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Gene-environment interactions, where the biological effect of an exposure depends on an 

individual’s genotype, are widely held to be ubiquitous—and rightly so, considering 

epidemiologists have long abandoned the paradigm of ascribing disease to either “nature” or 

“nurture” (if indeed they ever thought of etiology in unifactoral terms) and now seek to 

understand the joint action of both “nature” and “nurture.” However, statistical interactions, 

where a quantitative measure of exposure effect differs according to genotype, are far from 

ubiquitous in epidemiologic studies of human disease (1). The small number of replicated 

gene-environment interactions in human observational studies stands in sharp contrast to the 

widespread evidence for gene-environment interaction from experimental studies in model 

organisms (2). This discrepancy is a puzzle. Is there something fundamentally different 

about the biology of human complex traits? Are there limitations to how gene-environment 

interactions have been studied in humans? Or both?

Stenzel et al. (3) discuss two important methodological challenges facing epidemiologic 

studies of gene-environment interactions: the lack of exposure variability in standard designs 

and exposure measurement error. Both of these factors can lead to loss of power to detect 

gene-environment interactions. Stenzel et al. show that for rare binary exposures 

oversampling exposed individuals in case-control studies can improve power relative to 

sampling cases and controls without regard to exposure. They consider designs that 

oversample exposed cases and controls equally or that only oversample cases. The advantage 

of oversampling exposed individuals declines and eventually disappears as exposure 

misclassification increases.

Stenzel et al. consider a binary exposure and binary outcome, but the intuition behind the 

increase in power from oversampling exposed individuals is perhaps better conveyed by a 

continuous outcome and continuous exposure. Figure 1 illustrates the range of gene-

environment effects captured by two studies: Study A, which only samples a small range of 

exposure, and Study B, which samples a broad range. The difference in exposure range 

could be due to an exposure-driven sampling design—for example, if both studies have been 

conducted in the same base population but Study B has oversampled the extremes of the 

exposure distribution—or the difference could be caused by differences in the base 

populations between the two studies. In either case, it is clear that Study B captures more 

variability in the exposure and hence more variability in the gene-environment interaction 
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term, leading to greater power, regardless of how the outcome is scaled. In fact, on the 

original scale, the interaction is extremely subtle across the range sampled by Study A; the 

interaction only becomes apparent when more extreme exposures are considered.

Two recent studies of the effect of the interaction between FTO rs9939609 genotype and 

physical activity on body mass index provide a concrete example of the scenario in Figure 1. 

A study in largely sedentary European and North American populations required a very 

large sample size (218,166) to detect a small, nominally significant interaction effect 

between this SNP and physical activity: the per-minor allele increase in odds of obesity 

decreased by 6% in the physically active group relative to the physically inactive (p=0.001) 

(4). On the other hand, a study in India that captured a much broader range of physical 

activity (from sedentary city dwellers to very active rural farmworkers) identified a 

qualitatively similar interaction (the minor allele was associated with increased waist size in 

the least active subjects but not in the most active; p=0.008) in a much smaller sample size 

(1,129) (5).

Recent advances in our understanding of common genetic markers associated with a broad 

range of human traits and diseases enable us to turn this idea around: we might be able to 

increase power detect gene-environment interactions by increasing the range genetic 

susceptibility under study (6). Figure 2 contrasts an analysis that focuses on a single 

nucleotide polymorphism (SNP) with an analysis that considers a genetic risk score, for 

example a multi-SNP genetic instrument for body mass index, as might be used in a 

Mendelian randomization study (7). In this situation, by capturing more of the relevant 

genetic variability, the SNP score increases power to detect gene-environment interaction. 

This power increase is contingent on the true joint gene-environment effects having the form 

displayed in Figure 2, or at least on most SNPs in the score having gene-environment 

interaction effects in the same direction, but there is already some evidence supporting 

interaction effects of this type (8–11).

The discussion of exposure misclassification in Stenzel et al. raises philosophical and 

increasingly important practical issues. On a philosophical level, the exposures we can 

measure are rarely if ever the etiologically relevant exposures. Some degree of model 

misspecification and exposure misclassification is inevitable. But on a practical level, many 

of the exposures we can measure and on which we could intervene are too expensive to 

measure directly in extremely large sample sizes. Instead, epidemiologic studies rely on 

inexpensive proxies—a practice which is only likely to increase, as epidemiologists 

incorporate different streams of Big Data into their studies (12). The results of Stenzel et al. 

suggest that the utility of designs that sample from a larger cohort based on an exposure 

proxy in order to identify who to genotype depends on the accuracy of the proxy. We suspect 

that the same caution applies to designs where the proxy is used to identify a subset of 

subjects whose exposures will be measured using a more expensive “gold standard” 

technology.

To return to the questions raised above: the relative lack of compelling gene-environment 

interactions in human observational studies is likely due to both the types of traits studied 

and how they are studied. Complex diseases result from the interplay of multiple biological 
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processes affected by multiple genes and exposures. Even if an underlying intermediate trait 

exhibits strong gene-environment interaction, this interaction effect can be washed out at the 

disease level. At the same time, limited variability in exposure has likely also contributed to 

lack of power in human gene-environment interaction studies. Stenzel et al. demonstrate that 

thoughtful design can overcome this limitation. Design and analysis strategies that increase 

variability in sampled exposures and genetic susceptibilities deserve further consideration.
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Figure 1. 
Mean outcome (a) and log mean outcome (b) as a function of exposure and genotype. 

Arrows denote range of exposure captured by two hypothetical studies.
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Figure 2. 
Figure 2. Mean outcome as a function of exposure and cumulative genetic risk. Dashed lines 

denote scaled densities for genetic risk captured by a single SNP or a multi-SNP genetic risk 

score.
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