
Host gene expression classifiers diagnose acute respiratory 
illness etiology

Ephraim L. Tsalik, MD MHS PhD#1,2,3, Ricardo Henao, PhD#1,4, Marshall Nichols, MS1, 
Thomas Burke, PhD1, Emily R. Ko, MD PhD1,5, Micah T. McClain, MD PhD1,3,6, Lori L. 
Hudson, PhD1, Anna Mazur, BA1, Debra H. Freeman, BSN1,3, Tim Veldman, PhD1, Raymond 
J. Langley, PhD7, Eugenia B. Quackenbush, MD8, Seth W. Glickman, MD MBA8, Charles B. 
Cairns, MD8,9, Anja K. Jaehne, MD10, Emanuel P. Rivers, MD MPH10, Ronny M. Otero, MD10, 
Aimee K. Zaas, MD PhD1,3, Stephen F. Kingsmore, MB ChB BAO DSc FRCPath11, Joseph 

*To whom correspondence should be addressed: Geoffrey S. Ginsburg MD PhD, Geoffrey.Ginsburg@duke.edu, (919) 668-6210 (p), 
(919) 668-6202 (f), 101 Science Drive, Box 3382, Durham, NC 27708; Christopher W. Woods MD MPH, Chris.Woods@duke.edu, 
919-668-7174 (p), 919-479-2948 (f), 310 Trent Drive, Box 90519, Durham, NC 27708. 

Supplementary Material
Fig. S1: Positive and negative predictive values for A) Bacterial and B) Viral ARI classification as a function of prevalence.
Fig. S2: Validation of Bacterial and Viral ARI Classifiers in GSE6269.
Fig. S3: Validation of Bacterial and Viral ARI Classifiers in GSE42026.
Fig. S4: Validation of Bacterial and Viral ARI Classifiers in GSE40396.
Fig. S5: Validation of Bacterial and Viral ARI Classifiers in GSE20346.
Fig. S6: Validation of Bacterial ARI and Non-Infectious Illness Classifiers in GSE42834.
Fig. S7: Treatment effect on bacterial ARI classification.
Fig. S8: Venn diagram representing overlap in the Bacterial ARI, Viral ARI, and Non-infectious Illness Classifiers.
Table S1: Etiological causes of illness for subjects with viral ARI, bacterial ARI, and non-infectious illness.
Table S2: Summary of clinical features for the derivation cohort.
Table S3: Probes selected for the Bacterial ARI, Viral ARI, and Non-infectious Illness Classifiers.
Table S4: Subjects with discordant predictions compared to clinical assignments.
Table S5: Genes in the Bacterial ARI, Viral ARI, and Non-infectious Illness Classifiers, grouped by biologic process.

Author contributions: ELT, MN, TB, MTM, AKZ, LC, GSG, and CWW helped conceive the study. All authors helped acquire, 
analyze, or interpret data. ELT, RH, and ERK drafted the manuscript, which was critically revised by all remaining authors. Statistical 
analysis was specifically performed by RH, JL, and LC. Funding was obtained by CBC, EPR, AKZ, SFK, CGF, GSG, and CWW. All 
authors had full access to all data in this study.

Competing interests: All authors report no competing interests as it pertains to this manuscript. The following individuals report 
additional activities, but not as competing interests to this manuscript: CWW served as a scientific consultant to bioMerieux, Becton 
Dickinson, and Verigene. He received research support from the NIH, the Defense Advanced Research Projects Agency (DARPA), the 
Defense Threat Reduction Agency (DTRA), the Bill and Melinda Gates Foundation (BMGF), the Veterans Administration (VHA), the 
Centers for Disease Control and Prevention, Novartis Pharmaceuticals, Roche Molecular, bioMerieux, and Qiagen. SFK served as a 
scientific advisor to Parabase Genomics Inc. and Edico Genomics Inc. He received research support from the NIH. ELT has received 
research support from DARPA, DTRA, BMGF, VHA, and Novartis Pharmaceuticals and has served as a scientific consultant to 
Immunexpress. VGF has grants from the NIH, MedImmune, Forest/Cerexa, Pfizer, Merck, Advanced Liquid Logics, Theravance, 
Novartis, and Cubist. He served as the Chair of the Merck scientific advisory board for the V710 S. aureus vaccine. He has been a 
consultant for Pfizer, Novartis, Galderma, Novadigm, Durata, Debiopharm, Genentech, Achaogen, Affinium, Medicines Co., Cerexa, 
Tetraphase, Trius, MedImmune, Bayer, Theravance, Cubist, Basilea, Affinergy, and Contrafect. He also received royalties from 
UpToDate and has been paid for the development of educational presentations for Green Cross, Cubist, Cerexa, Durata, and 
Theravance. GSG has consulted for US Diagnostic Standards and has served on the Scientific Advisory Board for Pappas Ventures. He 
has received grants from the US Defense Advanced Research Projects Agency, the Gates Foundation, and Novartis Vaccines and 
Diagnostics. GSG, ELT, VGF, and CWW have a patent pending for host gene expression signatures of Staphylococcus aureus and 
Escherichia coli infections. GSG, ELT, RH, TB, MTM, LC, and CWW have filed a patent for methods of identifying infectious 
disease and assays for identifying infectious disease, as well as for molecular predictors of fungal infection. RJL and SFK have a 
patent pending for sepsis prognosis biomarkers.

Data and materials availability: Gene expression data generated in this study have been deposited in the National Center for 
Biotechnology Information Gene Expression Omnibus (GSE63990). This study also utilized gene expression data from existing 
datasets (GSE6269, GSE42026, GSE40396, GSE20346, GSE42834, and GSE60244).

HHS Public Access
Author manuscript
Sci Transl Med. Author manuscript; available in PMC 2017 January 20.

Published in final edited form as:
Sci Transl Med. 2016 January 20; 8(322): 322ra11. doi:10.1126/scitranslmed.aad6873.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lucas, PhD1, Vance G. Fowler Jr., MD MHS3, Lawrence Carin, PhD1,4, Geoffrey S. Ginsburg, 
MD PhD1,*, and Christopher W. Woods, MD MPH1,3,6,*

1Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, 
Durham, NC 27708

2Emergency Medicine Service, Durham Veteran’s Affairs Medical Center, Durham, NC 27705

3Division of Infectious Diseases & International Health, Department of Medicine, Duke University, 
Durham, NC 27710

4Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708

5Duke Regional Hospital, Department of Medicine, Duke University, Durham, NC 27710

6Section for Infectious Diseases, Medicine Service, Durham Veteran’s Affairs Medical Center, 
Durham, NC 27705

7Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM 87108

8Department of Emergency Medicine, University of North Carolina School of Medicine, Chapel 
Hill, NC 27599

9Department of Emergency Medicine, University of Arizona Health Sciences Center, Tucson, AZ 
85724

10Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, MI 
48202

11Rady Pediatric Genomic and Systems Medicine Institute, Rady Children’s Hospital, San Diego, 
CA 92123

# These authors contributed equally to this work.

Abstract

Acute respiratory infections caused by bacterial or viral pathogens are among the most common 

reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most 

patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic 

approach to direct antimicrobial use. This observational, cohort study determined whether host 

gene expression patterns discriminate non-infectious from infectious illness, and bacterial from 

viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene 

expression from 273 subjects with community-onset acute respiratory infection (ARI) or non-

infectious illness as well as 44 healthy controls was measured using microarrays. Sparse logistic 

regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or 

a non-infectious cause of illness (26 probes). Overall accuracy was 87% (238/273 concordant with 

clinical adjudication), which was more accurate than procalcitonin (78%, p<0.03) and three 

published classifiers of bacterial vs. viral infection (78-83%). The classifiers developed here 

externally validated in five publicly available datasets (AUC 0.90-0.99). A sixth publically 

available dataset included twenty-five patients with co-identification of bacterial and viral 

pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial 

ARI; viral ARI; co-infection; and neither a bacterial nor viral response. These findings create an 
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opportunity to develop and utilize host gene expression classifiers as diagnostic platforms to 

combat inappropriate antibiotic use and emerging antibiotic resistance.

Introduction

Respiratory tract infections caused 3.2 million deaths worldwide and 164 million disability-

adjusted life years lost in 2011, more than any other cause.(1) Despite a viral etiology in the 

majority of cases, 73% of ambulatory care patients in the U.S. with acute respiratory 

infection (ARI) are prescribed an antibiotic, accounting for 41% of all antibiotics prescribed 

in this setting.(2, 3) Even when a viral pathogen is microbiologically confirmed, this does 

not exclude a possible concurrent bacterial infection leading to antimicrobial prescribing 

“just in case”. This empiricism drives antimicrobial resistance(4, 5), recognized as a national 

security priority.(6)

The host’s peripheral blood gene expression response to infection offers a diagnostic 

strategy complementary to those already in use. This strategy has successfully characterized 

the host response to viral (7-12) and bacterial ARI.(10, 13) Despite these advances, several 

issues preclude their use as diagnostics in patient care settings. An important consideration 

in the development of host-based molecular signatures is that they be developed in the 

intended use population.(14) However, nearly all published gene expression-based ARI 

classifiers used healthy individuals as controls and focused on small or homogeneous 

populations. Furthermore, the statistical methods used to identify gene-expression classifiers 

often include redundant genes based on clustering, univariate testing, or pathway 

association. These strategies identify relevant biology but do not maximize diagnostic 

performance. An alternative is to combine genes from potentially unrelated pathways to 

generate a more informative classifier.

We present evidence from a large observational cohort of Emergency Department patients 

that host responses to bacterial, viral, or non-infectious insults are unique and quantifiable. 

Therefore, the objective of this study is to show that the host response, as measured by 

peripheral blood gene expression changes, can accurately differentiate viral ARI, bacterial 

ARI, and non-infectious illness as an important step toward their routine use in clinical 

practice. Such an approach offers new opportunities to guide appropriate antibiotic use and 

combat emerging antibiotic resistance.

Results

Bacterial ARI, Viral ARI, and Non-Infectious Illness classifiers

In generating host gene expression-based classifiers that distinguish between clinical states, 

all relevant clinical phenotypes should be represented during the model training process. 

This imparts specificity, allowing the model to be applied to these included clinical groups 

but not to clinical phenotypes that were absent from model training.(14) The target 

population for an ARI diagnostic not only includes patients with viral and bacterial 

etiologies, but must also distinguish from the alternative – those without bacterial or viral 

ARI. Historically, healthy individuals have served as the uninfected control group. However, 
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this fails to consider how patients with non-infectious illness, which can present with similar 

clinical symptoms, would be classified, serving as a potential source of diagnostic error. To 

our knowledge, no ARI gene-expression based classifier has included ill, uninfected controls 

in its derivation. We therefore enrolled a large, heterogeneous population of patients at initial 

clinical presentation with community-onset viral ARI (n=115), bacterial ARI (n=70), or 

non-infectious illness (n=88) (Table 1 and Table S1). We also included a healthy adult 

control cohort (n=44) to define the most appropriate control population for ARI classifier 

development. Clinical features of the subjects are summarized in Table S2.

We first determined whether a gene expression classifier derived with healthy individuals as 

controls could accurately classify patients with non-infectious illness. Array data from 

patients with bacterial ARI, viral ARI, and healthy controls were used to generate gene 

expression classifiers for these conditions (Figure 1). Leave-one-out cross-validation 

revealed highly accurate discrimination between bacterial ARI (AUC 0.96), viral ARI (AUC 

0.95), and healthy (AUC 1.0) subjects for a combined accuracy of 90% (Figure 2). However, 

when the classifier was applied to ill-uninfected patients, 48/88 were identified as bacterial, 

35/88 as viral, and 5/88 as healthy. This highlighted that healthy individuals are a poor 

substitute for patients with non-infectious illness in the biomarker discovery process.

Consequently, we re-derived an ARI classifier using a non-infectious illness control rather 

than healthy. Specifically, array data from these three groups was used to generate three 

gene-expression classifiers of host response to bacterial ARI, viral ARI, and non-infectious 

illness. Specifically, the Bacterial ARI classifier was tasked with positively identifying those 

with bacterial ARI vs. either viral ARI or non-infectious illnesses. The Viral ARI classifier 

was tasked with positively identifying those with viral ARI vs. bacterial ARI or non-

infectious illnesses. The Non-Infectious Illness classifier was not generated with the 

intention of positively identifying all non-infectious illnesses, which would require an 

adequate representation of all such cases. Rather, it was generated as an alternative category, 

so that patients without bacterial or viral ARI could be assigned accordingly. Moreover, we 

hypothesized that such ill but non-infected patients were more clinically relevant controls 

because healthy people are unlikely to be the target for such a classification task.

Six statistical strategies were employed to generate these gene-expression classifiers: linear 

support vector machines, supervised factor models, sparse multinomial logistic regression, 

elastic nets, K-nearest neighbor, and random forests. All performed similarly although 

sparse logistic regression required the fewest number of classifier genes and outperformed 

other strategies by a small but not significant margin (p-value>0.05 using McNemar’s tests 

between leave-one-out cross-validated predictions from sparse logistic regression vs. each 

alternative method). We also compared a strategy that generated three separate binary 

classifiers to a single multinomial classifier that would simultaneously assign a given subject 

to one of the three clinical categories. This latter approach required more genes and achieved 

an inferior accuracy. Consequently, we applied a sparse logistic regression model to define 

Bacterial ARI, Viral ARI, and Non-Infectious Illness classifiers containing 71, 33 and 26 

probe signatures, respectively. Probe and classifier weights are shown in Table S3. Clinical 

decision making is infrequently binary, requiring the simultaneous distinction of multiple 

diagnostic possibilities. We applied all three classifiers, collectively defined as the ARI 
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classifier, using leave-one-out cross-validation to assign probabilities of bacterial ARI, viral 

ARI, and non-infectious illness (Figure 3). These conditions are not mutually exclusive. For 

example, the presence of a bacterial ARI does not preclude a concurrent viral ARI or non-

infectious disease. Moreover, the assigned probability represents the extent to which the 

patient’s gene expression response matches that condition’s canonical signature. Since each 

signature intentionally functions independently of the others, the probabilities are not 

expected to sum to one. To simplify classification, the highest predicted probability 

determined class assignment. Overall classification accuracy was 87% (238/273 concordant 

with adjudicated phenotype). Bacterial ARI was identified in 58/70 (83%) patients and 

excluded 179/191 (94%) without bacterial infection. Viral ARI was identified in 90% 

(104/115) and excluded in 92% (145/158) of cases. Using the non-infectious illness 

classifier, infection was excluded in 86% of cases (76/88). Sensitivity analyses was 

performed for positive and negative predictive values for all three classifiers given that 

prevalence can vary for numerous reasons including infection type, patient characteristics, or 

location (Figure S1).

To determine if there was any effect of age, we included it as a covariate in the classification 

scheme. This resulted in two additional correct classifications, likely due to the over-

representation of young people in the viral ARI cohort. However, we observed no 

statistically significant differences between correctly and incorrectly classified subjects due 

to age (Wilcoxon rank sum p=0.17). Likewise, patients with viral ARI tended to be less ill, 

as demonstrated by the lower rate of hospitalization. We therefore used hospitalization as a 

marker of disease severity and assessed its impact on classification performance, which 

revealed no statistical difference (Fisher’s exact test p-value of 1). As previously noted, the 

control cohort with systemic inflammatory response syndrome (SIRS) included subjects 

with both respiratory and non-respiratory etiologies. We assessed whether classification was 

statistically different in subjects with respiratory vs. non-respiratory SIRS and determined it 

was not (Fisher’s exact test p-value of 0.1305). Among the 47 subjects with respiratory 

SIRS, three were classified as having viral ARI and six were classified as having bacterial 

ARI. Among the 41 subjects with non-respiratory SIRS, one was classified as having viral 

ARI and two were classified as having bacterial ARI.

We compared this performance to procalcitonin, a widely used biomarker with some 

specificity for bacterial infection.(15) Procalcitonin concentrations were determined for the 

238 subjects where samples were available and compared to ARI classifier performance for 

this subgroup. Procalcitonin concentrations >0.25μg/L assigned patients as having bacterial 

ARI, whereas values ≤0.25μg/L assigned patients as non-bacterial, which could be either 

viral ARI or non-infectious illness. Procalcitonin correctly classified 186 of 238 patients 

(78%) compared to 204/238 (86%) using the ARI classifier (p=0.03 by McNemar’s test). 

However, accuracy for the two strategies varied depending on the classification task. For 

example, performance was similar in discriminating viral from bacterial ARI. Procalcitonin 

correctly classified 136/155 (AUC 0.89) compared to 140/155 for the ARI classifier (p-

value=0.65 using McNemar’s test). However, the ARI classifier was significantly better than 

procalcitonin in discriminating bacterial ARI from non-infectious illness [105/124 vs. 

79/124 (AUC 0.72); p-value<0.001], and discriminating bacterial ARI from all other 
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etiologies including viral and non-infectious etiologies [215/238 vs. 186/238 (AUC 0.82); p-

value=0.02 by McNemar’s test].

We next compared the ARI classifier to three published gene expression classifiers of 

bacterial vs. viral infection, each of which was derived without uninfected ill controls. These 

included a 35-probe classifier (Ramilo) derived from children with influenza or bacterial 

sepsis(10); a 33-probe classifier (Hu) derived from children with febrile viral illness or 

bacterial infection(13); and a 29-probe classifier (Parnell) derived from adult ICU patients 

with community-acquired pneumonia or influenza(11). We hypothesized that classifiers 

generated using only patients with viral or bacterial infection would perform poorly when 

applied to a clinically relevant population that included ill but uninfected patients. 

Specifically, when presented with an individual with neither a bacterial nor a viral infection, 

the previously published classifiers would be unable to accurately assign that individual to a 

third, alternative category. We therefore applied the derived as well as published classifiers 

to our 273-patient cohort. Discrimination between bacterial ARI, viral ARI, and non-

infectious illness was better with the derived ARI classifier (McNemar’s test, p=0.002 vs. 

Ramilo; p=0.0001 vs. Parnell; and p=0.08 vs. Hu) (Table 2).(16, 17) This underscores the 

importance of deriving gene-expression classifiers in a cohort representative of the intended 

use population, which in the case of ARI should include non-infectious illness.(14)

Discordant classifications

To better understand ARI classifier performance, we individually reviewed the 35 discordant 

cases (Table S4). Nine adjudicated bacterial infections were classified as viral and three as 

non-infectious illness. Four viral infections were classified as bacterial and seven as non-

infectious. Eight non-infectious cases were classified as bacterial and four as viral. We did 

not observe a consistent pattern among discordant cases. However, notable examples 

included atypical bacterial infections. One patient with M. pneumoniae based on serological 

conversion, and one of three patients with Legionella pneumonia were classified as viral 

ARI. Of six patients with non-infectious illness due to autoimmune or inflammatory 

diseases, only one adjudicated as Still’s disease was classified as having bacterial infection.

External validation

Generating classifiers from high dimensional, gene expression data can result in over-fitting. 

We therefore validated the ARI classifier in silico using gene expression data from 328 

individuals, represented in five available datasets (GSE6269, GSE42026, GSE40396, 

GSE20346, and GSE42834). These were chosen because they included at least two relevant 

clinical groups, varying in age, geographic distribution, and illness severity (Table 3). 

Applying the ARI classifier to four datasets with bacterial and viral ARI, AUC ranged from 

0.90-0.99 (Figures S2-S5). Lastly, GSE42834 included patients with bacterial pneumonia 

(n=19), lung cancer (n=16), and sarcoidosis (n=68). Overall classification accuracy was 96% 

(99/103) corresponding to an AUC of 0.99 (Figure S6). GSE42834 included five subjects 

with bacterial pneumonia pre- and post-treatment. All demonstrated a treatment-dependent 

resolution of the bacterial response signature (Figure S7).
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A subgroup of patients with ARI will have both bacterial and viral pathogens identified, 

often termed co-infection. However, it is unclear how the host responds in such situations. 

Illness may be driven by the bacteria, the virus, both, or neither at different times in the 

patient’s clinical course. In an exploratory analysis to determine whether co-infection could 

be identified with these methods, we applied the bacterial and viral ARI classifiers to 

patients with bacterial and viral co-identification. GSE60244 included bacterial pneumonia 

(n=22), viral respiratory tract infection (n=71), and bacterial/viral co-identification (n=25). 

The co-identification group was defined by the presence of both bacterial and viral 

pathogens without further information as to the likelihood of bacterial or viral disease.(18) 

We trained the ARI signatures in GSE60244 subjects with bacterial or viral infection and 

then validated in those with co-identification (Figure 4). The host response signature was 

deemed positive above a probability threshold of 0.5. We observed all four possible 

categories. Six of 25 subjects had a positive bacterial signature; 14/25 had a viral response; 

3/25 had positive bacterial and viral signatures; and 2/25 had neither. These results suggest 

co-infection can be detected using the host response. Moreover, simply identifying bacterial 

and viral pathogens may not necessarily mean both are inducing a host response.

Biological pathways

The sparse logistic regression model that generated the classifiers penalizes selection of 

redundant (correlated) genes (e.g., if from the same pathway) if there is no additive 

diagnostic value. Consequently, conventional gene enrichment pathway analysis is not 

appropriate to perform. Moreover, such conventional gene enrichment analyses have been 

described.(8, 11, 13, 19, 20) Instead a literature review was performed for all classifier genes 

(Table S5). Overlap between Bacterial, Viral, and Non-infectious Illness Classifiers is shown 

in Figure S8.

The Viral classifier included known anti-viral response categories such as interferon 

response, T-cell signaling, and RNA processing. The Viral classifier had the greatest 

representation of RNA processing pathways such as KPNB1, which is involved in nuclear 

transport and is co-opted by viruses for transport of viral proteins and genomes.(21, 22) Its 

downregulation suggests it may play an antiviral role in the host response.

The Bacterial classifier encompassed the greatest breadth of cellular processes, notably cell 

cycle regulation, cell growth, and differentiation. The Bacterial classifier included genes 

important in T-, B-, and NK-cell signaling. Unique to the Bacterial classifier were genes 

involved in oxidative stress, and fatty acid and amino acid metabolism, consistent with 

sepsis-related metabolic perturbations.(23)

Discussion

Acute respiratory illness accounted for 71 million outpatient visits to U.S. providers in 2007.

(24) Existing diagnostics fall short in their ability to differentiate bacterial, viral, and non-

infectious etiologies contributing to the inappropriate prescription of antibiotics in 73% of 

such cases.(3) Created by President Obama in 2014, the Task Force for Combating 

Antibiotic-Resistant Bacteria has prioritized the development of new and next generation 

diagnostics.(6) One strategy to accurately define the infecting pathogen class is to use host-
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gene expression profiles. Using sparse logistic regression, we developed host gene 

expression profiles that accurately distinguished between bacterial and viral etiologies in 

patients with acute respiratory symptoms (external validation AUC 0.90-0.99). Deriving the 

ARI classifier with a non-infectious illness control group imparted a high negative predictive 

value across a wide range of prevalence estimates. These encouraging metrics offer an 

opportunity to provide clinically actionable results which can mitigate emerging antibiotic 

resistance.

Several studies made notable inroads in developing host-response diagnostics for ARI. This 

includes response to respiratory viruses (7, 9-11, 13), bacterial etiologies in an ICU 

population (11, 25), and tuberculosis (26-28). Many such studies define host response 

profiles compared to the healthy state, offering valuable insights into host biology.(29-31) 

However, these gene lists are suboptimal diagnostic targets because gene expression profiles 

should ideally be applied to similar populations from which they derive.(14) Since healthy 

individuals do not present with acute respiratory complaints, they should be excluded from 

host-response diagnostic development.

Including patients with bacterial and viral infections (10, 11, 13) allows for the distinction 

between these two states but does not address how to classify non-infectious illness. This 

phenotype is important to include because patients present in an undifferentiated manner 

whereby infectious and non-infectious etiologies are possible. This was the rationale for our 

approach, which was derived from, and can therefore be applied to, an undifferentiated 

clinical population where such a test is in greatest need. The cohort used to generate this 

classifier derived from the larger CAPSOD cohort, which includes patients with suspected 

sepsis of non-respiratory etiology as well. However, we only focused on patients with sepsis 

due to respiratory tract infection and therefore, we cannot assume these results would apply 

to a more general sepsis population.

In this study, we report three discrete host-response classifiers: Bacterial ARI, Viral ARI, 

and Non-Infectious Disease. However, the major clinical decision faced by clinicians is 

whether or not to prescribe antibacterials. A simpler diagnostic strategy might focus only on 

the probability of bacterial ARI. However, there is value in providing information about viral 

or non-infectious alternatives. For example, the confidence to withhold antibacterials in a 

patient with a low probability of bacterial ARI can be enhanced by a high probability of an 

alternative diagnosis. Second, a full diagnostic report could identify concurrent illness that a 

single classifier would miss. We observed this when validating in a population with 

bacterial-viral co-identification. Such patients are more commonly referred to as “co-

infected”. To have infection, there must be a pathogen, a host, and a maladaptive interaction 

between the two. Simply identifying bacterial and viral pathogens should not imply co-

infection. Although we cannot know the true infection status in these 25 subjects with 

bacterial/viral co-identification, our host response classifiers suggest the existence of 

multiple host-response states.

Discordant classifications may have arisen either from errors in classification or clinical 

phenotyping. Errors in clinical phenotyping can arise from a failure to identify causative 

pathogens due to limitations in current microbiological diagnostics. Alternatively, some non-
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infectious disease processes may in fact be infection-related through mechanisms that have 

yet to be discovered. Discordant cases were not clearly explained by a unifying variable such 

as pathogen type, syndrome, disease severity, or patient characteristic. As such, the gene 

expression classifiers presented herein are likely impacted by other factors including patient-

specific variables (e.g., treatment, comorbidity, duration of illness); test-specific variables 

(e.g., sample processing, assay conditions, RNA quality and yield); or as-of-yet unidentified 

variables. These concerns are heightened when validating in publically available datasets 

where little to no information is made available about how such clinical labels are assigned. 

In the absence of phenotyping standards, errors in clinical diagnosis will propagate into poor 

performance of any classifier.

This study is limited in its ability to generalize to other special populations such as neonates, 

chronic viral infections, and the severely immunocompromised. Some of these patients were 

included in our cohort but not enough to draw definitive conclusions about classifier 

performance. In five patients (32), the host-response to bacterial infection resolved with 

treatment. However, a larger cohort is needed to answer whether ARI classifier kinetics can 

be used for treatment response monitoring. Moreover, the magnitude of gene expression 

changes may offer prognostic utility. Although we found no statistically significant 

difference in classification performance when comparing respiratory to non-respiratory 

SIRS, it is possible a true difference exists that we were underpowered to detect. We have 

undertaken a large, prospective collection of patients with acute respiratory complaints in 

order to directly address all of these limitations (supported by the Antibacterial Resistance 

Leadership Group, NIAID UM1AI104681).

These results define the necessary content to improve ARI diagnostics in a clinically relevant 

population. However, the technical hurdle to transfer these targets to a reliable, timely, 

affordable, and accessible platform remains. Doing so will directly answer the call for new 

diagnostics to combat antibiotic-resistant bacteria, a national security and public health 

priority.

Materials and Methods

Study Design

Studies were approved by relevant Institutional Review Boards, and in accord with the 

Declaration of Helsinki. All subjects or their legally authorized representatives provided 

written informed consent.

Patients with community-onset, suspected infection were enrolled in the Emergency 

Departments of Duke University Medical Center (DUMC; Durham, NC), the Durham VA 

Medical Center (DVAMC; Durham, NC), or Henry Ford Hospital (Detroit, MI) as part of the 

Community Acquired Pneumonia & Sepsis Outcome Diagnostics study (ClinicalTrials.gov 

NCT00258869).(23, 29, 33-35) Additional patients were enrolled through UNC Health Care 

Emergency Department (UNC; Chapel Hill, NC) as part of the Community Acquired 

Pneumonia and Sepsis Study. Patients were eligible if they had a known or suspected 

infection and if they exhibited two or more SIRS criteria.(36) The objective of these 

prospective, observational studies was to identify patients with suspected sepsis, collect 
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clinical information, and bank samples for future research use. Upon adjudication and 

subject selection (described below), banked samples were accessed and analyzed. ARI cases 

included patients with upper or lower respiratory tract symptoms, as adjudicated by 

emergency medicine (SWG, EBQ) or infectious diseases (ELT) physicians. There is no 

currently accepted consensus criteria by which viral ARI or bacterial ARI can be defined. In 

this study, we performed retrospective adjudications based on manual chart reviews 

performed at least 28 days after enrollment and prior to any gene expression-based 

categorization as described in Langley et al. and in the text below.(23) Medical record 

information used to support adjudications included, but was not limited to, patient 

symptoms, physical examination findings, routine laboratory testing, and radiographic 

findings (when clinically indicated). In order to be categorized as having a viral or bacterial 

ARI, a subject must have had a compatible clinical syndrome and an identified, compatible 

pathogen. Seventy patients with microbiologically confirmed bacterial ARI were identified 

including four with pharyngitis and 66 with pneumonia. Bacterial pharyngitis was 

adjudicated based on patient-reported symptoms and examination such as tonsillar exudate 

or swelling, tender adenopathy, fever, and absence of cough along with the identification of 

Group A Streptococcus, either by antigen detection or culture. Bacterial pneumonia was 

adjudicated based on patient-reported symptoms and clinical evaluation such as productive 

cough, fever, leukocytosis/leukopenia, typical radiographic infiltrates (e.g., consolidation) 

along with the identification of bacterial pathogens known to cause pneumonia. 

Microbiological etiologies were determined using conventional culture of either blood or 

respiratory samples, urinary antigen testing (Streptococcus or Legionella), or with 

serological testing (Mycoplasma). There were 115 patients with viral ARI, including 48 

students at Duke University enrolled through the DARPA Predicting Health and Disease 

study. Viral ARI was adjudicated based on patient-reported symptoms such as upper 

respiratory complaints (e.g., rhinorrhea, sneezing, post-nasal drip, sore throat); 

epidemiologic factors such as sick contacts; and clinical evaluation such as absence of 

radiological findings typical for bacterial infection. This was in conjunction with an 

identified viral etiology compatible with the clinical syndrome. Viral etiology testing was 

frequently performed as part of routine clinical care. Specimens were typically 

nasopharyngeal swabs or lower respiratory tract-derived. In addition, the ResPlex II v2.0 

viral PCR multiplex assay (Qiagen) augmented clinical testing for viral etiology 

identification. This panel detects influenza A and B, adenovirus (B, E), parainfluenza 1-4, 

respiratory syncytial virus A and B, human metapneumovirus, human rhinovirus, 

coronavirus (229E, OC43, NL63, HKU1), coxsackie/echo virus, and bocavirus. Upon 

adjudication, a subset of enrolled patients was determined to have non-infectious illness 

(n=88) (Table S1). The determination of “non-infectious illness” was made only when an 

alternative diagnosis was established and results of any routinely ordered microbiological 

testing failed to support an infectious etiology. Inflammatory markers were not routinely 

measured for clinical purposes although we did measure procalcitonin concentrations for 

study purposes. However, because classification performance was compared to 

procalcitonin, this biomarker was intentionally excluded from the adjudication process. 

Through this adjudication process, subjects were assigned to one of five likelihoods of 

infection (23, 33): 1) Definite infection with an identified etiologic agent; 2) Definite 

infection without an identified etiologic agent; 3) Indeterminate, infection possible; 4) No 
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evidence of infection without an identified non-infectious etiology; and 5) No evidence of 

infection with an alternative non-infectious etiology. In this study, we focused exclusively on 

Categories 1 and 5. Lastly, healthy controls (n=44; median age 30 years; range 23-59) were 

enrolled as part of a study on the effect of aspirin on platelet function among healthy 

volunteers without symptoms, where gene expression analyses was performed on pre-aspirin 

challenge time points.(37) The totality of information used to support these adjudications 

would not have been available to clinicians at the time of their evaluation.

Procalcitonin Measurement

Concentrations were measured at different stages during the study and as a result, different 

platforms were utilized based on availability. Some serum measurements were made on a 

Roche Elecsys 2010 analyzer (Roche Diagnostics) by electrochemiluminescent 

immunoassay. Additional serum measurements were made using the miniVIDAS 

immunoassay (bioMerieux). When serum was unavailable, measurements were made by the 

Phadia Immunology Reference Laboratory in plasma-EDTA by immunofluorescence using 

the B·R·A·H·M·S PCT sensitive KRYPTOR (Thermo Fisher Scientific). Replicates were 

performed for some paired serum and plasma samples, revealing equivalence in 

concentrations. Therefore, all procalcitonin measurements were treated equivalently, 

regardless of testing platform.

Microarray Generation

At initial clinical presentation, patients were enrolled and samples collected for analysis. 

After adjudications were performed as described above, 317 subjects with clear clinical 

phenotypes were selected for gene expression analysis. Total RNA was extracted from 

human blood using the Qiagen PAXgene Blood RNA Kit according to the manufacturer’s 

protocol. RNA quantity and quality were assessed using the Nanodrop spectrophotometer 

(Thermo Scientific) and Agilent 2100 Bioanalyzer, respectively. Microarrays were RMA-

normalized. Hybridization and data collection were performed at Expression Analysis using 

the GeneChip Human Genome U133A 2.0 Array according to the Affymetrix Technical 

Manual.

Validation

The ARI classifier was validated using leave-one-out cross-validation in the same population 

from which it was derived. Independent, external validation occurred using publically 

available human gene expression datasets from 328 individuals (GSE6269, GSE42026, 

GSE40396, GSE20346, and GSE42834). Datasets were chosen if they included at least two 

clinical groups (bacterial ARI, viral ARI, or non-infectious illness). We also used GSE60244 

to specifically validate classifier performance in 25 subjects with bacterial/viral co-

identification. To match probes across different microarray platforms, each ARI classifier 

probe was converted to gene symbols, which were used to identify corresponding target 

microarray probes. Batch differences across these independent datasets precluded the direct 

application of the ARI classifier. Consequently, the signatures in the ARI classifier were 

tuned to each dataset in order to assess classification performance.
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Statistical Analysis

The transcriptomes of 317 subjects (273 ill patients and 44 healthy volunteers) were 

measured in two microarray batches with seven overlapping samples (GSE63990). 

Exploratory principal component analysis and hierarchical clustering revealed substantial 

batch differences. These were corrected by first estimating and removing probe-wise mean 

batch effects using a Bayesian fixed effects model. Next, we fitted a robust linear regression 

model with Huber loss function using seven overlapping samples, which was used to adjust 

the remaining expression values.

Sparse classification methods such as sparse logistic regression perform classification and 

variable selection simultaneously while reducing over-fitting risk.(38) Therefore, separate 

gene selection strategies such as univariate testing or sparse factor models are unnecessary. 

Here, a sparse logistic regression model was fitted independently to each of the binary tasks 

using the 40% of probes with the largest variance after batch correction.(39) Specifically, we 

used a LASSO regularized generalized linear model with binomial likelihood with nested 

cross-validation to select for the regularization parameters. Scripts were written in Matlab 

using the Glmnet toolbox (http://www.stanford.edu/~hastie/glmnet_matlab/) and can be 

located at https://bitbucket.org/rhenao/ari_stm. This generated Bacterial ARI, Viral ARI, and 

Non-Infectious Illness classifiers. Provided that each binary classifier estimates class 

membership probabilities (e.g., probability of bacterial vs. either viral or non-infectious in 

the case of the Bacterial ARI classifier), we can combine the three classifiers into a single 

decision model (termed the ARI classifier) by following a one-versus-all scheme whereby 

largest membership probability assigns class label.(38, 40) Classification performance 

metrics included area-under-the-receiving-operating-characteristic-curve (AUC) for binary 

outcomes and confusion matrices for ternary outcomes.(41) Determinations of significance 

included Wilcoxon rank sum, Fisher’s exact test, and McNemar’s test with Yates correction. 

Corrections for multiple testing and significance cutoffs are noted in the Results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Experimental flow
A cohort of patients encompassing bacterial ARI, viral ARI, or non-infectious illness was 

used to develop classifiers of each condition. This combined ARI classifier was validated 

using leave-one-out cross-validation and compared to three published classifiers of bacterial 

vs. viral infection. The combined ARI classifier was also externally validated in six 

publically available datasets. In one experiment, healthy volunteers were included in the 

training set to determine their suitability as “no-infection” controls. All subsequent 

experiments were performed without the use of this healthy subject cohort.
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Fig. 2. Evaluation of healthy adults as a no-infection control
Classifiers of bacterial ARI, viral ARI, and no infection as represented by healthy controls 

were generated and applied using leave-one-out cross-validation. Each patient, represented 

along the horizontal axis, is assigned three distinct probabilities: bacterial ARI (black 

triangle), viral ARI (blue circle), and no infection (green square). The group on the right 

represents subjects with non-infectious illness.
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Fig. 3. Leave-one-out cross-validation
Classifiers of bacterial ARI, viral ARI, and no infection as represented by non-infectious 

illness were generated and applied using leave-one-out cross-validation. Each patient, 

represented along the horizontal axis, is assigned probabilities of having bacterial ARI 

(black triangle), viral ARI (blue circle), and non-infectious illness (red square). Patients 

clinically adjudicated as having bacterial ARI, viral ARI, or non-infectious illness are 

presented in the top, center, and bottom panels, respectively.
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Fig. 4. Classifier performance in patients with co-infection defined by the identification of 
bacterial and viral pathogens
Bacterial and Viral ARI classifiers were trained on subjects with bacterial (N=22) or viral 

(N=71) infection (GSE60244). This same dataset also included 25 subjects with bacterial/

viral co-infection. Bacterial and viral classifier predictions were normalized to the same 

scale. Each subject receives two probabilities: that of a bacterial ARI host response and a 

viral ARI host response. A probability score of 0.5 or greater was considered positive. 

Subjects 1-6 have a bacterial host response. Subjects 7-9 have both bacterial and viral host 

responses. Subjects 10-23 have a viral host response. Subjects 24-25 do not have bacterial or 

viral host responses.
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Table 1
Demographic information for the enrolled cohort as well as independent datasets used for 
external validation

Cohort Number of

subjects
a Gender

(M/F)

Mean age,

years (Range)
b Ethnicity

(B/W/O) Admitted

# Samples (Viral/
Bacterial/ Non-

Infectious Illness)

Enrolled Derivation
Cohort 317 122/151 45 (6-88) 135/116/22 61% 115/70/88

 Viral 115 44/71 45 (6-88) 40/59/16 21%

 Bacterial 70 35/35 49 (14-88) 46/22/2 94%

 Non-infectious Illness
c 88 43/45 49 (14-88) 49/35/4 88%

 Healthy 44 23/21 30 (20-59)
8/27/6 

d 0%

Validation Cohorts

 Ramilo et al. (GSE6269)
113

e 62/51 4 (0.04-36) 22/37/54 100% 28/85/0

 Hu et al.
 (GSE40396) 43 25/18 14 (2-32) 16/25/2 N/A 35/8/0

 Herberg et al.
 (GSE42026) 59 N/A Pediatric N/A 100% 18/41/0

 Parnell et al. 2011

 (GSE20346)
f

10 4/6 Adult N/A 100% 19/26/0

 Bloom et al.
 (GSE42834) 103 N/A Adult N/A N/A 0/19/84

M, Male. F, Female. B, Black. W, White. O, Other/Unknown. GSE numbers refer to NCBI Gene Expression Omnibus datasets. N/A, Not available 
based on published data.

a
Only subjects with viral, bacterial, or non-infectious illness were included (when available) from each validation cohort.

b
When mean age was unavailable or could not be calculated, data is presented as either Adult or Pediatric.

c
Non-infectious illness was defined by the presence of SIRS criteria, which includes at least two of the following four features: Temperature <36° 

or >38°C; Heart rate >90 beats per minute; Respiratory rate >20 breaths per minute or arterial partial pressure of CO2 <32mmHg; and white blood 

cell count <4000 or >12,000 cells/mm3 or >10% band form neutrophils.

d
Three subjects did not report ethnicity.

e
In the case of GSE6269, subjects with Illumina Sentrix Hu6 expression data were excluded because array results could not be readily compared. 

Eight viral and 15 bacterial infections comprised the 24 excluded cases.

f
Subjects in the GSE20346 dataset include serial sampling. The number of samples exceeds the number of subjects because serial samples were 

treated as independent tests in the validation experiments.
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Table 2
Performance characteristics of the derived ARI classifier

A combination of the Bacterial ARI, Viral ARI, and Non-Infectious Illness classifiers were validated using 

leave-one-out cross-validation in a population of bacterial ARI (n=70), viral ARI (n=115), or non-infectious 

illness (n=88). Three published bacterial vs. viral classifiers were identified and applied to this same 

population as comparators. Data are presented as number (%). Shaded cells indicate correct classifications.

Clinical Assignment

Bacterial Viral Non-infectious
illness

Ramilo et al.

Bacterial 54 (77.1) 4 (3.5) 12 (13.6)

Classifier-Predicted Assignment

Viral 6 (8.6) 101 (87.8) 12 (13.6)

Non-infectious illness 12 (14.3) 12 (8.7) 64 (72.7)

Hu et al.

Bacterial 53 (75.7) 4 (3.5) 9 (10.2)

Viral 9 (12.9) 104 (90.4) 9 (10.2)

Non-infectious illness 8 (11.4) 7 (6.1) 70 (79.5)

Parnell et al.

Bacterial 51 (72.8) 8 (7.0) 11 (12.5)

Viral 13 (18.6) 94 (81.7) 10 (11.4)

Non-infectious illness 6 (8.6) 13 (11.3) 67 (76.1)

Derived ARI
Classifier

Bacterial 58 (82.8) 4 (3.4) 8 (9.0)

Viral 9 (12.8) 104 (90.4) 4 (4.5)

Non-infectious illness 3 (4.2) 7 (6.0) 76 (86.3)
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Table 3
External validation of the ARI classifier (combined bacterial ARI, viral ARI, and non-
infectious classifiers)

Five Gene Expression Omnibus datasets were identified based on the inclusion of at least two of the relevant 

clinical groups: Viral ARI, Bacterial ARI, non-infectious illness (SIRS).

Clinical Assignment

Bacterial Viral SIRS AUC

GSE6269: Hospitalized children with
Influenza A or bacterial infection

Classifier-Predicted Assignment

Bacterial 84 1
0.95

Viral 2 26

GSE42026: Hospitalized children
with Influenza H1N1/09, RSV, or
bacterial infection

Bacterial 15 3
0.90

Viral 6 35

GSE40396: Children with
adenovirus, HHV-6, enterovirus, or
bacterial infection

Bacterial 7 1
0.93

Viral 3 32

GSE20346: Hospitalized adults with
bacterial pneumonia or Influenza A

Bacterial 26 0
0.99

Viral 1 18

GSE42834: Adults with bacterial
pneumonia, lung cancer, or
sarcoidosis

Bacterial 18 3
0.99

SIRS 1 81
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