 
PP2A negatively regulates the mTOR signaling pathway. The mTOR complexes are colored 

blue. Proteins involved in mTOR inhibition and activation are colored red and green, 

respectively with PP2A in purple. Downstream factors inhibiting and stimulating growth are 

colored magenta and teal, respectively. Growth factors stimulate the mTOR pathway via 

inhibiting the function of the TSC complex that inhibits mTOR activation. Wnt signaling can 

inhibit the TSC complex or directly stimulate mTORC2. Amino acids can also stimulate 

mTOR activity. PP2A inhibits the mTOR pathway by inhibiting IRS1 in the insulin 
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signaling pathway or MAP4K3 in the amino acid pathway, or by inhibiting AKT function. 

PP2A can also reverse mTOR phosphorylation of S6K. Figure adapted from Shimobayshi & 

Hall (2014). (see colour version of this figure at www.informahealthcare.com/bmg).
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Figure 5. 
PP2A positively and negatively regulates the MAPK signaling pathway. Growth factors 

stimulate a complex of proteins: SHC, GRB2 and SOS to assemble on a growth factor 

receptor. This complex activates Ras which starts a signal cascade from activation of Raf, to 

activation of MEK, ERK and eventually the transcription factors that activate the 

transcription of growth related genes. PP2A can activate Raf by dephosphorylating S259 and 

causing 14–3-3 release. PP2A-Bα dephosphorylates S392 of KSR1, which leads to 

dissociation of 14–3-3 from KSR1, essential for MEK1 activation. PP2A negatively 
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regulates MAPK upstream by activating Sprouty2, which inhibits GRB2 and subsequent 

RAS complex formation. PP2A-B′β/B′γ can directly dephosphorylate ERK1/2 downstream 

of the signaling cascade, thereby inactivating it. Factors promoting cell division are shown in 

green and those opposing cell division are shown in red. Figure adapted from McCubrey et 
al. (2007). (see colour version of this figure at www.informahealthcare.com/bmg).
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Figure 6. 
Rb phosphorylation promotes transcription of E2F responsive genes. Rb normally binds E2F 

transcription factors and their dimerization partners. When phosphorylated by cyclin/CDK 

heterodimers, Rb loses affinity for E2F and free E2F is allowed to promote transcription. Rb 

is dephosphorylated at the end of mitosis, allowing reassociation with E2F. Normally, PP1 

dephosphorylates Rb at the end of mitosis, but PP2A-PR70 can dephosphorylate Rb under 

oxidative stress conditions. (see colour version of this figure at www.informahealthcare.com/

bmg).
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Figure 7. 
Cdc6 is necessary for assembly of the pre-replication complex and subsequent DNA 

synthesis. In G0, Cdc6 is ubiquinated by the anaphase promoting complex/cyclosome 

(APC/C) and degraded by the proteasome. In G1, Cyclin E/CDK2 phosphorylates Cdc6 on 

S54 and S74, protecting it from degradation. Cdc6 is translocated into the nucleus where it 

binds the origin recognition complex and is required to recruit Cdt1 and MCM2–7 and form 

the prereplication complex. After firing of the origins, Cdc6 is methylated by GCN5 causing 

its dissociation from the ORC. Cdc6 is then phosphorylated on S106 by Cyclin A/CDK2 and 

translocated to the cytoplasm. PP2A-PR70 is thought to dephosphorylate Cdc6 either at this 

point in G2 and/or in G1, ensuring Cdc6 destruction and regulating DNA synthesis. Figure 

adapted from Mumby (2009). (see colour version of this figure at 

www.informahealthcare.com/bmg).
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Figure 8. 
PP2A negatively regulates the cell cycle through CDC25 and Wee1. In G2, Greatwall, Fcp 

and Wee1 are dephosphorylated, keeping PP2A-B55 active and CDK1 inactive. CDC25 is 

phosphorylated at S216, allowing 14–3-3 association, holding it inactive. At the transition 

from G2 to M, CDC25 is phosphorylated at T138, weakening 14–3-3 binding and allowing 

dissociation with subsequent binding to a phospho-keratin pool. The now exposed S216 can 

be dephosphorylated by PP1 activating CDC25. Active CDC25 dephosphorylates CDK1 at 

T14 and Y15 thereby activating it. The active CDK1 can then phosphorylate several 

substrates required for mitotic progression. In addition, CDK1 participates in several 

positive feedback loops. It phosphorylates Wee1, preventing direct inactivation, and it 

phosphorylates CDC25 at S214, increasing its affinity for PP1 and allowing for more 

CDC25 activation. Furthermore, CDK1 can prevent CDC25 inactivation by PP2A-B55 by 

phosphorylating Greatwall, which in turn phosphorylates ENSA, which binds to PP2A-B55 

and keeps it inactive. CDK1 also phosphorylates FCP1, preventing it from 

dephosphorylating ENSA and releasing PP2A-B55. Figure adapted from Johnson & 

Kornbluth (2012) and Hegarat et al. (2014). (see colour version of this figure at 

www.informahealthcare.com/bmg).
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Table 1

A summary of PP2A subunit nomenclature.

PP2A subunit family Protein name/isoform Other names

A Aα PR65α

Aβ PR65β

B/PR55 Bα B55α/PR55α

Bβ1 B55β1/PR55β1

Bβ2 B55β2/PR55β2

Bγ B55γ/PR55γ

Bδ B55δ/PR55δ

B′/PR61 Bα B56α/PR61α

Bβ B56β/PR61β

B′γ1 B56γ1/PR61γ1

B′γ2 B56γ2/PR61γ2

B′γ3 B56γ3/PR61γ3

B′δ B56δ1/PR61δ

B′ε B56ε/PR61ε

B″/PR72 B″α PR130

B″α PR72

B″β PR70

B″γ G5PR

B″′/Striatin B‴ Striatin

C Cα PP2Acα

Cβ PP2Acβ

There is a variety of abbreviations used for protein subunits in the PP2A field. Many regulatory subunits have splicing variants, such as Bβ and B′γ. 
Note that not all of them are shown. Table adapted from Van Kanegan & Strack (2009).
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Table 2

PP2A-interacting proteins identified by literature and database searches. Reviews, Pubmed and Biogrid 

(Chatr-Aryamontri et al., 2015) results are presented.

Interacting proteins B subunit PhosphoSite Interaction boundary References

ADCY8 – – – (Crossthwaite et al., 2006)

ADRA1A – – – (Krueger et al., 1997)

AKAP9 PR130 – – (Takahashi et al., 1999)

AKT Bα T308 – (Kuo et al., 2008)

APC B′, B‴ bCatenin, - 302–625, 188–774 (Breitman et al., 2008, Galea et al., 2001)

AP1M1 Bα T156 – (Ricotta et al., 2008)

APP B′γ, B′ε – – (Olah et al., 2011)

AR – – – (Yang et al., 2007)

ARL2 Bα – – (Shern et al., 2003)

ATM – S1981 2427–2841 (Goodarzi et al., 2004)

ATR – – – (Kim et al., 1999)

ATXN7L2 PR72 – – (Lim et al., 2006)

AURKA – S51 46–56 (Horn et al., 2007)

AXIN1 B′α – 595–726 (Arnold et al., 2009, Yamamoto et al., 2001)

BANF1-ANKLE4 Bα – 59–938 (Asencio et al., 2012)

ARRB2 – – – (Beaulieu et al., 2005)

BAX – S184 – (Xin & Deng, 2006)

BAZ B′ S1085 – (Krahn et al., 2009)

BCL2 B′γ T69, S70, S87 – (Lin et al., 2006), (Ruvolo et al., 2008)

BEST1 – – – (Marmorstein et al., 2002)

BLNK Bγ – – (Oellerich et al., 2011)

BRCA1 B′γ – – (Woods et al., 2012)

BUBR1 B′ – 630–720 (Xu et al., 2013)

CACNA1C Bα, Bβ, PR70 S1928 1927–2029 (Hall et al., 2006)

CACNA1S Bα – – (Kristensen et al., 2012)

CAPN1 – – – (Hall et al., 2006)

CAMK4 – – – (Westphal et al., 1998)

CAMK2B – T253 – (Hoffmann et al., 2005)

CPD – – – (Varlamov et al., 2001)

CAS – – – (Yokoyama & Miller, 2001)

CASP3 – – – (Alvarado-Kristensson & Andersson, 2005)

CBX1 – – – (Nozawa et al., 2010)

CCNG1 B′α – – (Okamoto et al., 1996,2002)

CCNG2 B′β, B′γ – – (Bennin et al., 2002)

CCT2 Bγ – – (Glatter et al., 2009)

CDCA2 (repoman) B′α S893 586–595 (Qian et al., 2013)

CDC25 B′ T138 – (Lammer et al., 1998, Margolis et al., 
2003,2006a,b)

CDC6 PR70 S54/S74 49–90 (Davis et al., 2008, Petersen et al., 1999,
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Interacting proteins B subunit PhosphoSite Interaction boundary References

Wlodarchak et al., 2013)

CDH1 (e-cadherin) – – – (Gotz et al., 2000)

CDK16 Bα – – (Varjosalo et al., 2013a)

CDK 4 – – – (Sablina et al., 2007)

CDK5R1 B′δ – – (Louis et al., 2011)

CDK9 – – – (Ammosova et al., 2005)

CFTR – – – (Vastiau et al., 2005)

CHEK1 – S317 & S345 – (Leung-Pineda et al., 2006)

CIP2A – – – (Junttila et al., 2007)

CFL1 – – – (Samstag & Nebl, 2003)

GJA1 – – – (Kanemitsu et al., 1998, Meilleur et al., 2007)

CSNK1E – – – (Varjosalo et al., 2013b)

CTLA4 B′α – 151–159 (Baroja et al., 2002)

CTNNB1 (β-Catenin) B′, Bα S33, S37, T41, S45, 
S552, S675

APC, Mult. (Seeling et al., 1999, Zhang et al., 2009)

CUL3 B′β – 315–374 (Bennett et al., 2010, Oberg et al., 2012)

CXCR2 – – – (Fan et al., 2001)

DARPP32 PR72 T75 – (Ahn et al., 2007b)

DLG4 B′δ – – (Arbuckle et al., 2010)

DNML1/DRP1 Bβ2 S656 – (Merrill et al., 2013)

E4orf3 [adenovirus] – – – (Shtrichman et al., 1999)

EGFR PR130, B′ε – – (Foerster et al., 2013, Zwaenepoel et al., 2010)

EIF1AK2 B′α – – (Xu & Williams, 2000)

EIF4EBP1 Bα – – (Bishop et al., 2006)

ELAVL1 B′ε – – (Abdelmohsen et al., 2009)

ERAL1 – S18 – (Keen et al., 2005)

ETF1 – – – (Lechward et al., 1999)

ERK1/ERK2 B′β, B′γ T202/T185 IEK-1 (Letourneux et al., 2006)

ESPL1 (separase) B′α-ε – 1419–1474 (Holland et al., 2007)

FAM107A Bα – – (Ewing et al., 2007)

FBXO43 – – 319–375 (Wu et al., 2007)

FMRP – – – (Narayanan et al., 2007)

GNA12 – – – (Zhu et al., 2004)

GNB2L1 – – 138–317 (Kiely et al., 2006)

GRIA1 – – – (Mao et al., 2005)

GRB2 Bα – – (Bisson et al., 2011)

GRIN2A – – – (Chan & Sucher, 2001)

GRK5 Bα – – (Wu et al., 2012)

GSK3B B′δ S9 – (Liu & Eisenman, 2012)

H2AX – – – (Chowdhury et al., 2005)

HAND1 B′δ – 150–216 (Firulli et al., 2003)

HAND2 B′δ – – (Firulli et al., 2003)

HCP6 B – – (Yeong et al., 2003)
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Interacting proteins B subunit PhosphoSite Interaction boundary References

HDAC4 Bα S298 1–289 (Paroni et al., 2008)

HDAC5 Bα – – (Greco et al., 2011, Joshi et al., 2013)

HDM2 CyG S166 400–489 (Okamoto et al., 2002)

HOX11 – – – (Kawabe et al., 1997)

HRX – – – (Adler et al., 1997)

HSF2 – – – (Xing et al., 2007)

HTR1A – – – (Bauman et al., 2000)

IER3 – – – (Letourneux et al., 2006)

IKBKB – S77 &S181 121–179 (Kray et al., 2005, Li et al., 2006)

IKBKG – S68 – (Fu et al., 2003, Palkowitsch et al., 2008)

IL6ST – S782 – (Mitsuhashi et al., 2005)

IQGAP1 – – – (Takahashi & Suzuki, 2006)

IRAK1 – – – (Dobierzewska et al., 2011)

JAK2 – – – (Fuhrer & Yang, 1996)

JNK – – – (Shanley et al., 2001)

KCNQ2 B′γ – E12–14 (Borsotto et al., 2007)

KRT8 – – – (Tao et al., 2006)

KRT18 – – – (Tao et al., 2006)

KSR1 Bα S392 249–320 (Ory et al., 2003)

LATS2 Bα – – (Woods et al., 2012)

LNX1 – – – (Guo et al., 2012)

MAPK14 – – – (Alvarado-Kristensson & Andersson, 2005)

MASTL (greatwall) Bα T194 – (Hegarat et al., 2014)

MDM2 B′α/CyG T216 100–280, 400–489 (Okamoto et al., 2002)

MEK3 α4 T193 – (Prickett & Brautigan, 2007)

MEKK3 Bα, Bδ S526 – (Fritz et al., 2006)

MET – S985 – (Hashigasako et al., 2004)

MID1 – – – (Short et al., 2002)

MKK4 – – – (Avdi et al., 2002)

MLH1 Bβ&Bδ – – (Cannavo et al., 2007)

MTOR Bα – – (Peterson et al., 1999)

MYC (cMYC) B′α S62 40–179 (Arnold & Sears, 2006)

NDRG1 Bα – – (Tu et al., 2007)

NEK1 B′α S109 1–267 (Surpili et al., 2003)

NHE3 B′δ – 651–839 (Bobulescu et al., 2010)

NKCC1 – – – (Liedtke et al., 2005)

NKD1 PR72 – – (Creyghton et al., 2005,2006)

NM23H2 – – – (Chen et al., 2008)

NOD2 B′ε – – (Nimmo et al., 2011)

NOTCH1 Bα – – (Yatim et al., 2012)

NR3A – – – (Ma & Sucher, 2004)

NRF1 B′γ – – (Satoh et al., 2013)
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Interacting proteins B subunit PhosphoSite Interaction boundary References

NTRK1 B′β & B′δ – – (Van Kanegan & Strack, 2009)

OCLN – – – (Seth et al., 2007)

OSBP – – – (Wang et al., 2005)

PACS1 – S278 – (Scott et al., 2003)

PAK1 – – – (Westphal et al., 1999)

PAK3 – – – (Westphal et al., 1999)

PDE4D/AKAP1 B′δ – 2083–2319 (Dodge-Kafka et al., 2010)

PER3 – – – (Sathyanarayanan et al., 2004)

PIM1 B′β – 70–139 (Ma et al., 2007)

PIN1 B′β – – (Huang et al., 2001, Michniewicz et al., 2007)

PKR B′α B′α B′α (Xu & Williams, 2000)

POLA2 – – – (Dehde et al., 2001)

PPFIA1 B′δ – – (Rual et al., 2005)

PRKAR1A – – – (Ahn et al., 2007a)

PTPN14 – – – (Wang et al., 2012)

PTTG1 (Securin) – – – (Gil-Bernabe et al., 2006)

PXN (paxillin) B′γ1/2 – – (Ito et al., 2000)

RAF1 Bα/δ S259 – (Adams et al., 2005)

RALA Aβ S183, S184 – (Sablina et al., 2007)

RB1 PR70 T826 792–928 (Lees et al., 1991, Magenta et al., 2008)

RBL1 (p107) PR59 Mult. – (Voorhoeve et al., 1999)

REC8 B′-sgo Mult. – (Ishiguro et al., 2010)

RELA A S536 1–155, 354–551 (Fuhrer & Yang, 1996, Li et al., 2006,
Yang et al., 2001)

REV1 Bα& Bδ – – (Naji et al., 2012)

RHEB – – – (Lee et al., 2007)

RHOB – – – (Lee et al., 2007)

RPS6KB1 – – – (Westphal et al., 1999)

RRAS – – – (Lee et al., 2007)

RRN3 Bα S44 – (Mayer et al., 2004)

RSA1 & RSA2 – – – (Schlaitz et al., 2007)

RUNX2 – – – (Rajgopal et al., 2007)

SET – – – (Li et al., 1996)

SG2NA – – – (Moreno et al., 2000)

SHC – Y317 – (Ugi et al., 2002)

SLC6A2 – – – (Sung et al., 2005)

SMAD3 – – 1–232 (Heikkinen et al., 2010)

SMAD9 B′ε – – (Colland et al., 2004)

SMURF1 Bδ – – (Xie et al., 2013)

SOX2 B′γ – – (Cox et al., 2013)

SP1 – T739 – (Chuang et al., 2012)

SPHK1 B′α S225 451–470 (Pitman et al., 2011)
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Interacting proteins B subunit PhosphoSite Interaction boundary References

SPRY1 A S112, S115 50–60 (Lao et al., 2007)

SRC Bγ S12 – (Eichhorn et al., 2007)

STAT5 – – – (Yokoyama et al., 2001)

STE20 – – – (Liedtke et al., 2005)

STK24 B‴ T178, T182 – (Gordon et al., 2011)

SUMO1 – – – (Grant, 2010)

TAU Bα Mult. 197–259, 265–328 (Xu et al., 2008)

TAX – – – (Fu et al., 2003)

TBC1D3 B′γ S6K – (Wainszelbaum et al., 2012)

TCEAL1 Bα & Bδ – – (Sowa et al., 2009)

TGFBR1 Bα – – (Griswold-Prenner et al., 1998)

TH B′β S19, S31, S40 R37 & R38 (Saraf et al., 2010)

TIP – – – (McConnell et al., 2007)

TOM22 Bβ – – (Dagda et al., 2005)

TOP1 Bβ – – (Trzcinska et al., 2002)

TP53 (p53) –, B′γ1/3 S37, T55 – (Dohoney et al., 2004, Li et al., 2007)

TRAF2 B′γ T117 272–501 (Li et al., 2006)

TSC2 – – – (Lee et al., 2007)

TTP – – – (Sun et al., 2007)

UBD – – – (Aichem et al., 2012)

UBR5 Bγ – – (Chen et al., 2013)

UPF1 – – – (Ohnishi et al., 2003)

VIM Bα – – (Turowski et al., 1999)

VPU [HIV] B′ε – – (Jager et al., 2012)

ZRANB1 B‴ – – (Tran et al., 2013)

The first row is the abbreviated interacting protein, the second is B subunit if known, the third is dephosphorylation site if known, the fourth is 
interacting boundary if known and the last row indicates the reference to the work documenting the interaction. Abbreviations were used based on 
Biogrid entries using Uniprot naming rules. Historical/common names are given in parenthesis where standard abbreviations are not commonly 
used or not easily interpretable. All proteins mentioned are human, with the exception of important human viral proteins, which have virus names 
indicated in [brackets].
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