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Abstract

The Strategic Health IT Advanced Research Projects (SHARP) Program, established by the Office 

of the National Coordinator for Health Information Technology in 2010 supports research findings 

that remove barriers for increased adoption of health IT. The improvements envisioned by the 

SHARP Area 4 Consortium (SHARPn) will enable the use of the electronic health record (EHR) 

for secondary purposes, such as care process and outcomes improvement, biomedical research and 

epidemiologic monitoring of the nation’s health. One of the primary informatics problem areas in 

this endeavor is the standardization of disparate health data from the nation’s many health care 

organizations and providers. The SHARPn team is developing open source services and 

components to support the ubiquitous exchange, sharing and reuse or ‘liquidity’ of operational 

clinical data stored in electronic health records. One year into the design and development of the 

SHARPn framework, we demonstrated end to end data flow and a prototype SHARPn platform, 

using thousands of patient electronic records sourced from two large healthcare organizations: 

Mayo Clinic and Intermountain Healthcare. The platform was deployed to (1) receive source EHR 

data in several formats, (2) generate structured data from EHR narrative text, and (3) normalize the 

EHR data using common detailed clinical models and Consolidated Health Informatics standard 

terminologies, which were (4) accessed by a phenotyping service using normalized data 

specifications. The architecture of this prototype SHARPn platform is presented. The EHR data 

throughput demonstration showed success in normalizing native EHR data, both structured and 

narrative, from two independent organizations and EHR systems. Based on the demonstration, 

observed challenges for standardization of EHR data for interoperable secondary use are 

discussed.
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1. Introduction

Strategic Health IT Advanced Research Projects (SHARP) were established under the 

direction of the Office of the National Coordinator for Health Information Technology 

(ONC) [1,2]. SHARP research and development is focused on achieving breakthrough 

advances to address well-documented problems that have impeded adoption of the electronic 

health record (EHR):

• Security and privacy of health information.

• User interfaces that support clinical reasoning and decision-making.

• Shared application and network architectures.

• Secondary use of EHR data to improve health [3,4].

The health improvements envisioned by the secondary-use SHARP consortium (SHARPn) 

include care process and outcomes measurement, more efficient biomedical research and 

support for public health activities. Critical to these secondary-use scenarios is the 

transformation of health information into standards-conforming, comparable, and consistent 

data. Traditionally, a patient’s medical information, such as medical history, exam data, 

hospital visits and physician notes, are stored inconsistently and in multiple locations. 

SHARPn will enable the use of EHR data for secondary purposes by creating tangible, 

scalable, and open-source tools, services and software for large-scale health record data 

normalization and sharing [5].

One year into the design and development of the SHARPn framework, an integrated set of 

services and components was implemented as a prototype platform for natural language 

processing (NLP) and normalization pipelines to a persisted data store to cultivate high-

throughput phenotyping. A demonstration of the prototype platform, focused on the 

throughput of normalized data, was conducted. Actual data from approximately ten thousand 

patient records were input from two independent EHRs: the Mayo Clinic and Intermountain 

Healthcare. EHR data corresponded to input data for a set of diabetes phenotyping rules 

used in practice. EHR data were sourced from both structured data and provider clinical 

narratives. Data were normalized to consistent, standardized forms in the SHARPn NLP and 

normalization components and stored in a shared database. A rules engine queried cases in 

the database for input data defined for a diabetes phenotyping algorithm. The target for this 

data throughput demonstration was the successful population of standardized data in the 

phenotyping data model.

In this paper, we present an overview of the architecture of this prototype SHARPn platform, 

describe the data flow from EHR to standardized data inputs for phenotyping, and discuss 
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the challenges for shared, standardized secondary EHR data usage as observed in this data 

throughput demonstration.

2. Background: the SHARPn framework

2.1. Data normalization and phenotyping architecture

The prototype platform supports a process flow implemented for this demonstration project. 

The SHARPn architecture consists of an adaptable framework of components and services. 

An overview of the SHARPn prototype data normalization and phenotyping architecture is 

shown below:

An overview of all processes and data flows (Fig. 1) is given in brief:

1. Intermountain Healthcare (IHC) structured clinical data were generated in 

Health Level Seven (HL7) [6] 2.x format. Other data input formats are 

supported in the architecture. Encounter ICD-9-CM [7] codes and attributions 

were prepared in tabular text files.

2. IHC data were pushed to Mirth Connect [8] on the IHC side of its firewall.

3. Mirth Connect is an open source product created by Mirth Corporation to 

transform messages among formats and/or route them from one location to 

another. Mirth Connect creates Nationwide Health Information Network 

(NwHIN) [9] Document Submission (XDR) messages from HL7 2.x and 

ICD-9-CM data files.

4. Mirth Connect routes the XDR message to the IHC NwHIN Aurion Gateway 

[10]

5. Aurion is an open source implementation of an NwHIN gateway. The gateway 

forwards the message using NwHIN protocols and services with secured two-

way Transport Layer Security (TLS) with Security Assertion Markup 

Language (SAML) to the SHARPn NwHIN Aurion Gateway. This was 

implemented in a cloud service, residing behind the Mayo Clinic firewall.

6. The Aurion gateway on the SHARPn cloud passes the IHC XDR messages to 

Mirth Connect on the cloud.

6a Mayo Clinic lab and ICD-9-CM data were generated as described for 

IHC above. These and clinical text documents are pushed to Mirth 

Connect on the SHARPn cloud behind Mayo Clinic’s firewall.

7. Mirth Connect routes all incoming data to an Apache Unstructured Information 

Management Architecture (UIMA) [11] pipeline on the SHARPn cloud.

8. Normalization and NLP services are implemented in UIMA pipelines.

9. UIMA components route the normalized data back to Mirth Connect.

10. Mirth Connect routes the data instances to an open source SQL database, 

MySQL, where all data are persisted.
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11. A rules engine queries the SQL database for normalized input data defined for 

a diabetes phenotyping algorithm.

The three main functions for the data normalization and phenotyping platform are described 

below:

2.2. EHR data normalization

2.2.1. Common information model—Clinical concepts must be normalized if decision 

support and analytic applications are to operate reliably on secondary EHR data. One EHR 

may store “resting heart rate” as a simple name-value pair (name = “resting heart rate” and 

value = “60 bpm”), while another EHR may store it in a more complex, post-coordinated 
fashion (name = “heart rate”, value = “60 bpm”, qualifier = “resting”). EHRs may contain 

more or less description or detail (granularity) about clinical events and observations. 

Further, the contents may be encoded using different terminologies, free text, or a mixture of 

both. A decision support application will need to take those differences into account when 

retrieving a clinical concept such as “resting heart rate”, and normalize the data to a common 

representation before processing.

The Clinical Element Model (CEM) is Intermountain Healthcare’s strategy for detailed 

clinical models.[12–19] A CEM provides a single logical structure for a data element, to 

which all incoming data of that type are normalized. CEMs are computable: they are written 

in the Constraint Definition Language (CDL) that can be compiled into objects that are 

passed between the layers of a system’s technology stack. CEMs do not dictate the physical 
implementation of those objects or of the stack components. For example, CEMs may be 

compiled into XML Schema Definitions (XSDs), java or C# programming language classes, 

or Semantic Web Resource Description Framework (RDF) to provide structured model 

definitions in particular computing environments [20]. Correspondingly, CEM instances may 

be XML instances, java or C# objects, or RDF instances. CEMs, like HL7 versions 2 and 3 

models, prescribe that codes from controlled terminologies be used as the values of many of 

their attributes. Thus, CEMs facilitate interoperability between systems at a syntactic and 

semantic level while allowing for disparate architectures within those systems.

CEMs are agnostic of the origination of the data. Instances may be populated from textual 

reports by NLP services or from structured EHR data. All data stored in the EHR is 

encompassed in the scope of the CEM, including but not limited to:

• Allergies.

• Problem lists.

• Laboratory results.

• Medication and diagnostic orders.

• Medication administration.

• Physical exam and clinical measurements.

• Signs, symptoms, diagnoses.
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• Clinical documents.

• Procedures.

• Family history, medical history and review of symptoms.

Fig. 2 shows a high-level abstraction of a medication order model and an instance of 

conformant data. The medication order CEM might prescribe that a medication order have 

attributes of “orderable item”, “dose”, “route”, and so on. Further, it may dictate that an 

orderable item’s value must be a code in the “orderable item value set” – a set list of 

controlled codes appropriate to represent orderable medications – and that the dose be 

represented as a “physical quantity” data type, which contains a numeric value and a code 

for a unit of measure, where that unit of measure code comes from a “dose unit” value set.

2.2.2. Terminology mapping services—Structured, coded terminology plays a critical 

role in CEMs. In specifying the content of data instances, CEMs also specify the places in 

the instances where coded concepts must be used. The CEMs used by SHARPn will specify 

standard terminologies conformant with consolidated health informatics (CHI) [21]. 

Terminology services – especially mapping services – are essential to SHARPn success. An 

overview of the envisioned SHARPn normalization services are depicted in Fig. 3.

SHARPn will align the terminology services it uses with the evolving Common 

Terminology Services (CTS) effort [22]. CTS defines a standard set of service interfaces for 

accessing and maintaining structured terminology. The second version of this effort (CTS2) 

is currently moving through the Object Management Group (OMG) standardization process.

2.3. Natural language processing of health care documentation text

A substantial part of the information pertaining to a given patient is recorded in the 

unstructured, free-text part of the EHR. Information extraction (IE) is an application of NLP 

aiming at converting the free-text into structured information. Normalization targets can vary 

from simple mappings to a terminology to more template-like structures. The CEMs provide 

such templates. Traditionally, IE and NLP have been applied to the domain of medicine for 

specific use cases where only a limited set of signals are to be discovered, such as 

discovering pneumonia from chest X-ray reports [23,24] and peripheral arterial disease from 

radiology notes [25]. These approaches result in excellent performance but the application is 

limited to only the specific use cases for which they were developed. Our SHARPn 

philosophy takes a different approach. The goal is to discover a relevant set of summary 

information for a given patient in a disease- and use-case agnostic way, which is then stored 

and indexed for retrieval. The main principle, thus, is process once, use multiple times.

In the SHARPn project, the core NLP software is the clinical Text Analysis and Knowledge 

Extraction System (cTAKES) [26]. As is true for the SHARPn platform, cTAKES is built 

within the Apache Unstructured Information Management Architecture (UIMA) which 

provides a solid basis for scalability, expandability and collaborative software development. 

One of the main UIMA concepts is that of a type system, which defines the annotations and 

their structure as generated by the pipeline. An agreed-upon basic type system ensures a 

software development foundation. The SHARPn NLP type system, which continues to be 
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developed and evaluated, [27] implements the templates which are derived from the CEMs 

and represent the NLP normalization targets. The current cTAKES pipeline processes 

clinical notes and identifies the following clinical named entity mentions: drugs, diseases/

disorders, signs/symptoms, anatomical sites, and procedures. The dictionary lookup 

algorithm uses a knowledge base as a resource created off SNOMED Clinical Terms® 

(SNOMED CT®) [28] and RxNorm [29] terms and their synonyms. Document input can be 

plain text or Clinical Document Architecture (CDA) [30] compliant XML documents.

2.4. High-throughput phenotyping

The SHARPn view of phenotyping includes inclusion and exclusion criteria for clinical 

trials, numerator and denominator criteria for clinical quality metrics, epidemiologic criteria 

for outcomes research or observational studies, and trigger criteria for clinical decision 

support rules, among others. Our use implies the algorithmic recognition of any cohort 

within an EHR for a defined purpose. These purposes were inspired by the algorithmic 

identification of research phenotypes in the National Human Genome Research Institute 

(NHGRI) funded electronic MEdical Records and GEnomics (eMERGEs) consortium [31] 

primarily to facilitate EHR-derived genomics studies. The underlying principles of using 

well-defined algorithms across diagnosis assertions, laboratory values, medication use, and 

NLP-derived observations adheres to the practices demonstrated in eMERGE [32].

Phenotyping algorithms in essence comprise a complex set of inclusion and exclusion 

criteria that are coupled using a set of logical operators. This lends to representing the 

algorithm criteria using a rules-based formalism. For SHARPn, we chose the open-source 

Drools production rule system [33]. Supported by the JBoss community, Drools comprises 

an inference engine, complex event processing and workflow system that provides a rich, 

declarative programming environment. The inference engine, also known as a “production 

rules system”, represents clinical knowledge as simple “conditions” and “actions”. The 

Drools system excels in that the rules engine and the workflow engine are tightly integrated 

and workflow can be used to visually represent complex relationships between logically 

related groups of rules. Development of a robust, common data model and scalable 

approaches to implement computable phenotyping algorithms within the Drools system are 

current SHARPn objectives.

The prototype SHARPn architecture includes persistence of the data. One can regard the 

persistence function as a data store for normalized representations. This is necessary because 

phenotyping constitutes a question/answer process, where within an algorithm one ascertains 

whether a particular patient does or does not manifest definitional criteria. This persistence 

layer can be realized by many data base technologies including: XML databases, object 

databases, RDF triple stores and SQL databases. For convenience in the development 

phases, we opted for SQL database technology. The ultimate goal is to decouple the 

algorithms from the physical implementation of the persistence layer.

3. Methods: data throughput demonstration

After one year of design and development effort, a SHARPn platform was implemented for 

internal use. A demonstration of end to end throughput of high volume, real patient data was 
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conducted in June, 2011. Approximately ten thousand patient records from two independent 

EHR systems, Mayo Clinic and Intermountain Healthcare were used to test the end to end 

flow of actual data. The use case was a common diabetes mellitus phenotyping algorithm. 

The algorithm was modified to normalized data specifications. The demonstration was 

focused on the acquisition and normalization of disparate data, and successful data flow 

from EHR to the population of input data in the rules engine.

The SHARPn platform infrastructure, software artifacts and research and development 

processes are designed and conducted with appropriate consideration of health information 

security and privacy requirements. Institutional review board policies are followed, and data 

are shared under appropriate data sharing agreements. In particular, site to site EHR data 

transmission for this demonstration involved exclusively de-identified data. Communication 

between the SHARPn organizations and the SHARPn cloud are secured in accordance with 

the NwHIN specifications. There is ongoing collaboration with the SHARP consortium 

tasked with EHR data security solutions.

3.1. Use case – diabetes mellitus phenotyping algorithm

A phenotyping algorithm for a medicinally managed diabetes mellitus cohort was the use 

case for the data throughput demonstration. The algorithm was adapted from the eMERGE 

Northwestern Type 2 Diabetes Mellitus phenotyping algorithm [34] by the Southeast 

Minnesota Beacon Program [35] for purposes of group practice reporting.

A simplified algorithm (Fig. 4) was derived to validate data throughput. The normalized 

EHR data to be used as input to the algorithm for this demonstration were:

• All ICD-9-CM codes in time period 1/1/2009–12/31/2010.

• All ambulatory Medications ordered or noted as taken (RxNorm).

• Lab values (LOINC® [36]), results and date collected in time period 1/1/2009–

12/31/2010.

3.2. Source EHR data and acquisition

3.2.1. Mayo Clinic—10,000 patients seen in 2010 at the Mayo Clinic were randomly 

selected from the Mayo research data warehouse, Enterprise Data Trust (EDT). The 

selection criteria were: (a) valid research authorization, (b) not deceased, (c) ≥18 years as of 

June, 2011, (d) minimum of two visits in the last year with ICD-9-CM codes, and (e) patient 

had at least 3 years of laboratory and medication data available. For selected patients, three 

years of prior clinical data were accessed, ending on June 30, 2010. The data sets selected 

were clinical notes, laboratory results and ICD-9-CM codes from the EDT. Unlike the de-

identified Intermountain datasets, the Mayo patient data was processed locally and used to 

assess the platform’s processing throughput and performance capabilities. No specific 

patient results were used or released.

Fig. 5 depicts the data acquisition and flow. The cTAKES pipeline processed CDA formatted 

clinical documents from the Mayo Clinic. The focus for this demonstration was discovery of 

all noted medications relevant to the patient. The clinical notes of 10,000 patients from 
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2008–2010 were pulled from the Mayo EDT, resulting in 360,452 documents. Each 

document was then processed through cTAKES, matching RxNorm terms and their 

synonyms. This resulted in 3442,000 Drug CEMs, which were passed to Mirth to deposit 

into the CEM database for phenotyping consumption.

The laboratory data was formatted into HL7 laboratory results messages using HL7 2.x 

syntax. The results were then normalized in a configurable UIMA pipeline. The ICD-9-CM 

data was extracted from the Mayo EDT and processed from tabular representations in text 

files by the AdminDiagnosis UIMA Processor.

3.2.2. Intermountain Healthcare—One hundred cases were randomly selected from a 

curated pool of Intermountain test cases established for EHR development and validation 

activities. The test cases were developed from data stored in the Intermountain Enterprise 

Data Warehouse (EDW). The test data are real patient data, with all protected health 

identifiers of patients and providers removed and replaced with realistic false data. The 

encounter dates and other dates were shifted, using a random seed, so that the temporality of 

events is maintained. The test data were de-identified in compliance with HIPAA 

Guidelines.

All Medication List entries, ICD-9-CM codes with sequence numbers for the associated 

ambulatory encounters, and Intermountain clinical laboratory results for a period of time 

7/1/2008–6/30/2011, to allow overlap with time period of interest for the classification 

algorithm, were extracted for the 100 test cases. Medication and laboratory data were 

prepared in HL7 2.7 format. This was accomplished by taking example Pharmacy Order and 

Unsolicited Laboratory Result HL7 2.7 messages from the Intermountain production 

interfaces. Using these formats as templates, the false identifiers and true EDW data for the 

test cases were inserted into HL7 2.7 message and pushed to the framework where they were 

processed just as Mayo Clinic’s. (Fig. 5)

The Medication List may also contain text medication entries. For this demonstration, only 

coded medication entries were selected. The medications are encoded using First DataBank 

[37] (FDB) orderable drug codes (GCN). This code and the linked text description were sent 

in the HL7 input messages.

Although ICD-9-CM codes can be messaged in HL7 Diagnosis (DG1) segments, neither 

Mayo Clinic nor Intermountain Healthcare uses HL7 operationally for ambulatory ICD-9-

CM codes. It was decided to prepare the ICD-9-CM data in a simple tab delimited, columnar 

text file. The unique ambulatory encounter identifiers, the shifted and de-identified 

encounter dates, the ICD-9-CM codes, their sequence numbers, and the provider service for 

the encounter were included. These data were processed like those from Mayo Clinic. (Fig. 

5)

3.3. Data normalization processes

3.3.1. Clinical Element Models—The data throughput demonstration required three 

CEMs:

• Ambulatory medication order.
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• Standard lab panel.

• Administrative diagnosis.

These CEMs can be viewed at http://www.intermountain-healthcare.org/cem.

The CEMs were compiled into XSDs, which formed the basis of data instances processed by 

the SHARPn framework components. HL7 message structures, the tabular input files for 

administrative diagnosis codes, and the output of the NLP processes were mapped to these 

XSDs in UIMA Common Analysis Structure (CAS) components. UIMA CAS components 

render a common data structure for the application. Incoming HL7 and tabular data and NLP 

output were processed to populate XML instances that conformed to the CEM XSDs.

3.3.2. Terminology mapping—The UIMA HL7 pipelines that processed structured 

medications and labs had components to translate site specific coded data to standardized 

terminologies. (Fig. 6) Mayo internal lab codes and Sunquest codes from Intermountain 

were translated to LOINC codes. Intermountain FDB ordered medication (GCN) codes were 

translated to RxNorm Ingredient or Multiple Ingredient codes. We utilized a time tested and 

basic mechanism to achieve the translation step. The crosswalk tabular data (Mayo internal 

to LOINC, Sunquest Intermountain to LOINC and FDB GCN to RxNorm) were loaded into 

memory as lookup resources at initialization time, which then were used conditionally to 

perform the crosswalk at execution time, based on the origination of the data. These 

components served as proxies for the standards-based SHARPn terminology services 

currently in development.

3.4. Data input to diabetes phenotyping rules implemented in Drools

Once the data were transformed and normalized to a consistent form, they were stored into a 

simple relational database, specifically open source MySQL. The CEM normalized data 

instances are represented as XML document instances. To facilitate access to that content, an 

index data record was added to support query access to stored clinical element data 

instances. Using these index records, the Drools data acquisition components were able to 

identify and access specific data stored in the normalized database.

The data throughput end goal was to populate a simple data model accommodating the three 

data types in the use case: ICD-9-CM codes, medications and laboratory results. The 

majority of data were successfully processed. Neither specific data transformation errors nor 

accuracy of the phenotyping rules were evaluated for this data throughput trial.

4. Results and discussion

The data throughput trial demonstrated successful functionality for three design goals: a 

secure, cloud-based transport architecture; a common syntax; and standardized semantics. 

These are requirements for interoperability of EHRs [38]. Both NLP-derived and structured 

data were normalized into common concept instances, which enabled a phenotyping 

algorithm to operate on patient data regardless of the concept’s origin in the EHR. We 

believe the conceptual merging of structured and text-based EHR data is critically important 

to secondary use of EHR data as well as for patient data exchange for care purposes, 
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decision support and the general case for retrieving a patient’s information in the EHR. 

Recent studies have shown the value in using both text and structured data for more accurate 

disease classification [39–41]. The CEM’s concept-based formalism unites them. The CEMs 

can be consumed at the concept level, or they can be constrained by their attributions if the 

researcher wishes to process NLP-derived versus structured source data separately.

SHARPn is focused on the generation of publicly available services and components to 

enable liquidity of standards-conforming, comparable, and consistent data for broad scale, 

high-throughput secondary use of the EHR. The architecture supports the definition and 

instantiation of terminology standards, as they are declared, into normalization components 

and services. The standardized data elements thus generated conform to a conceptual 

information model, and may be implemented in physical objects and physical information 

models as needed. We have described and demonstrated this functionality, and applied three 

terminology standards: ICD-9-CM, RxNorm, and LOINC. The implementation of this 

prototype platform and data throughput demonstration suggested challenges to our 

secondary EHR data liquidity goals:

4.1. Platform architecture

A normalization and secondary use platform of the intended scalability requires a robust and 

secure architectural foundation. Data security, end to end connectivity and reliable data flow 

were critical to the normalization and phenotyping services. In the data throughput 

demonstration, architectural issues were discovered as expected. The data exchange and host 

processing platforms will require ongoing expertise from computer scientists with an 

understanding of health information exchange domain requirements.

4.2. Error handling

Error checking and handling is a requirement for the framework. The prototype platform did 

not implement this functionality. Errors are expected to occur in multiple components. Some 

places that errors will occur are: (1) transmission related errors, (2) transformation errors, (3) 

EHR data quality errors, and (4) data persistence errors. Error recognition and proper 

handling will be highly important features of ubiquitous normalization and secondary use of 

EHR data [38,42].

4.3. Acquiring source EHR data

The pilot showed that HL7 2.x messages could be sent as the payload of an NwHIN 

Document Submission message, which could then be transformed and normalized using the 

UIMA pipeline. However, it is envisioned that there would be multiple formats for messages 

sent to the SHARPn cloud. HL7 messaging may cover the data that are typically interfaced 

between the EHR and ancillary systems, such as clinical lab, provider text documentation, 

and pharmacy. HL7 includes message structures that accommodate a variety of health 

information, such as diagnosis codes, allergies, and general clinical observations. But if 

organizations’ operations do not include messaging those data, it is arguably no easier to 

acquire source data using a standardized HL7 representation than using other representations 

that can be mapped to CEMs.
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The demonstration forced us to rethink the strategy of using HL7 Admit/Discharge/Transfer 

(ADT) messages to communicate ICD-9-CM codes. Since the organizations’ business 

practices did not use HL7 to communicate ambulatory encounter codes, a text file format 

was populated by query at each organization and pushed to Mirth. Operationally, ICD-9-CM 

codes are messaged from providers to payors in ANSI standard X-12 messages [43], 

required under HIPAA for claims. These existing messaging processes and structure could 

be considered to harvest ICD-9-CM data in an automated manner. The acquisition of ICD-9-

CM codes must consider their source. A practice management system may contain codes 

submitted or entered by providers, whereas other workflow processes may occur to select a 

subset of the codes or even modifications to submit as actual claims for billing purposes. 

These workflow processes differ among organizations, as can be stated about processes of 

populating EHR data in general.

There is untallied variation in the style, organization and formatting of clinical text 

documents among organizations and EHRs. The Mayo Clinic EHR environment implements 

a number of HL7 standards for clinical document organization. The CDA standard defines 

XML tags which mark the beginning and end of document sections. This unambiguous 

sectioning enables selective extraction of medications with variable levels of confidence 

depending on the section in which they occur in. A productive strategy is to limit the 

medication extraction to a set of sections such as Impression/Report/Plan, History of Present 

Illness, Current Medications, Admission Medications and Discharge Medications. The 

improvement in the accuracy of NLP information extraction methods when standardized 

clinical document styles are used remains a significant question. The current lack of standard 

styles in many clinical documents remains a challenge for normalization.

Design and development of SHARPn source EHR data acquisition tools require analysis of 

the origin, storage, and standard extraction or messaging mechanisms that may be tapped. In 

future iterations of the framework, Mirth Connect can take messages in many different 

forms, using many different protocols and transform them. SHARPn teams continue to 

develop acquisition strategies, focusing on the most useful EHR data categories. Meaningful 

use leaders and the National Quality Foundation have selected priority data types to support 

in EHRs and for quality measures [44,45].

4.4. Normalization models

The CEMs used in the demonstration were based on the models created to populate EHR 

content. Based on feedback from the informatics community, SHARPn will instead design 

CEMs to cover general requirements for a spectrum of secondary use cases, realizing there 

will be needs for additional or different data requirements for particular uses. The clinical 

element models can be revised or extended as those needs arise. It is a challenge to create 

canonical models of EHR data for secondary use, as there are a variety of purposes to be 

served. However, large scale normalization of data for shared secondary use depends upon 

common models.
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4.5. Terminology services

The prototype platform did not implement runtime terminology services – simple table 

lookup mechanisms were implemented. Future SHARPn work will focus on calling 

standardized terminology services accessing a robust terminology server, as discussed in 

Section 2.2.2. Nevertheless, important insights regarding terminology mapping and services 

were gained during the pilot.

4.5.1. Mapping of local terminologies—A significant effort in the implementation of 

an EHR is mapping an institution’s local codes to the terminologies stored and used within 

the EHR. Specialists or integration consultants are often required for the work. The 

SHARPn effort proved to be no exception as effort was required to complete the provider 

institutions’ mappings from local laboratory observation codes to LOINC, even for the small 

demonstration project that was conducted. A large-scale data normalization project will need 

to take into account the considerable effort of mapping institutions’ terminologies to 

standard terminologies. Compounding the problem is that many institutions will not be able 

to produce on demand the code sets sent in their messages in a form consumable by a 

terminology server, or at all. “Smart” tools are called for – tools that can analyze months-

worth of an institution’s messages and data and from them deduce the local code sets that 

need to be mapped to standards, and then even postulate the mappings.

Further, the inclusion of CEMs in the normalization solution suggests that not just 

terminology mapping solutions but model mapping solutions are required.

4.5.2. Medication terminology—Mapping of medication codes is a particular type of 

mapping that introduces its own unique complexities. Healthcare provider institutions, 

vendors of drug information code sets, and the RxNorm standard all have multiple classes or 

hierarchies of codes, i.e., ingredients, generic drugs, branded drugs, and therapeutic classes. 

There are inevitably small differences in the structures of the parties’ hierarchies and classes 

that cause mappings to be difficult. The mappings included with RxNorm realize much of 

the mapping work required between RxNorm and vendors; however, the work of mapping 

individual providers’ codes and hierarchies to RxNorm will remain.

Furthermore, choices between hierarchies and classes need to be made. For example, 

Intermountain Healthcare chose to map its clinical drug data to one of the two different 

orderable drug code sets maintained by their drug information vendor. That class of drug 

code can map to RxNorm ingredient codes, RxNorm generic orderable drug codes, or 

RxNorm branded orderable drug codes. For the demonstration, we had to choose which of 

those to map to, and communicate to all parties involved: the team performing NLP, the 

team normalizing data, and the team executing phenotyping algorithms. The choices depend 

largely upon use cases. Decision support algorithms, for example, need to know when a 

patient is on any drug whose formulation contains a particular ingredient and are 

uninterested in the particular branding, formulations, dosage forms, or strengths of those 

drugs. Ordering applications, on the other hand, are very interested in brands, formulations, 

forms, and strengths. Given that different use cases demand different hierarchies of drug 

codes, it is inevitable and essential that support be provided to navigate between hierarchies.
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4.5.3. Terminology versioning and updating—The SHARPn demonstration did not 

deal with multiple versions of terminologies or updates to terminologies, but it became 

apparent that any robust data normalization effort will need to do so. Controlled 

terminologies are not static, but undergo constant change as concepts are replaced by/

redirected to other concepts, concepts are obsoleted, and new concepts are added. Generally, 

when an incoming code is mapped to a standard terminology, the latest changes in the 

standard terminology must be recognized and accessed through the mapping services. If a 

code has been made obsolete in the standard, a mapping to that code must be adjusted to 

point to the code that replaces the obsolete code and the services must navigate to the new 

code. If new codes are added to the standard, mappings must be updated and the services 

must access the new mappings in order to navigate to the newly added codes. If the meaning 

of a code changes, which occasionally occurs in some terminologies, mappings involving 

that code must be adjusted so as to continue to produce consistent results.

In some use cases, specific versions of terminologies must be recognized and accessed. 

Incoming codes may not always be from the latest version of a terminology, but they still 

need to be understood by the services and mapped correctly. Reporting requirements may 

dictate that certain versions of standard terminologies be sent out, requiring mappings from 

the internally-stored codes to various versions of outgoing terminologies. One example of 

this is found in standardization efforts such as Healthcare Information Technology Standards 

Panel (HITSP) and HL7 v3, which support the notion of dynamic and static bindings. In 

dynamic binding, a data element is bound to the current contents of a specified code set, e.g., 

the HITSP Procedure value set is bound to codes in the procedure hierarchy in whatever is 

the most current version of SNOMED CT. In contrast, in static binding, a data element is 

bound to a specific version of a code set, e.g., the HITSP Diagnosis Priority value set is 

bound to the 2.5.1 version of the HL7 Diagnosis Priority code system. Consequently, static 

binding requires terminology servers and services that maintain multiple versions of 

terminologies.

Terminology changes may occur frequently. RxNorm, for instance, is released monthly in an 

attempt to keep up with the frequently changing medication realm. Changing terminologies 

will clearly require considerable maintenance effort in order to make SHARPn data 

normalization and interoperability successful.

4.6. Specification of standardized phenotyping algorithms

Another challenge highlighted by the demonstration was the difficulty of expressing this 

simple phenotyping algorithm’s data specifications in terms of normalized objects and 

standard terminologies. Cohort identification algorithms’ data are often expressed in abstract 

clinical terms, such as ‘fasting glucose’. This expression maps to several LOINC codes. 

Existing data specifications must be translated to standardized data concept specifications. 

The computable specification of standardized phenotyping algorithm data and rules among 

them, are a recognized challenge with active engagement in the health informatics 

community.
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5. Conclusions

A prototype platform was implemented from the developing SHARPn framework to perform 

secure transport, data normalization and common phenotyping services on disparate EHR 

data. A demonstration of data throughput from two large organizations was conducted to test 

the design and inform future development. The demonstration was successful in executing 

the intended end to end data processing flow, merging text and structured data into instances 

of clinical concepts, and normalizing disparate data to common objects with standard 

terminologies. We have shared the emerging architecture and observed challenges for 

standardization of EHR data for interoperable secondary use.
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Fig. 1. 
SHARPn data normalization and phenotyping architecture.
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Fig. 2. 
Partial CEM model and instance data for a medication order.
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Fig. 3. 
SHARPn normalization services overview.
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Fig. 4. 
Simplified medicinally managed diabetes classification algorithm.
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Fig. 5. 
UIMA normalization processes accessed via mirth.
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Fig. 6. 
UIMA terminology mapping processes.
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