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Abstract

Background—Intestinal ischemia can quickly escalate to bowel necrosis and perforation. 

Transplantation of stem cells presents a novel treatment modality for this problem. We 

hypothesized that: (1) Human adipose derived stromal cells (hASCs) would increase survival and 

mesenteric perfusion to a greater degree compared to differentiated cellular controls following 

ischemic intestinal injury, (2) improved outcomes with hASC therapy would be associated with 

preservation of intestinal histological and tight junction architecture, and lower levels of systemic 

inflammation following intestinal injury.

Methods—hASCs and keratinocytes (differentiated cellular control) were cultured on 

polystyrene flasks at 37C in 5% CO2 in air. Adult male C57Bl6J mice were anesthetized and a 

midline laparotomy performed. The intestines were eviscerated, the small bowel mesenteric root 

identified, and intestinal ischemia was established by temporarily occluding the superior 

mesenteric artery for 60 minutes with a non-crushing vascular clamp. Following ischemia, the 

clamp was removed and the intestines were returned to the abdominal cavity. Prior to abdominal 

closure, two million hASCs or keratinocytes in 250 uL of PBS (carrier for cells and control 

solution) were infused into the peritoneum. Animals were allowed to recover for 12 or 24 hours 

(perfusion, histology, cytokine, and immunofluoresence studies), or 7 days (survival studies). 

Intestinal perfusion was assessed by laser Doppler imaging. Intestinal tissue segments were 

stained with H&E, as well as antibodies for the tight junction protein claudin-1. Separate aliquots 
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of intestine, liver and lung tissue were homogenized and assessed for inflammatory cytokines via 

multiplex beaded assay.

Results—Animals administered hASCs following intestinal ischemia and reperfusion injury 

(I/R) had significantly greater 7 day survival and better post-ischemic recovery of mesenteric 

perfusion compared to vehicle or keratinocyte therapy. hASCs also abated intestinal mucosal 

destruction, facilitated preservation of intestinal tight junctions, and decreased the systemic 

inflammatory response to injury.

Conclusion—Human adipose derived stromal cells improved survival and mesenteric perfusion 

and attenuated the mucosal damage associated with intestinal ischemia and reperfusion injury. 

hASCs should be considered as a plausible cell source for novel cellular treatment plans following 

intestinal ischemia.
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INTRODUCTION

Intestinal ischemia and necrosis affect multiple patient populations of varying ages and 

comorbidities. Acute mesenteric ischemia (AMI) is prevalent in the elderly population and 

those who undergo cardiac bypass surgery [1]. AMI affects nearly 5000 patients annually, 

with many requiring open or endovascular surgical intervention to lyse the clot and salvage 

the ischemic intestine. The mortality rate for AMI can be as high as 40% for those who 

progress to surgery [2]. Necrotizing enterocolitis and volvulus are two forms of intestinal 

ischemia that can affect the neonatal population [3]. Necrotizing enterocolitis, which 

ultimately manifests as intestinal ischemia and necrosis, affects the very low birth weight 

premature population. The mortality for the most severe cases of necrotizing enterocolitis 

can be quite high [4]. Midgut volvulus associated with malrotation occurs much less 

frequently, but carries a high mortality when a majority of the bowel is involved [5]. In any 

case, if injury is unrecognized or left untreated, patients can quickly decompensate and 

progress to shock, multi-system organ failure, and death. If patients survive these ischemic 

episodes, they are often faced with prolonged hospitalization and long term parenteral 

nutrition needs [6].

Noteworthy advancements in the medical treatment of intestinal ischemia within the last 

decade have been sparse, and therefore, stromal cell therapy offers a novel therapeutic option 

for the treatment of this disease [6]. Bone marrow-derived mesenchymal stromal cells 

(BMSCs), in particular, have shown the capacity to promote survival and attenuate intestinal 

ischemic injury [3]. These advantages are achieved, in part, through enhanced restitution and 

improved integrity of the intestinal mucosa, reduced translocation of bacteria from the lumen 

into the circulation, and a decreased inflammatory response [7, 8].

In spite of their promising potential, BMSC use may be limited secondary to lower 

proliferative capacity and painful isolation procedures [9] [10]. Adipose-derived 

mesenchymal stromal cells (ASCs), however, show greater proliferative potential than 
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BMSCs and other mesenchymal stromal cell lines, and their ease of accessibility and 

limitless supply via liposuction of subcutaneous adipose tissue make them an ideal candidate 

for widespread therapeutic use [11-13]. ASCs have also been suggested as an alternative 

stem cell source for the treatment of intestinal ischemia in a rat model of intestinal I/R [14]. 

In this study, rat derived ASCs decreased inflammation and preserved intestinal histological 

architecture, but the cellular effects on survival and mesenteric perfusion were not defined.

Adipose stromal cell transplants have also been shown to improve recovery of damaged 

tissue in several other models including critical limb ischemia [15], acute kidney injury [16], 

cardiac ischemia [17], and stroke [18], but human ASCs (hASCs) have not yet been tested 

in preclinical models of intestinal ischemia. Therefore, the aim of the current study was to 

determine the efficacy of human ASC therapy in a murine model of intestinal ischemia and 

reperfusion injury (I/R). We hypothesized that: (1) hASCs would increase seven day survival 

and mesenteric perfusion compared to differentiated cellular controls following intestinal 

I/R; (2) improved outcomes with hASC therapy would be associated with preserved 

intestinal histology and tight junctional architecture following injury, and 3) hASAC therapy 

following intestinal I/R would limit intestinal and systemic inflammation.

MATERIALS AND METHODS

Cell Culture

Human ASCs were harvested from human subjects via liposuction and purified as 

previously described [19]. Briefly, human subcutaneous adipose tissue samples obtained 

from liposuction procedures were digested in collagenase type I (Worthington Biochemical, 

Lakewood, NJ) under agitation for 2 hours at 37°C. Samples were then centrifuged at 300g 
for 8 minutes to separate the stromal cell fraction (pellet) from adipocytes. The pellet was 

resuspended in DMEM/F12 containing 10% FBS (Hyclone, Logan, Utah) filtered through 

250-μm Nitex filters (Sefar America Inc, Kansas City, Mo) and centrifuged at 300g for an 

additional 8 minutes. The cell pellet was treated with red cell lysis buffer and was 

resuspended in EBM-2 with 5% FBS or EGM2-MV (Lonza, Allendale, NJ). Adipose 

stromal cells were CD34+, CD31−, and CD144− by flow cytometry, but also expressed 

several mesenchymal cell lineage markers including CD10, CD13, and CD90 [19]. Cells 

were cultured on polystyrene flasks in Endothelial Growth Medium 2 MV with 5% FBS at 

37C in 5% CO2 in air. Cells were used between passages 4-7.

Human nTERT keratinocytes were graciously donated by Dr. Jeffery Travers at the Indiana 

University School of Medicine. Cells were originally purchased through ATCC (Manassas, 

VA) and were cultured in Epilife medium with keratinocyte growth factor (Life 

Technologies, Grand Island, NY). Cells were used between passages 24 and 35.

Once ready for experimentation, cell disassociation was achieved using TrypLE Express 

(Life Technologies). Cells were then pelleted at 400g for 5 mins and resuspended in fresh 

media. Cells were then counted with the aid of an automated fluorescent cell counter (Luna-

FL Automated Cell Counter, Logos Biosystems, Annandale, VA). Two million hASCs or 

keratinocytes were then resuspended in 250ul of PBS vehicle for infusion as determined by a 

previous stromal cell dose response curve [3].
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Murine Intestinal Ischemia-Reperfusion Model

The experimental protocol and animal use were approved by the Indiana University 

Institutional Animal Care and Use Committee. Adult male C57Bl6J mice (8-12 weeks, 

20-30g; Jackson Labs, Bar Harbor, ME) were allowed 48 hours for acclimation to the new 

environment prior to intervention. They had access to normal chow and were kept in 12 hour 

light-dark cycle housing. The animals were anesthetized at 3% isoflurane and maintained at 

1.5% isoflurane for the duration of the procedure. Animals were placed on a heating pad to 

maintain body temperature during the procedure. The abdomen was prepped with hair 

removal lotion, followed by 70% ethanol and betadine. One milliliter of 0.9% normal saline 

was injected subcutaneously, and a midline laparotomy was performed.

The intestines were eviscerated, and the root of the superior mesenteric artery (SMA) was 

located. Temporary occlusion of the mesenteric root was established for 60 minutes using a 

non-crushing microvascular clamp. During ischemia, the abdomen was temporarily closed 

using silk suture to prevent evaporative heat and water loss. Following ischemia, the 

abdomen was reopened, the clamp was removed, and the intestines were allowed to recover. 

The abdominal fascia and skin were then closed in two layers using silk sutures. Prior to 

complete closure of the facial defect, 2 million hASCs, 2 million keratinocytes, or 250 μL of 

phosphate-buffered saline (PBS) vehicle were administered directly into the peritoneal 

cavity. Triple antibiotic ointment was applied to the abdominal incision site following 

complete closure, and analgesia (1 mg/kg buprenorphine and 5 mg/kg caprofen) was 

injected subcutaneously. Animals were recovered from anesthesia on the heating pad, placed 

back in their cage, and returned to animal housing.

Survival Analysis

Animals assigned to the survival protocol (n=10 I/R + hASC, 10 I/R + keratinocytes, 10 I/R 

+ PBS vehicle) were monitored twice daily over 7 days after the surgery for death, pain, and 

incisional complications. End points of analysis included animal death or when Laboratory 

Animal Resource Center veterinarians felt that animals were suffering and needed to be 

euthanized. Survival curves were then created based on these end points.

Laser Doppler Imaging Analysis

Laser Doppler Imaging (LDI)(Moor Instruments, Wilmington, DE) was used to assess blood 

perfusion of the intestines. At each designated time point, (baseline, initiation of ischemia, 

initiation of reperfusion, 12 or 24 hours of reperfusion) three LDI Readings were taken for 

each animal and an average perfusion value was calculated based on the flux mean of the 

three images. The flux mean value was a unit-less numerical value, with larger numbers 

representing greater perfusion, and smaller numbers representing lower perfusion or 

ischemia. The readings for each animal were expressed as a percentage of their baseline 

perfusion, with baseline representing 100% perfusion.

Animals assigned to the 12 hour (N=6/group) and 24 hour (N=7/group) reperfusion group 

were reanesthetized at 12 or 24 hours respectively. The incision site was reopened and the 

intestines were eviscerated. Laser Doppler imaging was then used to assess final perfusion 
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parameters. Animals were then euthanized by isoflurane overdose and cervical dislocation. 

Animals that died prior to analysis were arbitrarily assigned a perfusion value of zero.

Histology

After 12 and 24 hours of reperfusion, animals were euthanized and intestinal segments 

harvested. Segments were placed into 4% paraformaldehyde and subsequently dehydrated in 

70% ethanol. Segments were then paraffin embedded and cut using a microtome. Tissue 

segments were placed on slides and were stained with hematoxalin and eosin. Histologic 

scoring of the depth of tissue injury was performed in blinded fashion by two of the authors 

as we have previously described [20]: 0, no damage; 1, subepithelial space at the villous tip; 

2, loss of mucosal lining of the villous tip; 3, loss of less than half of the villous structure; 4, 

loss of more than half of the villous structure; 5, transmural necrosis (N= 6-7 intestinal 

segments/group).

Immunofluorescence

Paraffin embedded small intestinal blocks (N=6-7/group) were cut in 10μm segments. Slides 

were deparaffinized with xylene and rehydrated in graded alcohols. Heat-induced epitope 

retrieval was then conducted in a standard pressure cooker and slides were placed in 10mM 

citrate buffer (pH 6.0) for 20 minutes and allowed to cool. Slides were then blocked with 

normal Goat Serum (Biogenex, Fremont, CA) diluted in PBS with 1% bovine serum 

albumin (Santa Cruz Biotechnology, Dallas, TX) and 0.1% Tween 20 (Sigma, St. Louis, 

MO) for 1 hour.

Presence of tight junctions in the intestinal tissues was then assessed by incubating slides 

with a 1:100 dilution of Claudin-1 primary antibody (Novus Biologicals, NBP1-67515) 

overnight at 4 degrees Celsius. Following washing, Alexafluor 488 goat-anti-rabbit 

secondary antibody (Cell Signaling Technology, Danvers, MA) was applied and incubated 

for 2 hours at room temperature in a humidity chamber. Slides were then washed again and 

DAPI (Cell Signaling Technology) was applied at 1ug/ml and allowed to incubate at room 

temperature for 5 minutes. Slides were then rinsed in PBS, mounted, coverslipped, and 

assessed using a fluorescent microscope. Staining was repeated on additional slides to 

ensure reproducible results.

Tissue Cytokines

Intestinal, liver, and lung tissue segments (N=6-7/group) were thawed and homogenized in 

RIPA buffer (Sigma) with protease and phosphatase cocktail inhibitors (1:100 dilution, 

Sigma). Homogenates were centrifuged at 12,000 rpm to pellet extraneous tissue, and 

supernatants were transferred to fresh eppendorff tubes for storage at −80C. Total protein 

concentration was then quantified by Bradford Assay using a spectrophotometer (Versamax 

microplate reader, Molecular Devices). Tissue vascular endothelial growth factor (VEGF), 

granulocyte colony stimulating factor (GCSF), monokine induced by interferon gamma 

(MIG), Interleukin-6 (IL-6), and Interleukin-1 beta (IL-1β) were quantified with a Bioplex 

200 multiplex beaded assay system (Bio-Rad) using a customized multiplex kit for the 

designated chemokines (Millipore). Assays were performed at 1:25 dilution according to the 

manufacturer’s instructions.
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Statistical Analysis

Survival data were compared using the Mantel-Cox log-rank test and the Gehan-Breslow-

Wilcoxon test. Reperfusion data were deemed to be normally distributed based on histogram 

data inspection, and were compared with two way ANOVA and t test, when appropriate. 

Data are presented as percent change from baseline perfusion (mean% +/− SEM). Histology 

and multiplex cytokine data were not normally distributed, and as such, were compared 

using the Mann Whitney U test. Data are presented as the median with 25%-75% 

interquartile range. A P value of less than 0.05 was considered statistically significant.

RESULTS

hASCs Improved Survival Outcomes After Intestinal I/R Injury

Following intestinal I/R, seven day survival was 40% in the vehicle group and 20% in those 

treated with keratinocytes. Seven day survival significantly increased to 80% with the post-

ischemic application of hASCs (Figure 1, p<0.05). These data identify hASCs as providing 

significant survival advantages to mice after intestinal ischemia and reperfusion injury.

Post-Ischemic Mesenteric Perfusion Is Improved With The Use of hASC Therapy

Administration of hASCs following intestinal I/R improved post-ischemic mesenteric 

perfusion at both 12 and 24-hours of reperfusion compared to mice administered only 

vehicle (12 Hour Reperfusion: PBS Vehicle: 21.67+/−10.22% vs. hASC: 71.00+/−11.76%, 

p<0.05; 24 Hour Reperfusion: PBS Vehicle: 25.57+/−6.07% vs. hASC: 61.14+/−11.89%, 

p<0.05)(Figure 2). Improved mesenteric perfusion was also appreciated at 24-hours of 

reperfusion for the hASC group compared to the keratinocyte group (ASC: 61.14+/−11.89% 

vs. Keratinocyte: 25.00+/−11.38%, p<0.05), but this was not significant at 12-hours post 

ischemia. These results suggest that improved survival outcomes with hASC therapy 

following intestinal I/R may potentially be attributed to improved mesenteric perfusion 

following injury.

hASC Therapy Following Intestinal I/R Preserves Intestinal Tissue Architecture

Intestinal I/R resulted in significant sloughing of the intestinal mucosa at both 12 and 24 

hours following reperfusion in vehicle treated groups. This was seen as destruction of the 

epithelial layer in the crypt-villous architecture. Human ASC therapy following I/R abated 

this destruction and significantly decreased the median histology injury score (12 Hour 

Reperfusion: PBS Vehicle: 3.5 (25%-75%: 1.0-4.3) vs. hASC: 0 (25%-75%: 0.0-1.8), 

p<0.05; 24 Hour Reperfusion: PBS Vehicle: 4.0 (25%-75%: 2.0-5.0) vs. hASC: 0 

(25%-75%: 0.0-1.0), p<0.05) (Figure 3). Histology scores following keratinocyte therapy 

were similar to vehicle and were significantly worse than hASC groups. These results 

suggest that hASCs have a beneficial impact to the protection of intestinal mucosal integrity 

following I/R.

hASC Therapy Preserves Intestinal Tight Junction Architecture Following Injury

Animals exposed to hASCs following intestinal I/R injury demonstrated preservation of 

Claudin-1 tight junctional proteins in the expected boarder zones between intestinal 
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epithelial cells at 12 and 24 hours of reperfusion. Cell junctions stained brightly with 

Claudin-1 and the cell borders were crisply and clearly stained. Epithelial cells did not stain 

as strongly or as uniformly in PBS treated groups. Keratinocyte treated groups had 

decreased staining at 12 hours, and evidence of hazy boarders between cells at 24 hours, 

thereby suggesting disrupted gap junctions in these treated groups (Figure 4).

hASC therapy affects intestinal, hepatic, and pulmonary inflammatory tissue cytokine 
production

Intestinal tissue levels of GCSF were significantly decreased at 24 hours with the use of 

hASC therapy compared to PBS. Intestinal tissue levels of VEGF, MIG, IL-6, and IL-1β 

were not different between groups in intestinal tissues. Liver levels of GCSF were also 

significantly decreased in hASC groups at 24 hours of reperfusion compared to PBS or 

keratinocyte groups. Liver levels of IL-1β were significantly lower in hASC groups 

compared to keratinocytes at 12 hours of reperfusion, but no difference was seen at 24 hours 

(Table 1).

hASC therapy seemed to have the most significant impact on pulmonary inflammation 

following intestinal ischemia and reperfusion injury. Levels of GCSF, MIG, IL-6, and IL-1β 

were all significantly decreased in hASC groups at 24 hours of reperfusion compared to PBS 

or keratinocyte groups. Levels of pulmonary VEGF were also significantly elevated in hASC 

groups at 24 hours of therapy compared to PBS control, but were not significantly different 

from keratinocyte groups (Table 1).

DISCUSSION

Intestinal ischemia originates from multiple etiologies and can affect diverse patient 

demographics. No definitive medical advancements have been made in the treatment of 

intestinal ischemia in the last decade and therefore the development of novel treatment 

modalities is paramount. The ultimate therapeutic goal in patients with intestinal ischemia is 

to restore blood flow to ischemic tissues prior to the development of necrosis and bowel wall 

perforation. In this study, we observed that hASCs significantly increased survival and 

mesenteric perfusion while simultaneously preserving intestinal histological and tight 

junction architecture compared to keratinocytes or vehicle in a murine model of intestinal 

ischemia and reperfusion injury. In addition, hASCs abated the systemic inflammatory 

response, as seen predominantly by a decrease in lung tissue inflammatory markers.

While previous studies have demonstrated the therapeutic benefits of hASCs in attenuation 

of other animal models of I/R injury [21], this is the first study to demonstrate the efficacy of 

human ASCs in rescuing murine intestinal ischemia. Previous studies have suggested that 

ASCs provide their benefit at least in part, by the release of paracrine factors [22, 23]. There 

are likely multiple growth factors and immune modulators that play a role in end organ 

protection, and current studies by our group are attempting to define which of these factors 

may be the most efficacious in acute organ protection following injury.

Decreased mortality with hASC therapy was likely related to improved mesenteric perfusion 

and mucosal integrity. Improved perfusion likely restored blood flow and tissue oxygen 
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levels to physiologic levels, which then prevented intestinal mucosal injury, sloughing, and 

the impending bacterial translocation and sepsis that would have ensued due to cell junction 

degradation. This concept was seen in this study by preservation of histological architecture 

and the tight junction protein claudin-1 in those animals treated with hASCs. It is unclear 

though, how the hASCs promoted improved mesenteric perfusion, but it may be in part to 

the release of specific vasodilators such as nitric oxide or hydrogen sulfide [24, 25] from 

these cells. Future studies aim to determine the specific properties of the hASCs that 

promote improved vascular perfusion and survival.

GCSF and MIG are two chemokines that are associated with inflammation and leukocyte 

infiltration, while IL-1β and IL-6 are notable proinflammatory cytokines associated with the 

acute phase response [26-29]. hASC treated groups exhibited a reduced systemic 

inflammatory response as noted by a decrease in these pulmonary inflammatory markers 

assessed at 24 hours of reperfusion. It is unclear though as to why levels of these markers 

were not significantly altered in intestinal and hepatic tissues over the same time periods. 

Preservation of tight junctions and intestinal integrity with hASC therapy may have 

ameliorated the systemic inflammatory response and likely contributed to improvements in 

animal survival.

Clinical Considerations to Stromal Cell Therapy

The clinical use of hASCs in patients with intestinal ischemia provides a novel treatment 

option for a disease process that has not had a sound medical advancement in many years. 

Initial ASC clinical trials in other organ systems have been quite promising. 

Transendocardial injection of ASCs in patients with no-option ischemic cardiomyopathy 

indicated that autologous transplantation of ASCs was not only safe, but also preserved 

ventricular function, myocardial perfusion, and functional capacity [30]. Another study 

using autologous ASCs in patients with non-revascularizable critical limb ischemia 

demonstrated that ASCs improved wound healing, decreased pain, and expedited recovery 

time [31]. Trials in patients with Crohn’s disease and complex perianal fistulas showed 

reduced fistula size and improved recovery when patients were administered ASCs [32].

Multiple animal studies and now several clinical trials have demonstrated extremely 

promising results with the use of ASC therapy. Challenges that face initiating clinical trials 

in human subjects with intestinal ischemia include identifying the most appropriate patients 

for whom to offer therapy. Many previous initial clinical trials have utilized patients in 

whom surgical revascularization was not an option. In the case of intestinal ischemia, 

patients who undergo surgical resection of necrotic bowel, but who have marginally 

ischemic boarder zones of intestine may be the best candidates for initial therapeutic trials. 

With the aid of second look laparotomy, surgeons could apply the cells on the day of 

intestinal resection, temporarily close the abdomen, and return to the operating room in 

24-48 hours to assess the viability of the remaining intestines.

An additional challenge to therapy is identifying the optimal stromal cell source (bone 

marrow, adipose tissue, umbilical cord), as well as determining the donor type for therapy 

(allogenic versus autologous). Risks to allogenic therapy include potential immunogenic 

reactions to foreign cells, although this is less likely given the ability of mesenchymal 
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stromal cells to down-regulate T-cell proliferation [33]. Finally, risks of malignancy are 

always considered with stromal cell therapy given the highly proliferative potential of these 

cells. The risks of malignancy in the future would need to be balanced with the risks of 

mortality and morbidity at the time of therapeutic use.

Limitations to this study

This study has several limitations that may affect the impact of the results. The first 

limitation is that human cells were utilized as a preclinical assessment in a mouse model of 

intestinal ischemia and reperfusion injury. While xenotransplantation may be less desirable, 

the use of stromal cells from animals is certainly feasible. Mesenchymal stromal cells have 

unique immunomodulatory properties that suppress T-lymphocyte proliferation and allow 

them to be used in different [33]. There have been over 25 different studies where human 

mesenchymal stromal cells have been placed into immunocompetent hosts of different 

species [3, 34]. Interestingly, in the majority of these cases, the cells survived several weeks 

and engrafted into the host tissue [35].

A subsequent limitation to the study is that the SMA ligation model of intestinal I/R does 

not model clinical intestinal ischemia to its fullest. Although complete small bowel ischemia 

is possible secondary to SMA thrombus or embolus, the majority of intestinal ischemic 

episodes are due to segmental intestinal ischemia, such as may be seen with adhesive bowel 

obstructions or incarcerated hernias. Nonetheless, the SMA ligation model mimics the most 

severe form of intestinal ischemia, and therefore, is likely the best animal model available to 

test the effectiveness of new therapies.

Additionally, a limitation exists in the assessment of tissue cytokines. Despite normalizing 

for total protein concentration, a wide variation of levels was observed between group 

samples. Although the same relative area of intestine, liver, and lung was procured from 

each subject, it is likely that tissue levels of cytokines are not exactly equal throughout even 

small segments of tissue.

CONCLUSION

Adipose-derived stromal cells have shown promise as a potential novel treatment option for 

patients with intestinal ischemia. More specifically, we observed that human ASCs improve 

survival outcomes, improve mesenteric perfusion and intestinal histologic architecture, and 

decrease systemic inflammation. Clinical trials that utilize hASCs for the treatment of 

intestinal ischemia are certainly on the horizon, but a clear understanding of the mechanism 

of action must be addressed to ensure the safety and efficacy of therapy prior to widespread 

clinical use.

Acknowledgments

This publication was made possible with support from:

1) KL2TR001106, and UL1TR001108 (A. Shekhar, PI) from the National Institutes of Health, National Center for 
Advancing Translational Sciences, Clinical and Translational Sciences Award

2) Indiana University Health, Indianapolis, IN

Jensen et al. Page 9

Shock. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3) The Thrasher Research Fund

4) The Summer Research Program in Academic Medicine

5) The Showalter Research Trust Fund

REFERENCES

1. Paladino NC, Inviati A, Di Paola V, Busuito G, Amodio EA, Bonventre S, Scerrino G. Predictive 
factors of mortality in patients with acute mesenteric ischemia. A retrospective study. Ann Ital Chir. 
2013:84.

2. Roussel A, Castier Y, Nuzzo A, Pellenc Q, Sibert A, Panis Y, Bouhnik Y, Corcos O. 
Revascularization of acute mesenteric ischemia after creation of a dedicated multidisciplinary 
center. Journal of vascular surgery. 2015

3. Markel TA, Crafts TD, Jensen AR, Hunsberger EB, Yoder MC. Human mesenchymal stromal cells 
decrease mortality after intestinal ischemia and reperfusion injury. The Journal of surgical research. 
2015

4. Markel TA, Crisostomo PR, Wairiuko GM, Pitcher J, Tsai BM, Meldrum DR. Cytokines in 
necrotizing enterocolitis. Shock. 2006; 25(4):329–337. [PubMed: 16670633] 

5. Mehall JR, Chandler JC, Mehall RL, Jackson RJ, Wagner CW, Smith SD. Management of typical 
and atypical intestinal malrotation. Journal of pediatric surgery. 2002; 37(8):1169–1172. [PubMed: 
12149695] 

6. Markel TA, Crisostomo PR, Lahm T, Novotny NM, Rescorla FJ, Tector J, Meldrum DR. Stem cells 
as a potential future treatment of pediatric intestinal disorders. Journal of pediatric surgery. 2008; 
43(11):1953–1963. [PubMed: 18970924] 

7. Jiang H, Qu L, Dou R, Lu L, Bian S, Zhu W. Potential Role of Mesenchymal Stem Cells in 
Alleviating Intestinal Ischemia/Reperfusion Impairment. PLoS ONE. 2013; 8(9):e74468. [PubMed: 
24058571] 

8. Jiang H, Qu L, Li Y, Gu L, Shi Y, Zhang J, Zhu W, Li J. Bone Marrow Mesenchymal Stem Cells 
Reduce Intestinal Ischemia/Reperfusion Injuries in Rats. Journal of Surgical Research. 2011; 
168(1):127–134. [PubMed: 19932900] 

9. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for 
biotechnology. Trends in Biotechnology. 2006; 24(4):150–154. [PubMed: 16488036] 

10. Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y. Comprehensive characterization of four different 
populations of human mesenchymal stem cells as regards their immune properties, proliferation 
and differentiation. International Journal of Molecular Medicine. 2014; 34(3):695–704. [PubMed: 
24970492] 

11. Casteilla L, Planat-Benard V, Bourin P, Laharrague P, Cousin B. Tissu adipeux et médecine 
régénératrice. Transfusion Clinique et Biologique. 2011; 18(2):124–128. [PubMed: 21397545] 

12. Mizuno H. Adipose-derived Stem Cells for Tissue Repair and Regeneration: Ten Years of Research 
and a Literature Review. Journal of Nippon Medical School. 2009; 76(2):56–66. [PubMed: 
19443990] 

13. Vishnubalaji R, Al-Nbaheen M, Kadalmani B, Aldahmash A, Ramesh T. Comparative investigation 
of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by 
qualitative and quantitative analysis. Cell Tissue Res. 2012; 347(2):419–427. [PubMed: 22287041] 

14. Chang C-L, Sung P-H, Sun C-K, Chen C-H, Chiang H-J, Huang T-H, Chen Y-L, Zhen YY, Chai H-
T, Chung S-Y, et al. Protective effect of melatonin-supported adipose-derived mesenchymal stem 
cells against small bowel ischemia-reperfusion injury in rat. Journal of Pineal Research. 2015; 
59(2):206–220. [PubMed: 26013733] 

15. Zhi K, Gao Z, Bai J, Wu Y, Zhou S, Li M, Qu L. Application of adipose-derived stem cells in 
critical limb ischemia. Frontiers in bioscience (Landmark edition). 2014; 19:768–776. [PubMed: 
24389220] 

16. Zhang W, Liu L, Huo Y, Yang Y, Wang Y. Hypoxia-pretreated human MSCs attenuate acute kidney 
injury through enhanced angiogenic and antioxidative capacities. BioMed research international. 
2014; 2014:462472. [PubMed: 25133162] 

Jensen et al. Page 10

Shock. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Jiang Y, Chang P, Pei Y, Li B, Liu Y, Zhang Z, Yu J, Zhu D, Liu X. Intramyocardial injection of 
hypoxia-preconditioned adipose-derived stromal cells treats acute myocardial infarction: an in vivo 
study in swine. Cell and tissue research. 2014; 358(2):417–432. [PubMed: 25135062] 

18. Lee TH, Yoon JG. Intracerebral transplantation of human adipose tissue stromal cells after middle 
cerebral artery occlusion in rats. Journal of clinical neuroscience : official journal of the 
Neurosurgical Society of Australasia. 2008; 15(8):907–912. [PubMed: 18486478] 

19. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March 
KL. A population of multipotent CD34-positive adipose stromal cells share pericyte and 
mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial 
networks. Circulation research. 2008; 102(1):77–85. [PubMed: 17967785] 

20. Markel TA, Crafts TD, Jensen AR, Hunsberger EB, Yoder MC. Human mesenchymal stromal cells 
decrease mortality after intestinal ischemia and reperfusion injury. Journal of Surgical Research. 

21. Lee SC, Kim JO, Kim SJ. Secretome from human adipose-derived stem cells protects mouse liver 
from hepatic ischemia-reperfusion injury. Surgery. 2015; 157(5):934–943. [PubMed: 25704431] 

22. Carceller MC, Guillen MI, Ferrandiz ML, Alcaraz MJ. Paracrine in vivo inhibitory effects of 
adipose tissue-derived mesenchymal stromal cells in the early stages of the acute inflammatory 
response. Cytotherapy. 2015; 17(9):1230–1239. [PubMed: 26276006] 

23. Davis TA, Anam K, Lazdun Y, Gimble JM, Elster EA. Adipose-derived stromal cells promote 
allograft tolerance induction. Stem cells translational medicine. 2014; 3(12):1444–1450. [PubMed: 
25411475] 

24. Mikami S, Nakashima A, Nakagawa K, Maruhashi T, Iwamoto Y, Kajikawa M, Matsumoto T, 
Kihara Y, Chayama K, Noma K, et al. Autologous bone-marrow mesenchymal stem cell 
implantation and endothelial function in a rabbit ischemic limb model. PloS one. 2013; 
8(7):e67739. [PubMed: 23861797] 

25. Beltowski J, Jamroz-Wisniewska A. Hydrogen Sulfide and Endothelium-Dependent 
Vasorelaxation. Molecules. 2014; 19(12):21183–21199. [PubMed: 25521118] 

26. Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science. 1985; 229(4708):16–
22. [PubMed: 2990035] 

27. Tensen CP, Flier J, Van Der Raaij-Helmer EM, Sampat-Sardjoepersad S, Van Der Schors RC, 
Leurs R, Scheper RJ, Boorsma DM, Willemze R. Human IP-9: A keratinocyte-derived high 
affinity CXC-chemokine ligand for the IP-10/Mig receptor (CXCR3). The Journal of investigative 
dermatology. 1999; 112(5):716–722. [PubMed: 10233762] 

28. van der Poll T, Keogh CV, Guirao X, Buurman WA, Kopf M, Lowry SF. Interleukin-6 gene-
deficient mice show impaired defense against pneumococcal pneumonia. The Journal of infectious 
diseases. 1997; 176(2):439–444. [PubMed: 9237710] 

29. Smirnova MG, Kiselev SL, Gnuchev NV, Birchall JP, Pearson JP. Role of the pro-inflammatory 
cytokines tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 and interleukin-8 in the 
pathogenesis of the otitis media with effusion. European cytokine network. 2002; 13(2):161–172. 
[PubMed: 12101072] 

30. Perin EC, Sanz-Ruiz R, Sánchez PL, Lasso J, Pérez-Cano R, Alonso-Farto JC, Pérez-David E, 
Fernández-Santos ME, Serruys PW, Duckers HJ, et al. Adipose-derived regenerative cells in 
patients with ischemic cardiomyopathy: The PRECISE Trial. American Heart Journal. 2014; 
168(1):88–95. e82. [PubMed: 24952864] 

31. Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte 
JA, Fleury S, Gadelorge M, et al. Phase I trial: the use of autologous cultured adipose-derived 
stroma/stem cells to treat patients with nonrevascularizable critical limb ischemia. Cytotherapy. 
2014; 16(2):245–257. [PubMed: 24438903] 

32. de la Portilla F, Alba F, García-Olmo D, Herrerías JM, González FX, Galindo A. Expanded 
allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in 
Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Colorectal Dis. 2013; 
28(3):313–323. [PubMed: 23053677] 

33. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, 
Ucker D, Deans R, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and 

Jensen et al. Page 11

Shock. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prolong skin graft survival in vivo. Experimental hematology. 2002; 30(1):42–48. [PubMed: 
11823036] 

34. Lin CS, Lin G, Lue TF. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in 
immunocompetent recipients without immunosuppressants. Stem cells and development. 2012; 
21(15):2770–2778. [PubMed: 22621212] 

35. Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W, Sturgeon C, Hewett T, 
Chung T, Stock W, et al. Mesenchymal stem cells are capable of homing to the bone marrow of 
non-human primates following systemic infusion. Experimental hematology. 2001; 29(2):244–255. 
[PubMed: 11166464] 

36. Watkins DJ, Yang J, Matthews MA, Besner GE. Synergistic effects of HB-EGF and mesenchymal 
stem cells in a murine model of intestinal ischemia/reperfusion injury. Journal of pediatric surgery. 
2013; 48(6):1323–1329. [PubMed: 23845626] 

Jensen et al. Page 12

Shock. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. hASC therapy improves survival following intestinal ischemia
The use of hASCs increased seven day survival to 80% compared to a 40% seven day 

survival in vehicle control following intestinal ischemia. No survival benefit was seen with 

the use of keratinocytes (differentiated cell control). I/R = ischemia and reperfusion; hASC = 

Human adipose-derived stromal cell
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Figure 2. hASCs increase mesenteric perfusion following ischemia
The use of human adipose stromal cells significantly increased mesenteric perfusion above 

vehicle at both 12 and 24 hours following injury. hASCs also were found to promote better 

mesenteric perfusion compared to keratinocytes (differentiated cellular control) at 24 hours 

following injury. hASC = Human adipose-derived stromal cell
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Figure 3. hASCs improve intestinal histology following ischemic injury
Infusion of PBS vehicle (A, D) and keratinocytes (C,F) were associated with sloughing of 

the mucosa and transmural necrosis. hASC therapy (B,E) following intestinal injury 

inhibited this damage. Intestinal segments were scored according to Watkins, et al [36] and 

hASC therapy had significantly lower histology scores at both 12 and 24 hours of 

reperfusion. hASC = Human adipose-derived stromal cell
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Figure 4. Human adipose derived stromal cell therapy during intestinal ischemia preserves 
claudin-1 tight junction proteins
Infusion of PBS vehicle (A,D) and keratinocytes (C,F) were associated with less 

immunofluorescence staining of Claudin-1 in intestinal tissue segments. Infusion of hASCs 

(B,E) preserved claudin-1 integrity following 12 and 24 hours of reperfusion as noted by 

more uniform, robust, and crisp staining of claudin-1 at the epithelial cell boarders. hASC = 

Human adipose-derived stromal cell
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Table 1

Assayed Chemokines in Intestinal, Hepatic, and Pulmonary Tissues Following Cellular Therapy for Intestinal 

I/R

12 hour Reperfusion 24 hour Reperfusion

PBS hASC Keratinocytes PBS hASC Keratinocytes

Intestine VEGF 49.31 48.5 40.1 47.5 52.7 52.1

34.2-65.8 20.6-66.3 0-49.6 29.2-71.2 27.8-80.8 0-106.6

GCSF 291.9 300.8 396.7 1609 201.4 * 487.2

32.3-958.3 77.4-1477 97.3-1700 1379-3533 178.7-410.2 210.3-2557

MIG 523.4 316.9 453.8 399.8 534.5 604.4

314.6-707.5 245.2-389 373.5-487.8 345.6 568.1 396.0-738.0

IL6 961.1 210.5 716.7 235.7 91.56 164.9

52.3-2860 122.6-1004 70.0-1413 136.5-582.2 51.03-144.8 81.2-1169

IL1β 49.3 48.5 40.4 47.5 52.7 52.1

34.2-65.8 20.6-66.3 0-49.6 29.2-71.2 27.8-80.8 0-106.6

Liver VEGF 22.8 21 19.5 27.7 36.1 22.1

19.4-27.6 18.0-30.0 15-24.5 17.6-39.3 19.7-42.8 12.1-27.8

GCSF 17.1 42.1 239 197 25.2 *# 157.8

11.8-158.5 8.2-216.3 29.0-296.0 112.2-343.1 23.4-46.1 79.6-370.1

MIG 183.7 133.1 571.8 142 163.5 351.8

108.2-281.6 113.7-228.9 326.6-654.7 118.0-205.6 93.2-183.8 106.0-396.7

IL6 85.2 92.1 121.4 122.2 76.1 111.5

67.1-195.6 78.2-155.5 113.6-137.7 69.1-131.5 69.6-95.6 71.2-166.1

IL1β 30.6 42.8 *# 21.7 43.2 46.2 30

23.0-33.1 30.8-56.5 18.1-31.6 26.7-64.2 20.6-60.5 21.1-30.1

Lung VEGF 77.8 70.1 49.4 23 128.1 * 75.1

46.5-91.5 35.1-75.3 28.0-83.8 20.7-73.1 81.0-145.7 37.8-83.5

GCSF 104.3 94.1 785.2 958 83.1 *# 542.5

43.3-1639 34.2-906.9 518.1-1339 512.7-1782 50.1-167.8 430.8-2154

MIG 66.5 69.7 # 266.7 89.7 59.9 # 128.6

59.7-83.4 40.2-124.3 149.4-277.6 63.8-132.7 49.3-82.0 97.1-138.1

IL6 69.3 26.5 361.3 68.8 0 *# 153.6

14.5-3661.0 14.02-210.7 78.1-1105 18.4-103.7 0-11.6 84.2-1382.0
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12 hour Reperfusion 24 hour Reperfusion

PBS hASC Keratinocytes PBS hASC Keratinocytes

IL1β 56.8 36.9 59.2 40.6 33.1 *# 52.6

38.6-100.9 22.6-71.1 54.3-63.2 33.7-58.6 29.6-56.2 39.9-67.8

*
p<0.05 versus PBS

#
p<0.05 versus keratinocytes
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