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Abstract

Increased binge alcohol consumption has been reported among adolescents as compared to adults 

in both humans and rodent models, and has been associated with serious long-term health 

consequences. However, the neurochemical mechanism for age differences in binge drinking 

between adolescents and adults has not been established. The present study was designed to 

evaluate the mechanistic role of the cannabinoid CB1 receptor in adolescent and adult binge 

drinking. Binge consumption was established in adolescent and adult male C57BL/6J mice by 

providing access to 20% alcohol or 1% sucrose for 4 h every other day. Pretreatment with the CB1 

antagonist/inverse agonist AM-251 (0, 1, 3, and 10 mg/kg) in a Latin square design dose-

dependently reduced adolescent alcohol consumption to adult levels without altering adult intake. 

AM-251 (3 mg/kg) also reduced adolescent but not adult sucrose consumption. Adolescent 

reductions in alcohol and sucrose were not associated with alterations in open-field locomotor 

activity or thigmotaxis. These findings point to age differences in CB1 receptor activity as a 

functional mediator of adolescent-typical increased binge drinking as compared to adults. 

Developmental alterations in endocannabinoid signaling in the adolescent brain may therefore be 

responsible for the drinking phenotype seen in this age group.
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1. Introduction

Adolescence, or the period between childhood and adulthood, is an evolutionarily conserved 

developmental period characterized by physical and behavioral changes as organisms 

mature. Drug use is commonly initiated during adolescence, perhaps due to the increased 
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risk-taking, novelty-seeking and impulsive behaviors exhibited by this vulnerable age group 

(Crews et al., 2007; Spear, 2000). Like most drugs of abuse, alcohol use is usually initiated 

in adolescence (Johnston et al., 2012), and adolescent consumption of alcohol has been 

associated with greater risk of alcoholism over the lifespan (Dawson et al., 2008). In 

particular, binge drinking is more frequently reported in adolescent than adult populations 

(Nelson et al., 2009) and is associated with several long-term negative health consequences, 

including increased risk for the development of alcohol use disorders (Courtney and Polich, 

2009). However, the neurobiological differences between the adolescent and adult brain that 

may be responsible for behavioral differences and contribute to adolescent drug use and 

abuse have not yet been fully characterized.

During adolescence, significant changes in brain structure, receptor density and 

neurotransmitter levels occur as the brain matures. In particular, the endocannabinoid 

signaling systems undergoes significant structural and functional changes during 

adolescence in both humans and rodent models. In the human dorsal-lateral prefrontal 

cortex, CB1 mRNA peaks during childhood and remains high until adolescence, when it 

decreases to adult levels (Long et al., 2012). Similar patterns have been observed in the rat 

cortex with CB1 protein (Ellgren et al., 2008; Rodriguez de Fonseca et al., 1993) and mRNA 

(Heng et al., 2011; Van Waes et al., 2012). The endogenous ligands for the CB1 receptor, 

anandamide (AEA) and 2-arachidonoylglycerol (2-Ag), also experience significant flux 

during adolescent development, as do many of the enzymes responsible for their synthesis 

and degradation (Ellgren et al., 2008; Lee et al., 2013; Rubino et al., 2015; Wenger et al., 

2002). These alterations in the endocannabinoid systems of the adolescent brain have a net 

effect of increasing CB1 inhibition of synaptic activity in juveniles and disinhibiting cortical 

output as the brain matures into adulthood (Heng et al., 2011). Decreased cortical control of 

sensorimotor brain regions has been associated with lack of inhibitory control over behavior, 

a behavioral characteristic of adolescence. Indeed, the cannabinoid systems have been 

shown to play a role in adolescent-typical behaviors. Interaction with a non-familiar social 

partner increases AEA levels in the adolescent rat brain (Marco et al., 2011), and inhibiting 

the degradation of AEA in the adolescent brain enhances social play behavior (Trezza et al., 

2012). Inhibiting AEA degradation also reduces impulsive responding in an intolerance-to-

delay task among maternally deprived rats (Marco et al., 2007). Recently, Schneider et al. 

demonstrated that enhanced activity of the CB1 receptor in adult rats creates adolescent-

typical behavioral phenotypes, including increased novelty seeking, social interaction, 

impulsivity, and sensitivity to the rewarding effects of cocaine (Schneider et al., 2015). 

Additionally, in a human adolescent sample polymorphisms in the CNR1 gene, which 

encodes the CB1 receptor, were associated with self-reported impulsive behavior 

(Buchmann et al., 2015). Thus, the endocannabinoid systems undergo significant 

developmental regulation during adolescence, and may be involved in adolescent-typical 

behaviors that contribute to increased risk for drug use and abuse.

In studies with adult rodents and humans, a role for cannabinoid signaling in alcohol use and 

abuse has also been established. Acute alcohol exposure reduces CB1 receptor expression in 

the adult mouse brain (Basavarajappa et al., 1998) and increases AEA and 2-AG 

concentrations in vitro (Basavarajappa and Hungund, 1999; Basavarajappa et al., 2008). 

CB1 receptor availability has also been shown to decrease in the cortex of human alcoholics 
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(Ceccarini et al., 2014), and SNPs in the human CNR1 gene have been associated with 

alcoholism (Schmidt et al., 2002). Modulation of CB1 signaling has been shown to alter 

alcohol consumption in adult rodents. Pharmacological activation of CB1 has generally 

produced increases in alcohol self-administration (Alen et al., 2009; Linsenbardt and 

Boehm, 2009; Vinod et al., 2008) whereas pharmacological inactivation (Cippitelli et al., 

2005; Vinod et al., 2008) and genetic deletion (Lallemand and de Witte, 2005; Racz et al., 

2003) of the CB1 receptor has led to decreased alcohol intake and preference in adults (see 

Pava & Woodward, 2012 for review). These studies establish the CB1 receptor as both a 

target of alcohol’s activity in the adult brain as well as a functional modulator of alcohol 

consumption in rodents.

Developmental differences in the effects of cannabinoid signaling on alcohol intake have 

received limited investigation to date. Wang et al. (2003) compared young adult (post-natal 

day 42–70) and older adult (PND 182–336) CB1 knockout and wild type mice for alcohol 

intake and preference. Young adult CB1 knockout mice showed reduced alcohol preference 

and a trend for reduced intake (dose) as compared to wild type controls, whereas older adult 

CB1 knockout mice were not different than wild type. These results suggest that some of the 

regulation of alcohol consumption by CB1 activity may be age-dependent, although the 

study did not directly compare adolescent to adult mice. One additional study has also 

demonstrated that the CB1 agonist WIN 55,212-2 increased anxiety-related behaviors and 

increased 24-hour ethanol consumption in adolescent but not adult rats (Klugmann et al., 

2011). These studies provide preliminary evidence that developmental stage may be a factor 

in cannabinoid-mediated alcohol consumption, but more work is needed to establish a 

functional role for cannabinoid regulation of adolescent alcohol consumption.

The current studies were designed to examine the effects of CB1 receptor inhibition on 

alcohol consumption in adolescent and adult male C57BL/6J mice, an inbred mouse strain 

that has been shown to consume alcohol in a binge-like manner and achieve intoxicating 

doses in binge models (Agoglia et al., 2015; Holstein et al., 2011). We utilized a model of 

binge-like alcohol consumption in order to reflect the pattern of drinking behavior most 

commonly reported by adolescents in the clinical literature (Courtney and Polich, 2009; 

Miller et al., 2007). The CB1 antagonist/inverse agonist AM-251 was used to inhibit activity 

of the CB1 receptor. Additionally, we examined effects of this compound on locomotor 

activity, anxiety-like behavior, and consumption of the non-drug reinforcer sucrose. Our 

findings provide new evidence for developmental differences in sensitivity to 

pharmacological blockade of CB1 receptor activity, both in binge-like alcohol consumption 

and related behaviors.

2. Methods

2.1. Subjects

All animal procedures were carried out in accordance with the NIH Guide to Care and Use 

of Laboratory Animals (NRC, 2011) and approved by the Internal Review Board of the 

University of North Carolina, Chapel Hill. Male adolescent (postnatal day [PND] 21) and 

adult (PND 63 ± 2) C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME) were housed in 

standard cages with a small PVC pipe for environmental enrichment. Mice were singly 
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housed to measure individual alcohol intake, consistent with previous studies (Rhodes et al., 

2005; Thiele et al., 2014). Food and water were available ad libitum in home cages except 

where noted. The colony room was maintained on a 12-h light/dark cycle (lights on at 20:00) 

at 21 °C. All experimental manipulations and testing occurred during the dark cycle.

2.2. Drugs

Alcohol drinking solutions (v/v) were prepared by diluting 95% ethanol (Pharmco Products 

Inc., Brookfield, CT) with water. Sucrose drinking solutions (w/v) were prepared by 

dissolving sucrose in water. The CB1 antagonist/inverse agonist AM-251 (Tocris 

Bioscience; Ellisville, MO) was suspended in 25% β-cyclodextrin (Sigma-Aldrich, St. Louis, 

MO) and injected in doses of 0, 1.0, 3.0 and 10.0 mg/kg i.p. with a 30 min pretreatment 

time. All drug solutions were freshly prepared each day of testing.

2.3. Binge drinking procedure

Binge drinking was established in mice as previously described (Agoglia et al., 2015; 

Holstein et al., 2011). All subjects (N = 36) were given one week upon arrival (on 

experimental day 0, see Fig. 1) at our facility to acclimate to our colony environment. 

During acclimation, habituation injections were administered on experimental days 4 and 6. 

On experimental day 7, beginning 3 h into the dark cycle (10:00 AM) on PND 28 

(adolescent) and 72 (adult), home cage water bottles were removed and replaced with a 

double ball-bearing drinking tube containing 20% (v/v) ethanol (n = 12/age) or 1% (w/v) 

sucrose (n = 6/age) respectively in each experiment. Drinking tubes were removed after 2 h 

of access at 12:00 PM and fluid consumption was recorded. Alcohol access was restricted to 

2 h on the first day of drinking to avoid excessive intake that might lead to aversive effects 

which could limit subsequent alcohol drinking. The following day (experimental day 8), 

habituation injections were again administered. On experimental day 9, tubes were again 

placed on home cages at 10:00 AM and left in place for 4 h with removal at 2:00 PM. Mice 

had access to the tubes for 4 h a day, every other day, for the remainder of the experiments 

(Fig. 1.) Additional habituation injections were administered on an additional non-drinking 

day (experimental day 10) as well as 30 min before tube access on the two drinking days 

prior to drug testing (experimental days 11 and 13) for a total of six days of habituation 

injections in all, two on drinking days and four on non-drinking days.

Beginning on PND 36/80, each drinking session was preceded by an injection of AM-251 or 

vehicle. The alcohol drinking experiment utilized a Latin square design to test four doses of 

AM-251 (0, 1.0, 3.0 and 10.0 mg/kg) within subjects. The sucrose drinking experiments 

tested the lowest effective dose of AM-251 in the alcohol experiment (3.0 mg/kg) in a 

between-subjects design.

2.4. Locomotor testing

Following the completion of alcohol drinking, on PND 44 (adolescent) or PND 88 (adult) 

mice were injected with either vehicle or AM-251 (1 mg/kg, 30-min pretreatment) prior to a 

locomotor activity test (n = 6/treatment/age). Open field activity was measured in Plexiglas 

activity monitor chambers (27.9 cm2; ENV-510, Med Associates, Georgia, VT) connected to 

computers for data collection (Hodge et al., 1999; Stevenson et al., 2008). Two sets of 16 
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pulse-modulated infrared photobeams were located on opposite walls and recorded X–Y 

ambulatory movements. The mouse’s position in the open field was assessed every 100 ms 

to quantify distance traveled (in meters).

2.5. Data analysis

Alcohol intake data were reported as grams of alcohol per kilogram of body weight and 

sucrose intake data were reported as milliliters of fluid consumed per kilogram of body 

weight. One adolescent mouse in the alcohol drinking experiment was excluded from the 

analysis due to consistently low levels of alcohol intake (<1 g/kg in 4 h). Alcohol intake data 

were analyzed via two-way repeated measures ANOVA (Age × Dose) with one-way 

repeated measures ANOVA separately within age groups as planned comparisons. Holm–

Sidak’s multiple comparisons test was used for all post-hoc analyses. Sucrose intake was 

analyzed via Student’s t-test. Open field locomotor data were collapsed into 20 min time 

bins and activity was assessed via two-way repeated measures ANOVA (Dose × Time) 

separately within each age. Locomotor data were further analyzed for potential age or drug-

induced differences in anxiety-like behavior in an open-field test. Thigmotaxis was evaluated 

by comparing distance (cm) traveled in the center zone (inner 25% of the area) to distance 

traveled in the periphery (outer 75% of the area) as previously described (Agoglia et al., 

2015; Hodge et al., 2002). α was set at 0.05 for all comparisons. All analyses were 

performed using Prism v. 6.0 (GraphPad, La Jolla, CA).

3. Results

3.1. Baseline drinking and body weight

Adolescent alcohol consumption averaged 3.88 g/kg and adult intake averaged 3.99 g/kg 

over the four-hour drinking session prior to drug testing (Table 1). Sucrose consumption 

averaged 97.64 mL/kg in adolescents and 82.71 mL/kg in adults. No significant age 

differences in consumption prior to drug administration emerged (p > 0.05 for all 

comparisons). To test for potential age differences in injection stress, alcohol intake on 

experimental day 9 (no injection) was compared to alcohol intake on experimental day 11 

(vehicle habituation injection 30 min prior to drinking) separately within each age group. In 

both adolescents and adults, no differences in alcohol consumption were observed between 

days 9 and 11 (p > 0.05 for both comparisons, data not shown.) Additionally, body weight 

measurements taken before drug administration and after four days of repeated drug 

administration were compared for adolescents and adults. Adolescent body weight increased 

significantly over days and adult body weight did not change between measurements (Table 

2), with both ages showing body weights similar to those reported previously (Agoglia et al., 

2015) indicating no major adverse effects of drug treatment.

3.2. Effect of CB1 inhibition on binge-like alcohol drinking

Following a 30 minute pretreatment with the CB1 receptor antagonist/inverse agonist 

AM-251, a significant main effect of Age emerged, F (1, 21) = 5.52, p < 0.05. A main effect 

of Dose was also observed, F (3, 63) = 16.86, p < 0.0001. In adolescent mice, a planned one-

way ANOVA revealed a main effect of Dose, F (2.46) = 7.67, p < 0.01. Holm–Sidak’s 

multiple comparisons test revealed that the 1.0 mg/kg, 3.0 mg/kg and 10 mg/kg doses 
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significantly reduced alcohol consumption in adolescent mice (Fig. 2A). In adult mice, an 

effect of Dose was also significant [F (2.23) = 8.87, p < 0.0001]. However, Holm–Sidak’s 

multiple comparisons test indicated that only the 10.0 mg/kg dose of AM-251 significantly 

reduced alcohol consumption in adult mice (Fig. 2B) indicating age-dependent differences in 

dose sensitivity. Direct comparison of adolescent intake at the lowest effective dose (1.0 

mg/kg) and adult intake under vehicle conditions failed to find significant differences, 

indicating that adolescent alcohol intake had been reduced to adult levels at this dose [t(21) 

= 0.086, p > 0.05].

3.3. Effect of CB1 receptor inhibition on binge-like sucrose drinking

To determine if the effects of the CB1 antagonist/inverse agonist AM-251 were selective for 

alcohol consumption, or representative of effects on other reinforcing solutions, adolescent 

and adult mice were pretreated with the lowest effective dose of AM-251 (3.0 mg/kg) prior 

to a four-hour sucrose consumption test. AM-251 pretreatment significantly reduced sucrose 

consumption in adolescent mice [t (5) = 3.30, p < 0.05, Fig. 2C] but failed to significantly 

alter sucrose drinking in adult mice (p > 0.05, Fig. 2D). Direct comparison of adolescent 

sucrose intake with AM-251 pretreatment and adult intake under vehicle conditions failed to 

find significant differences, indicating that adolescent sucrose intake had been reduced to 

adult levels [t(10) = 0.34, p > 0.05].

3.4. Effect of CB1 receptor inhibition on open-field locomotor activity

To determine if the effects of CB1 inhibition with AM-251 were associated with alterations 

in general locomotor behavior, adolescent and adult mice were pretreated with the lowest 

effective dose of AM-251(1.0 mg/kg) 30 min prior to a two hour open-field locomotor 

behavior assay. In adolescent mice, AM-251 pretreatment failed to alter locomotor activity 

(p > 0.05, Fig. 3A). However, in adult mice AM-251 pretreatment resulted in a significant 

main effect of dose, F(1,10) = 5.16, p < 0.05 (Fig. 3B), suggesting that the 1.0 mg/kg dose of 

AM-251 reduced locomotor activity in adults but not adolescents.

To determine whether pretreatment with AM-251 was associated with alterations in anxiety-

like behaviors, adolescent and adult mice were evaluated for thigmotaxis during the open-

field locomotor testing. Both adolescents (Fig. 3C) and adults (Fig. 3D) spent approximately 

20% of the session in the center of the open field, and neither age displayed any alterations 

in time spent in the center following AM-251 pretreatment (p > 0.05). Additionally, a direct 

comparison of vehicle-treated adolescent and adult mice failed to show any age differences 

in thigmataxis [F (1,10) = 0.26, p > 0.05; data not shown.]

4. Discussion

The endocannabinoid CB1 receptor is the most abundant G protein-coupled receptor in the 

mammalian brain (Marsicano and Lutz, 1999), and has been shown to play a critical role in 

both neuronal development (Gaffuri et al., 2012) and reward-related behaviors (Panagis et 

al., 2014). However, the specific regulation of alcohol consumption by cannabinoid 

signaling during the adolescent developmental period has not yet been reported. Here, we 

show that the CB1 receptor antagonist/inverse agonist AM-251 reduces binge-like alcohol 

Agoglia et al. Page 6

Pharmacol Biochem Behav. Author manuscript; available in PMC 2016 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and sucrose consumption in male C57BL/6J mice. However, adolescent mice were more 

sensitive than adults to this effect, displaying reductions in alcohol and sucrose drinking 

following AM-251 (1 or 3 mg/kg); doses that were ineffective at modulating intake in adults. 

We further report reduced sensitivity to the locomotor effects of AM-251 in adolescent mice, 

but no age or drug differences in thigmotaxis following AM-251 pretreatment. Together, 

these findings provide evidence of differential sensitivity to pharmacological manipulation 

of the CB1 receptor in adolescent and adult mice, and point to endocannabinoid signaling as 

a possible mechanism for age differences in alcohol consumption.

The drinking model employed in the present experiments resulted in significant age 

differences in alcohol and sucrose consumption such that adolescent mice consumed more 

alcohol g/kg and sucrose mL/kg than adult mice. This finding is in agreement with previous 

reports of greater alcohol and sucrose consumption among adolescent rodents (Agoglia et 

al., 2015; Brunell and Spear, 2005; Maldonado et al., 2008). Data from surveys of human 

alcohol users suggest that alcohol use is usually initiated during adolescence, and adolescent 

alcohol intake has also been reported to be higher than adult intake using human subjects 

(Courtney and Polich, 2009; Harford et al., 2005; Johnston et al., 2012). Thus, the drinking 

method employed in the present studies appears to be an appropriate model of adolescent-

typical binge drinking. Although we did not assess blood alcohol levels in the present 

experiments, previous reports from our lab have demonstrated that both adolescent and adult 

mice achieve binge levels of blood alcohol concentration (>80 mg/dL) in this limited access 

procedure (Agoglia et al., 2015; Holstein et al., 2011).

Pretreatment with the CB1 antagonist/inverse agonist AM-251 suggested increased 

sensitivity to cannabinoid modulation in adolescent as compared to adult mice, with all 

doses tested (1, 3 and 10 mg/kg) reducing alcohol consumption in adolescents, whereas only 

the high dose (10 mg/kg) reduced alcohol consumption in adults. Adolescent alcohol 

consumption was reduced by 28%, from 5.4 g/kg to 3.9 g/kg, at the 1 mg/kg dose. Notably, 

this reduction in alcohol consumption brought adolescent intake to the level of untreated 

adult mice, who averaged 4.1 g/kg under vehicle conditions. The effect at this dose appears 

to be selective for the excessive alcohol consumption exhibited by adolescents, as adult 

alcohol intake was not significantly reduced at this dose. Adolescent sucrose consumption 

was also reduced to adult levels after pretreatment with the 3 mg/kg dose of AM-251. 

Adolescent sucrose intake decreased from 131.1 mL/kg under vehicle conditions to 97.6 

mL/kg after 3 mg/kg of AM-251, putting adolescent intake in line with average adult sucrose 

intake (90.2 mL/kg). Consistent with the alcohol experiments, 3 mg/kg AM-251 did not 

significantly reduce adult sucrose consumption. Thus, inhibition of the CB1 receptor with 

AM-251 appears to blunt the adolescent-typical phenotype of increased binge alcohol and 

sucrose drinking and bring adolescent consumption to a more moderate adult-like level. This 

finding points to activity of the CB1 receptor as a mediator of the increased alcohol and 

sucrose consumption typically displayed by adolescents as compared to adults.

Decreases in alcohol consumption may also be due to alterations in alcohol metabolism as a 

result of AM-251 treatment. We did not assess blood alcohol concentration in the present 

experiments, nor have any previous studies determined the effects of AM-251 on alcohol 

metabolism. However, the CB1 receptor inverse agonist/antagonist SR141716A has a similar 
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mechanism of action as AM-251 and induces similar decreases in alcohol consumption. 

Previous studies have found that SR141716A pretreatment does not alter blood alcohol 

concentration in rats (Lallemand et al., 2001; Serra et al., 2001). These previous reports 

make actions of AM-251 on alcohol metabolism less likely. However, in future studies it will 

be important to assess blood alcohol levels with and without AM-251 pretreatment to 

definitively address this question.

Adult mice displayed a reduction in open-field locomotor activity following pretreatment 

with 1.0 mg/kg AM-251. Therefore, the reduction in adult alcohol consumption at the 10 

mg/kg dose should be considered in light of potential gross locomotor effects and not 

specific effects on alcohol drinking. In contrast, adolescent mice did not show any effect of 

AM-251 pretreatment on open-field locomotor activity. This finding indicates additional age 

differences in the behavioral effects of CB1 receptor inhibition, as adolescents appear to 

have reduced sensitivity to the locomotor effects of AM-251. Additionally, modulation of 

CB1 activity has been shown to alter anxiety-related behaviors, and age differences in 

sensitivity to the anxiogenic effects of CB1 activation in adolescents and adults have been 

reported (Klugmann et al., 2011). The current experiments failed to detect any effect of 

AM-251 on thigmotaxis in either adolescents or adults. This result suggests that the age 

differences in the effects of AM-251 on alcohol and sucrose consumption are likely 

independent of any anxiety-related effect of this drug as measured by the open-field 

thigmotaxy assay. Injection itself is a potential stressor, and adolescents have been shown to 

be more sensitive to some stressors than adults (Spear, 2000). We therefore compared 

adolescent and adult alcohol intake on a day without injections (experimental day 9) and a 

day with vehicle injection prior to drinking (experimental day 11). No differences in alcohol 

intake between days emerged in either age group, suggesting that injection stress was not 

significantly different between ages. Additionally, we compared adolescent and adult mice 

treated with vehicle injections directly in the open-field locomotor activity assay. No age 

differences in thigmataxis emerged, indicating that adolescents did not display greater 

anxiety-like behavior than adults after injection.

The effects of the CB1 antagonist/inverse agonist AM-251 on alcohol drinking reported here 

are reminiscent of those observed by Wang et al. (2003), who found that pretreatment with 

the CB1 antagonist/inverse agonist SR141716A reduced alcohol consumption in young 

adults but not older mice. Further, in the present study, adolescents were sensitive to an 

AM-251-induced decrease in sucrose consumption whereas adults showed no effect of 

AM-251 pretreatment, indicating that the effects of CB1 inhibition in adolescents reduced 

consumption of reinforcing solutions generally. The relationship between age differences in 

behavioral effects of CB1 inhibition and the altered expression of the CB1 receptor in the 

adolescent brain remains unclear. Adolescents display increased CB1 receptor expression, 

which may reduce sensitivity to CB1 modulation owing to the greater number of receptors 

needed to be occupied achieve a significant proportion of activation; i.e. a higher dose of 

AM-251 would be predicted to be necessary in adolescents to reach behavioral significance. 

In contrast, we observed increased behavioral sensitivity of adolescent mice to CB1 

inhibition, which may be explained by receptor “spareness”, or increased efficacy of the 

compound in adolescent mice, leading to behavioral effects despite a smaller proportion of 

occupied receptors (Rang, 2006). The underlying biology of the adolescent endocannabinoid 
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system contributing to this increased sensitivity to AM-251 is likewise unknown. However, 

adolescent mice have been shown to have altered functional coupling between the CB1 

receptor and G proteins as compared with adult mice (Moore et al., 2010; Wang et al., 

2003), which is a plausible explanation for age differences in sensitivity to CB1 inhibition. 

Although previous reports have shown that G protein expression reaches adult levels in the 

mouse cortex by PND 25 (Ihnatovych et al., 2002), age differences in CB1 receptor 

trafficking to the plasma membrane or the influence of CB1 accessory proteins could explain 

differences in functional coupling of CB1 in adolescents and adults. Direct manipulation of 

the CB1 receptor in the adolescent brain using genetic or pharmacological strategies would 

help to clarify the molecular mechanism driving the age differences in sensitivity to CB1 

antagonism/inverse agonism.

The CB1 receptor is involved in appetite and consummatory behaviors (Jager and Witkamp, 

2014), and previous studies have reported decreases in body weight following pretreatment 

with the cannabinoid antagonist/inverse agonist AM-251 (Merroun et al., 2013). The within-

subjects design of the present studies made drug effects on body weight more difficult to 

detect, owing to the lack of completely untreated mice for comparison. However, body 

weights of adolescent and adult mice were compared prior to drug treatment and after four 

days of repeated administration of AM-251. Adolescent body weight increased in a normal 

developmental trajectory (Agoglia et al., 2015), and adult body weight remained unchanged 

before and after treatment with either drug. The relatively short exposure period and lower 

doses used in the present experiments do not appear to alter body weight in adolescent or 

adult mice. We also did not observe gross developmental defects in adolescent mice treated 

with AM-251 as indexed by normal body weight and locomotor activity in an open field.

In summary, the current study provides evidence of altered behavioral sensitivity to 

pharmacological inhibition of the CB1 receptor in adolescent mice. Administration of the 

CB1 antagonist/inverse agonist AM-251 reduced binge alcohol and sucrose consumption in 

both adolescent and adult mice. However, adolescent alcohol and sucrose consumption were 

reduced at all doses tested, and intake of both solutions decreased to adult levels. Adult 

alcohol and sucrose intake were reduced only at the highest dose, and adults displayed 

reductions in locomotor activity absent in adolescent mice. These experiments provide new 

evidence for age differences in the behavioral pharmacology of the CB1 signaling systems, 

which may be due to well-characterized alterations in the CB1 systems during adolescent 

brain development. Further, these findings point to developmental differences in CB1 

signaling as a potential regulator of age differences in the consumption of reinforcing 

solutions. Mechanistic studies aimed at the brain regions responsible for these age 

differences and the long-term consequences of adolescent alcohol exposure would 

definitively establish a role for cannabinoid signaling in the adolescent brain on alcohol.
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Fig. 1. 
Timeline of adolescent and adult drinking. (A) Binge-like alcohol drinking. (B) Binge-like 

sucrose drinking. Each box represents one day. Top numbering describes the experimental 

day of each phase of the experiment, and bottom numbering describes the age of adolescent 

and adult mice in post-natal days (PND) at each time point during the experiment. Gray 

boxes marked “A” indicate alcohol drinking days and “S” indicate sucrose drinking days, 

respectively. Unfilled arrows indicate habituation vehicle injections, solid arrows indicate 

drinking sessions preceded by a drug injection.
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Fig. 2. 
Effects of CB1 inhibition on binge-like alcohol and sucrose consumption. Adolescent (A) 

and adult (B) alcohol intake was reduced by pretreatment with the CB1 antagonist/inverse 

agonist AM-251. Adolescent (C) but not adult (D) sucrose intake was reduced by 

pretreatment with AM-251. Asterisks indicate significant differences from vehicle with 

Holm–Sidak’s multiple comparisons test/Student’s t-test, * p < 0.05, *** p < 0.001.
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Fig. 3. 
Effects of CB1 inhibition on open-field locomotor activity. The CB1 antagonist/inverse 

agonist AM-251 did not alter adolescent locomotor activity (A), but reduced locomotor 

activity in adult mice in a time-dependent manner (B). Insets show total distance traveled 

over the two-hour test period; * = p < 0.05. AM-251 pretreatment did not alter time spent in 

the center of the open field in either adolescents or adults (C and D).
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Table 1

Baseline alcohol intake in adolescent and adult mice. Mean alcohol consumption in grams of alcohol per 

kilogram of bodyweight (±SEM) of adolescent and adult mice on the three drinking days prior to drug testing. 

No Inj. indicates drinking days without injections, and Hab. Inj. indicates drinking days preceded by 

habituation injections.

Age

Alcohol Intake (g/kg)

Day 9 (No Inj.) Day 11 (Hab. Inj.) Day 13 (Hab. Inj.)

Adolescent 3.60±0.46 3.80±0.51 4.11±0.35

Adult 4.27±0.38 4.36±0.31 4.67±0.28
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Table 2

Effect of CB1 inhibition on body weight. Mean body weight (±SEM) of adolescent (post-natal day [PND] 34) 

and adult mice (PND 78) before and after administration of the CB1 antagonist/inverse agonist AM-251 (PND 

42/86, respectively).

Before AM-251 After AM-251

Age (PND) Body-weight (g) Age (PND) Body-weight (g)

Adolescent 34 20.02 ± 0.28 42 22.91 ± 0.30

Adult 78 25.27 ± 0.36 86 26.72 ± 0.43
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