
PilZ Domain Protein FlgZ Mediates Cyclic Di-GMP-Dependent
Swarming Motility Control in Pseudomonas aeruginosa

Amy E. Baker,a Andreas Diepold,b Sherry L. Kuchma,a Jessie E. Scott,a Dae Gon Ha,a Giulia Orazi,a Judith P. Armitage,b

George A. O’Toolea

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USAa; Department of Biochemistry, University of
Oxford, Oxford, United Kingdomb

ABSTRACT

The second messenger cyclic diguanylate (c-di-GMP) is an important regulator of motility in many bacterial species. In Pseu-
domonas aeruginosa, elevated levels of c-di-GMP promote biofilm formation and repress flagellum-driven swarming motility.
The rotation of P. aeruginosa’s polar flagellum is controlled by two distinct stator complexes, MotAB, which cannot support
swarming motility, and MotCD, which promotes swarming motility. Here we show that when c-di-GMP levels are elevated,
swarming motility is repressed by the PilZ domain-containing protein FlgZ and by Pel polysaccharide production. We demon-
strate that FlgZ interacts specifically with the motility-promoting stator protein MotC in a c-di-GMP-dependent manner and
that a functional green fluorescent protein (GFP)-FlgZ fusion protein shows significantly reduced polar localization in a strain
lacking the MotCD stator. Our results establish FlgZ as a c-di-GMP receptor affecting swarming motility by P. aeruginosa and
support a model wherein c-di-GMP-bound FlgZ impedes motility via its interaction with the MotCD stator.

IMPORTANCE

The regulation of surface-associated motility plays an important role in bacterial surface colonization and biofilm formation.
c-di-GMP signaling is a widespread means of controlling bacterial motility, and yet the mechanism whereby this signal controls
surface-associated motility in P. aeruginosa remains poorly understood. Here we identify a PilZ domain-containing c-di-GMP
effector protein that contributes to c-di-GMP-mediated repression of swarming motility by P. aeruginosa. We provide evidence
that this effector, FlgZ, impacts swarming motility via its interactions with flagellar stator protein MotC. Thus, we propose a new
mechanism for c-di-GMP-mediated regulation of motility for a bacterium with two flagellar stator sets, increasing our under-
standing of surface-associated behaviors, a key prerequisite to identifying ways to control the formation of biofilm communities.

Cyclic diguanylate (c-di-GMP) is a ubiquitous bacterial second
messenger responsible for regulating a range of cellular pro-

cesses, including motility and biofilm formation (1). In general,
low intracellular c-di-GMP levels are associated with motile life-
styles, while elevated levels of c-di-GMP promote surface attach-
ment and sessile lifestyles (2, 3). c-di-GMP is synthesized from
two molecules of GTP by diguanylate cyclases (DGCs) and de-
graded by c-di-GMP-specific phosphodiesterases (PDEs) (1, 4).
Many DGCs and PDEs involved in motility regulation have been
characterized, but the mechanisms by which c-di-GMP regulates
motility are poorly understood in Pseudomonas aeruginosa and in
other bacterial species.

To regulate numerous biological functions, c-di-GMP binds to
specific effector proteins or RNA (reviewed in reference 5). Recent
studies have focused on identifying these c-di-GMP effectors and
their mechanisms for regulating c-di-GMP-dependent processes.
One class of effectors is the PilZ domain-containing protein fam-
ily, which is characterized by conserved c-di-GMP binding motifs
RXXXR and D/NXSXXG (6, 7). PilZ domain-containing proteins
typically bind c-di-GMP and, in the c-di-GMP-bound state, influ-
ence cellular processes, including polysaccharide production, vir-
ulence, biofilm formation, and motility control (8–14). The PilZ
domain-containing protein YcgR of Escherichia coli and its ho-
mologs in Salmonella enterica and Bacillus subtilis have been
shown to bind to c-di-GMP and to inhibit cellular motility in
response to c-di-GMP (15–20). Evidence suggests that these PilZ
domain proteins impede flagellar function by directly interacting

with parts of the flagellar motor. In E. coli, interactions have been
demonstrated between YcgR and three different flagellar motor-
associated proteins, MotA, FliG, and FliM (15, 17, 18). In B. sub-
tilis, evidence suggests that the YcgR homolog YpfA (now called
DgrA) (20) interacts with MotA (16). The P. aeruginosa genome
encodes seven PilZ domain-containing proteins that have been
shown to bind to c-di-GMP and an eighth PilZ domain protein
that lacks c-di-GMP binding, but no link between these proteins
and flagellar motility has been established in this organism (12,
21–23).

We have previously reported a connection between c-di-GMP-
dependent repression of swarming and the activity of flagellar
stator proteins (24). Stator proteins form the ion-translocating
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channels that are necessary for generating torque to power flagel-
lar rotation (25, 26). P. aeruginosa and its relatives are distin-
guished from many other flagellated bacteria in that they have two
sets of proton-dependent stators, MotAB and MotCD (27, 28).
Our previous studies have shown that these stators play distinct
roles in the control of surface-associated swarming motility— one
set of stators promotes swarming motility (MotCD), and a second
set (MotAB) prevents swarming motility. From this work, we sug-
gested a model by which P. aeruginosa controls swarming motility
in response to c-di-GMP via a unique stator-swapping mecha-
nism between these distinct MotAB and MotCD stator complexes
(24). Specifically, MotCD was more likely to be found colocalized
with the motor as c-di-GMP levels decreased, thereby presumably
enabling surface motility (24).

Here we tested the importance of PilZ domain proteins in the
control of P. aeruginosa swarming motility and demonstrate that
the PilZ domain protein PA14_20700, here named FlgZ after the
P. fluorescens and P. putida homologs (29), and the Pel polysac-
charide contribute to c-di-GMP-mediated swarming repression.
We provide evidence that FlgZ interacts directly with stator pro-
tein MotC but does not interact with MotA. Both the function of
FlgZ in swarming repression and its ability to interact with MotC
depend on c-di-GMP binding. Furthermore, we show that the
localization of a green fluorescent protein (GFP)-FlgZ fusion to
the pole of the cell is increased at high c-di-GMP levels and de-
pends on the presence of MotCD. Thus, we suggest that FlgZ
functions to repress swarming motility in response to c-di-GMP
by specifically targeting the function of MotCD, the swarming-
promoting stator set, by preventing the engagement of MotCD
with the rotor.

MATERIALS AND METHODS
Strains and media. Bacterial strains used in this study are listed in Table
S1 in the supplemental material. P. aeruginosa PA14 and E. coli S17-1 �pir
and BTH101 were routinely grown in lysogeny broth (LB) or on LB so-
lidified with 1.5% agar. When antibiotic selection was appropriate for P.
aeruginosa, gentamicin (Gm) was used at 30 �g/ml. For E. coli selections,
Gm was used at 10 �g/ml, carbenicillin (Cb) at 50 �g/ml, kanamycin
(Kan) at 50 �g/ml, and nalidixic acid (Nal) at 20 �g/ml.

Saccharomyces cerevisiae strain InvSc1 (Invitrogen) was used for con-
structing plasmids via in vivo homologous recombination (30). InvSc1
was grown in yeast extract-peptone-dextrose (1% Bacto yeast extract, 2%
Bacto peptone, and 2% dextrose). Synthetic defined medium lacking ura-
cil was used to select for plasmid-harboring yeast.

Construction of mutant strains and plasmids. Table S2 in the sup-
plemental material lists all plasmids used in this study. Primers used in
plasmid and mutant construction are listed in Table S3. In-frame deletion
mutants were constructed via allelic exchange as previously described
(30). Integrants were isolated on LB medium supplemented with Gm and
Nal followed by sucrose counterselection. Resolved integrants were con-
firmed by PCR and sequencing.

Point mutations made to flgZ plasmids were generated using a modi-
fied protocol for in vitro site-directed mutagenesis (31). Briefly, forward
and reverse oligonucleotide primers were designed to contain mismatches
for generating the desired point mutation. These primers were first used
separately to amplify the parental vector using Phusion DNA polymerase
(NEB) for four cycles. Products from the forward and reverse reactions
were then combined and amplified for an additional 18 cycles. The paren-
tal, nonmutagenized plasmid was digested using DpnI before transforma-
tion of the products in E. coli.

Swarming motility assays. Swarming motility was tested by inoculat-
ing 2 �l of overnight cultures onto M8 minimal salts medium supple-
mented with 0.53% agar and glucose (0.2%), MgSO4 (1 mM), and Casa-

mino Acids (0.5%), as reported previously (32). Arabinose was used at
0.2% where indicated for expression plasmids with the PBAD promoter.
Swarm assays were incubated at 37°C for 16 to 19 h. Quantification of
swarm zones was performed using ImageJ software (National Institutes of
Health) (33).

Free-swimming capillary assay. To perform a zero-flow, free-swim-
ming capillary assay, 100 �l of mid-log-phase P. aeruginosa culture
(optical density at 600 nm [OD600] between 0.6 and 1.0) was pelleted at
1,000 � g for 1 min and gently resuspended in 500 �l motility buffer
(liquid medium of the same composition as the swarm plates but
lacking agar). The resuspended cells were incubated at room temper-
ature (RT) for 20 min to allow recovery of motility, before 50 �l were
drawn into a 0.2-by-2-mm glass capillary tube by capillary action. The
ends of the tube were sealed with silicon grease to prevent evaporation
and flow, the tube was attached to a glass slide, and bacteria were
visualized in phase contrast at �20 magnification at the center of the
tube for 1 to 2 min with a video frame rate of 20 ms.

The image segmentation software Tracker (34) was used to detect cells
and form tracks, using the “Threshold” algorithms with the following
parameters: upper threshold, 0.52; lower threshold, 0.48; minimal cluster
size, 12. To exclude wrong connections of tracks, a cutoff value of 90 �m/s
per single frame was applied. More than 400 tracks from three videos per
strain with a minimal track length of 50 frames were analyzed, and swim-
ming speeds of all detected bacteria, as well as of bacteria classified as
motile (swimming speed, �10 �m/s), were compared.

Western blot analysis of protein level. Determination of the levels of
wild-type (WT) and mutant proteins in whole-cell extracts was per-
formed as reported previously (24) and is summarized as follows. Cells
were cultured on 0.53% swarm medium for 16 to 19 h. Cells were har-
vested from swarm medium using ethanol-washed plastic coverslips and
then centrifuged for 1 min at room temperature (RT). Supernatants were
removed, and cell pellets were stored at �80°C prior to further processing.
To generate cell lysates, cells were resuspended in buffer (200 mM Tris-
HCl [pH 7.5], 1 mM EDTA, 2 mM MgCl2, cOmplete protease inhibitors
[Roche Diagnostics Corp., Indianapolis, IN]), Benzonase nuclease (No-
vagen, San Diego, CA) was added to reach a final concentration of �50
units/ml, and the reaction mixture was lysed by French press or bead
beating. For Western blotting, whole-cell lysates were mixed with a final
concentration of 1� SDS and 100 mM dithiothreitol (DTT). Samples
were boiled for 5 min and resolved by SDS-PAGE using Any kD gels or
12% polyacrylamide gels (Bio-Rad). Proteins were transferred to a
nitrocellulose membrane and probed with an anti-penta-His antibody
(Qiagen, Valencia, CA). Nitrocellulose membranes were washed with
Tris-buffered saline–Tween (TBS-Tween) and then incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies for
30 min at RT. Proteins were detected using ECL Plus Western blotting
substrate (Pierce).

c-di-GMP measurements. Cells were collected from swarm plates af-
ter incubation at 37°C for 18 h. Nucleotide extraction was performed as
previously described (35, 36). c-di-GMP measurement analysis was per-
formed by liquid-chromatography mass spectrometry (LC-MS/MS) at
the Mass Spectrometry Facility at Michigan State University.

Bacterial two-hybrid analysis. Protein-protein interactions were ex-
amined using a bacterial adenylate cyclase two-hybrid (BATCH) system
obtained from Euromedex (Souffelweyersheim, France) as previously de-
scribed (37, 38). In this assay, full-length proteins of interest are fused to
either the T18 or T25 fragment of Bordetella pertussis adenylate cyclase
and then coexpressed in E. coli BTH101 cells. Interaction between the two
hybrid proteins functionally reconstitutes the catalytic domain of adenyl-
ate cyclase, leading to cyclic AMP (cAMP) synthesis and transcriptional
activation of the lac operon.

In this study, each of genes motA, motC, fliG, and fliM was cloned into
pKNT25, pKT25, pUT18, and pUT18C vectors. All vectors containing the
motA gene include a C-terminal 6�His tag. We tested pairwise interac-
tions with T18 and T25 fusions in both orientations. Transformants were
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10-fold serially diluted and spotted (2 �l) on LB agar containing Cb, Kan,
X-Gal (5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside) (40 �g/ml),
and IPTG (isopropyl-�-D-thiogalactopyranoside) (0.5 mM) and incu-
bated for 40 h at 30°C. The efficiency of the interactions was determined
via �-galactosidase activity assays, as previously described (39).

Immunoprecipitation assays. Cells were collected from swarm plates
as described above. Swarm plates contained 0.2% arabinose to induce the
expression of plasmid-based genes. Whole-cell lysates were prepared in
lysis buffer containing 20 mM Tris (pH 8), 10 mM MgCl2, cOmplete
EDTA-free Protease Inhibitor Cocktail (Roche), Benzonase nuclease, and
10 mM imidazole. Each immunoprecipitation mixture contained 500 �l
lysate, 40 �l ProBond nickel-chelating resin (Invitrogen), and 0.8% Thesit
(Sigma) to solubilize membranes. Immunoprecipitation mixtures were
incubated at 4°C for 75 min. When indicated, they contained 5 �M c-di-
GMP. The nickel resin was washed in lysis buffer once for 15 min at 4°C
and then three times at RT with gentle shaking prior to SDS-PAGE
analysis. Immunoprecipitation mixtures containing 5 �M c-di-GMP
were washed with lysis buffer containing 5 �M c-di-GMP. For Western
blotting, proteins were transferred to a nitrocellulose membrane and
probed with an antihemagglutinin (anti-HA) antibody (Covance,
Princeton, NJ).

Fluorescence microscopy and data processing. P. aeruginosa bacteria
for fluorescence images were picked from the edges of swarm plate colo-
nies, as previously described (24, 32), and resuspended in motility buffer
(liquid medium of the same composition as the swarm plates but lacking
the agar). Two streaks of bacteria were resuspended in 800 �l motility
buffer and centrifuged (3,750 � g, 3 min). The bacterial pellet was gently
resuspended in 25 to 50 �l motility buffer to ensure similar bacterial
densities. A 1.5-�l volume of the resuspension was placed on a micro-
scope slide layered with a pad of 1.5% agarose in motility buffer and
covered with a coverslip. Fluorescence microscopy was performed as pre-
viously described (40) with minor modifications: a Deltavision Spectris
optical sectioning microscope (Applied Precision) equipped with a
UPlanSApo 100 � 1.40 oil objective (Olympus) combined with �1.6
auxiliary magnification was used, resulting in a pixel size of 101.31 nm. An
Evolve electron-multiplying charge-coupled-device (EMCCD) camera
(Photometrics) was used to take differential interference contrast (DIC)
and fluorescence photomicrographs. For fluorophore visualization, a
GFP/hsGFP filter set (excitation [Ex], 475/28 nm; emission [Em], 522/44
nm) and an EM gain of 50 was used. A stack of 20 DIC frames (	z 
 100
nm) were taken with 0.005-s exposures. Fluorescence frames correspond-
ing to the center of the bacterium were acquired for 12 s (0.4-s exposure
time [t]; 	t 
 1 s). To minimize the effect of cytosolic autofluorescence
and to identify stable fluorescent foci, the first three frames were dis-
carded, and data from the remaining frames were averaged. The fluores-
cence background of each averaged image was determined and maximum
and minimum (max/min) intensities were set to 9,200 units above the
average value and 800 units below the average, respectively, using ImageJ
(33). Polar fluorescent spots were then identified by eye in a blinded anal-
ysis. For each strain, more than 2,000 bacteria in 11 fields of view from
three independent experiments were analyzed.

RESULTS
FlgZ and Pel mediate c-di-GMP-dependent repression of
swarming motility in a mutant that makes high levels of c-di-
GMP. In P. aeruginosa, deletion of the bifA gene, which encodes a
c-di-GMP-degrading phosphodiesterase, results in elevated intra-
cellular c-di-GMP levels and repression of swarming motility
(41). We have previously demonstrated that the flagellar stator
protein MotA and pilin-associated protein PilY1 contribute to
swarming repression in the 	bifA mutant (24, 42). We expected
that, in addition to these factors, a c-di-GMP-binding effector
would likely be involved in swarming repression in response to
high c-di-GMP levels. The P. aeruginosa genome encodes eight

PilZ domain-containing proteins, and seven of these PilZ proteins
have been shown to bind to c-di-GMP. One PilZ domain pro-
tein, PA14_20700, has a YcgR domain also found in the YcgR
protein, a c-di-GMP-responsive flagellar motility control protein
of E. coli and S. enterica (23). It was recently shown that an or-
tholog of PA14_20700 in P. fluorescens participates in biofilm for-
mation and that another ortholog in P. putida is able to repress
swimming motility when expressed from a plasmid (29). On the
basis of knowledge of these roles for similar proteins, we fo-
cused on PA14_20700 as a potential candidate for c-di-GMP-
mediated swarming repression. Orthologs of PA14_20700 in P.
fluorescens and P. putida are called flgZ, as the gene is positioned
downstream of the flgMN genes, so we adopt that nomenclature
for P. aeruginosa and refer to PA14_20700 as the flgZ gene (29).

To investigate whether FlgZ participates in repression of
swarming motility under conditions of elevated c-di-GMP levels
in P. aeruginosa, we constructed a 	bifA 	flgZ double mutant and
examined its swarming phenotype. As shown in Fig. 1A, deletion
of the flgZ gene did not restore swarming to the 	bifA mutant. In
addition to its inability to swarm, another hallmark of the 	bifA
mutant is increased production of the Pel polysaccharide compo-
nent of extracellular polymeric substances (EPS), which causes
cells on swarm medium to appear wrinkly (41). We noted that the
	bifA 	flgZ mutant cells have a wrinkly appearance, indicating
that Pel production remains high in this mutant. Pel plays impor-
tant roles in cell aggregation, and we hypothesized that elevated
levels of Pel may be inhibiting cell mobility and masking any con-
tributions of FlgZ to regulating flagellum-mediated swarming
motility in the 	bifA mutant. Similarly, other extracellular poly-
saccharides have been shown to impair cell motility in S. enterica
(19), B. subtilis (43), and Listeria monocytogenes (44).

To remove the potential influence of Pel on swarming motility,
we introduced a mutation in the pelA gene to eliminate a critical
function required for Pel production (45). Deleting the pelA gene
in the bifA mutant did not restore swarming; however, when flgZ
and pelA were both deleted in a 	bifA mutant background,
swarming motility was largely restored compared to that of the
wild-type strain (Fig. 1A). As reported previously, the 	bifA 	pelA
mutant was unable to swarm (41) (Fig. 1A). We complemented
the 	bifA 	flgZ 	pelA mutant by allelic replacement of the flgZ
deletion with a His-tagged wild-type flgZ allele (Fig. 1A). The
complemented 	bifA 	pelA 	flgZ::flgZ-His strain did not swarm,
indicating that FlgZ participates in swarming inhibition in the
	bifA 	pelA mutant. Confirming the ability of the FlgZ-His pro-
tein to complement the flgZ deletion, we could detect the FlgZ-His
protein by Western blotting performed on cells harvested from a
swarm agar plate (Fig. 1A, bottom panel). To examine whether
FlgZ had an impact on swimming motility in addition to its effects
on swarming, we performed a zero-flow, free-swimming capillary
assay to compare the single-cell motilities of wild-type (WT) and
	flgZ mutant cells. We found that the 	flgZ mutant swims slightly
faster than the WT (see Fig. S1 in the supplemental material),
indicating that FlgZ plays a role in inhibiting both swimming and
swarming.

FlgZ is just one of eight PilZ domain-containing proteins in P.
aeruginosa, while E. coli and S. enterica have only two PilZ proteins
each. It is possible that additional PilZ domain proteins in P.
aeruginosa play roles in c-di-GMP-responsive swarming motility
repression. To examine whether other PilZ domain proteins par-
ticipate in swarming motility repression, we constructed deletions
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of each PilZ domain protein-encoding gene in 	bifA and 	bifA
	pelA mutant backgrounds. As shown in Fig. S2A in the supple-
mental material, deletions of each of the seven remaining PilZ
domain proteins did not restore swarming to the 	bifA mutant.
When introduced into the 	bifA 	pelA mutant, only a mutation
in pilZ resulted in a small increase in swarming but did not do so to
the extent observed in the 	bifA 	pelA 	flgZ mutant (see Fig.
S2B). These results indicate that FlgZ is the main c-di-GMP effec-
tor protein contributing to swarming motility repression in the
	bifA 	pelA mutant, although PilZ may also play a minor role in
this process. While PilZ does not appear to bind c-di-GMP (12,
23), this protein participates in biogenesis of type IV pili (46), and
we suspect that the defect in the function of type IV pili is respon-
sible for the impact on swarming (35). Given the substantial role
of FlgZ in regulating cell surface motility, we focus on the contri-
bution of this protein for the remainder of the work presented
here.

We next confirmed that the increased motility observed in flgZ
mutant strains was not the result of a decrease in c-di-GMP levels.
We used mass spectrometry to quantify intracellular c-di-GMP
levels in wild-type P. aeruginosa PA14 as well as in the 	flgZ,
	pelA, 	pelA 	flgZ, 	bifA, 	bifA 	flgZ, 	bifA 	pelA, and 	bifA
	pelA 	flgZ mutants. In most cases, c-di-GMP levels did not
change significantly with the introduction of the flgZ mutation
(see Fig. S3 in the supplemental material). However, the 	bifA
	flgZ 	pelA mutant had significantly higher c-di-GMP levels than
the 	bifA 	pelA mutant (see Fig. S3) despite the fact that the triple
mutant showed increased motility versus the double mutant; this
result indicates that swarming in the 	bifA 	flgZ 	pelA mutant is
not due to decreased c-di-GMP levels.

To assess whether FlgZ and Pel contribute to swarming motil-
ity repression under conditions of high levels of c-di-GMP gener-
ally, and not specifically in response to the absence of bifA, we used
another strain with high c-di-GMP levels which carries a mutation
in the hptB gene. The hptB gene encodes a histidine phosphotrans-
fer protein involved in a complex regulatory cascade (47–49). The
	hptB mutant of P. aeruginosa PAK has been demonstrated to
produce hyperbiofilms and to show elevated Pel polysaccharide
production and elevated c-di-GMP levels (48, 50). By mass spec-
trometry analysis, we found that, in the P. aeruginosa PA14 strain,
the 	hptB mutant produces 4.3-fold more c-di-GMP than the
wild type, while the 	bifA mutant produces 12.8-fold more c-di-
GMP than the wild type. Mirroring our observations in the 	bifA
mutant background, the 	hptB single mutant and the 	hptB
	pelA and 	hptB 	flgZ double mutants were unable to swarm,
but swarming was restored in a 	hptB 	flgZ 	pelA triple mutant
(Fig. 1B). Notably, swarming motility appeared to be fully re-
stored to wild-type levels in the 	hptB 	flgZ 	pelA mutant in
contrast to the partial restoration observed for the 	bifA 	flgZ
	pelA mutant. We suspect that this discrepancy is due to the dif-
ference in c-di-GMP levels measured for the 	hptB and 	bifA
mutants.

In addition to the roles of FlgZ and Pel in motility repression in
two distinct high-c-di-GMP mutant backgrounds, we found that a
	pelA 	flgZ mutant hyperswarmed compared to the wild-type
strain (Fig. 1C). The ability of flgZ and pelA mutations to alleviate
swarming repression in two high-c-di-GMP backgrounds and in
the wild-type background suggests that FlgZ’s impact on swarm-
ing is not due to the response to any particular mutation but is
instead a general function of FlgZ.

FIG 1 FlgZ and Pel polysaccharide contribute to swarming motility repression. (A) Top panel: representative swarm plates of the indicated strains. Bottom
panel: Western blot probed with anti-His antibody to detect FlgZ-His expression in the 	bifA 	pelA 	flgZ::flgZ-His strain in which the flgZ gene deletion is
complemented by allelic replacement, resulting in expression of a His epitope-tagged FlgZ protein. (B) Representative swarm plates of the indicated strains. (C)
Representative swarm plates of the indicated strains. The values below the swarm plates indicate the percentages (means � standard errors of the means [SEM]
of the results determined in three independent experiments performed with six plates each) of plate surface coverage of the mutant strains relative to that of the
WT strain (set at 100%). Significance was determined by analysis of variance and Dunnett’s posttest comparison for differences relative to the WT. *, P � 0.05
(compared to WT).
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FlgZ’s impact on swarming motility control depends on its
conserved c-di-GMP binding motif. Amino acid residues of the
conserved motifs RXXXR and D/NXSXXG are critical for c-di-
GMP binding in PilZ domain-containing proteins, including E.
coli YcgR (8), P. aeruginosa Alg44 (12), Caulobacter crescentus
DgrA (10), Vibrio cholerae PlzD (7), and Borrelia burgdorferi PlzA
(13). The PilZ domain of P. aeruginosa FlgZ contains these con-
served residues, as demonstrated by sequence alignment with PilZ
domain-containing proteins of other species (Fig. 2A). To test
whether FlgZ’s role in swarming repression requires this c-di-
GMP binding motif, we generated strains in which we comple-
mented the 	bifA 	flgZ 	pelA mutant with a His-tagged variant
of FlgZ carrying single amino acid substitutions in the PilZ do-
main and tested the ability of these mutant FlgZ proteins to restore
swarming repression. A R140A substitution resulted in the pro-
duction of a detectable FlgZ protein that was no longer able to
repress swarming (Fig. 2B). The R144A, R144D, D172A, and
G177A mutant variants of FlgZ-His each resulted in a protein that
could not be detected by Western blotting (Fig. 2B). This result
suggests that the conserved R140 residue required for c-di-GMP
binding is critical for FlgZ’s role in repressing swarming in re-
sponse to c-di-GMP.

FlgZ interacts with the flagellar stator protein MotC. PilZ
domain proteins in other bacteria have been shown to influence
motility via direct interactions with one or more components of
the flagellar motor. Thus, we hypothesized that FlgZ may impact
swarming motility by a similar mechanism. We employed a bac-
terial adenylate cyclase two-hybrid assay in E. coli to probe for
interactions between FlgZ and components of the P. aeruginosa
flagellar motor: MotA, MotC, FliG, and FliM. MotA and MotC are

components of ion-translocating stators, and FliG and FliM are
the rotor component and switch protein of the motor, respec-
tively. The motor requires MotC, FliG, and FliM for functional
swarming motility (51), whereas MotA reduces swarming motility
in P. aeruginosa.

Full-length proteins were fused to either the T18 or T25 sub-
unit of adenylate cyclase, and these hybrid proteins were coex-
pressed in E. coli BTH101 to test each potential interaction. An
interaction between hybrid proteins can be detected as blue col-
oring on medium containing the substrate X-Gal. As shown in Fig.
3A, FlgZ was found to interact with MotC but not with MotA,
FliG, or FliM. To investigate whether the c-di-GMP binding re-
gion of FlgZ is important for the interaction between FlgZ and
MotC, we next tested the point mutant FlgZ (R140A) in the bac-
terial two-hybrid assay. As shown in Fig. 3B, FlgZ (R140A) was not
able to interact with MotC, indicating that residue R140 is critical
both for FlgZ’s function in swarming motility repression and for
the FlgZ-MotC interaction. As an additional negative control, we
cotransformed the pUT18 empty vector with T25-MotC and saw
no blue coloring, as expected (Fig. 3B). The strength of these in-
teractions was quantified using �-galactosidase assays, and strains
coexpressing FlgZ and MotC fusion proteins showed significantly
higher �-galactosidase levels than the negative control (Fig. 3C).
Mutating R140 in the FlgZ protein resulted in a significant reduc-
tion in interactions with MotC to a level observed for the FlgZ-
MotA interaction (Fig. 3C).

To further substantiate the evidence for physical interaction
between FlgZ and MotC, we assessed the ability of FlgZ and MotC
to coprecipitate. To probe this interaction, FlgZ was C-terminally
HA tagged in P. aeruginosa strains carrying overexpression plas-

FIG 2 Conserved residues in the c-di-GMP binding domain are important for FlgZ stability and function. (A) Multiple-sequence alignment of the predicted
c-di-GMP binding region of FlgZ in P. aeruginosa (Pa) with orthologs from P. putida (Pp), P. fluorescens (Pf), S. enterica (Se), E. coli (Ec), and B. subtilis (Bs) along
with other PilZ domain-containing proteins from C. crescentus (Cc) and V. cholerae (Vc). The sequence alignment was generated by Clustal Omega (59, 60) using
the complete PilZ domain of each protein as predicted by SMART (61, 62). A portion of the alignment is shown here. Clustal Omega determined conservation
of residues. �, a fully conserved residue; :, a residue with strongly similar properties. The boxed conserved residues were targeted for site-directed mutagenesis.
Numbers correspond to the amino acid residues in the P. aeruginosa FlgZ full-length protein. (B) Top panel: representative swarm assays of the indicated strains.
Bottom panel: protein levels determined using Western blotting and anti-His antibody to detect expression of the wild-type strain and mutant FlgZ-His variants.
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mid pMotA-His or pMotC-His. These His-tagged versions of
MotA and MotC have been used previously by our group and are
functional in swarming assays (24). We used a nickel resin to
enrich for MotA-His or MotC-His and tested for FlgZ-HA copre-
cipitation with and without the addition of 5 �M c-di-GMP. Our
results indicate that FlgZ interacts with MotC in the presence of 5
�M c-di-GMP and does not interact with MotC in the absence of
c-di-GMP (Fig. 4). FlgZ does not interact with MotA regardless of
the presence or absence of c-di-GMP. In strains lacking His-
tagged MotA or MotC, only background bands were detected (Fig.
4, far right lanes).

FlgZ localization is consistent with an interaction between
FlgZ and MotCD. Our data suggest that there is a c-di-GMP-
dependent interaction between FlgZ and MotC. To assess whether
c-di-GMP levels and the presence of MotCD stator sets influence
subcellular localization of FlgZ, we replaced the flgZ gene with a
gfp-flgZ fusion at its native chromosomal locus. We comple-
mented the 	bifA 	flgZ 	pelA mutant by allelic replacement of
the flgZ deletion with gfp-flgZ to show that this GFP fusion does

FIG 3 Detection of interaction between FlgZ and MotC by bacterial two-hybrid analysis. (A and B) Full-length flgZ (A) and flgZ (R140A) (B), as well as the
flagellar motor genes motA, motC, fliG, and fliM, were cloned into vector pKNT25, pKT25, pUT18, or pUT18C and cotransformed into E. coli BTH101 cells. The
coexpressed fusion protein combinations for each transformation are indicated on the left. The transformants were 10-fold serial diluted, spotted (2 �l) on LB
agar containing Cb, Kan, X-Gal, and IPTG, and then incubated for 40 h at 30°C. Cells cotransformed with empty vectors served as negative controls, and cells
cotransformed with leucine zipper vectors provided by the manufacturer (T18-zip and T25-zip) served as positive controls. The degradation of X-Gal (blue)
indicates a positive protein-protein interaction. (C) Bacterial two-hybrid interactions were quantified by measuring �-galactosidase activity in transformants
grown in LB broth supplemented with Cb and Kan overnight at 30°C. The data represent results of three independent experiments performed with three or four
biological replicates each, and values are reported as means � SEM. Significance was determined by analysis of variance and Dunnett’s posttest comparison for
differences relative to the negative control (T18  T25). n.s., not significant; ***, P � 0.001 (the positive control [T18-zip  T25-zip] was not included in the
statistical analysis).

FIG 4 Immunoprecipitation analysis to assess FlgZ and MotC interaction.
Immunoprecipitations (Co-IP) with a nickel-chelating resin were performed
with cell lysates expressing FlgZ-HA and MotA-His or MotC-His. Western
blots of precipitate (top panel) and input (bottom panel) were probed with
anti-HA. Immunoprecipitations were performed with and without 5 �M c-di-
GMP (cdG), as indicated.
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not interfere with the function of FlgZ in swarming motility (see
Fig. S4 in the supplemental material).

Previous work suggested that FlgZ-like proteins in P. fluore-
scens, E. coli, and S. enterica localize to the flagellar basal body and
that this localization is enhanced in mutants with high c-di-GMP
levels (15, 18, 29). In P. aeruginosa cells harvested from a swarm
agar plate, we observed that GFP-FlgZ could indeed localize to the
pole (Fig. 5). Furthermore, the percentage of cells with polarly
localized GFP-FlgZ significantly increased in the 	bifA mutant
(Fig. 5A), which produces more c-di-GMP than the wild-type
strain (see Fig. S3 in the supplemental material). This finding in-
dicates that increased levels of c-di-GMP impact localization of
FlgZ.

Given that we have demonstrated that FlgZ interacts with
MotCD, we hypothesized that the polar localization of FlgZ might
be at least in part dependent upon MotCD. To test this hypothesis,
we introduced a 	motCD mutation into our strain expressing the
functional GFP-FlgZ from its endogenous locus on the chromo-
some. We found significantly fewer cells with polar localization of
GFP-FlgZ in the 	motCD mutant than in the wild type (Fig. 5B).
This finding is consistent with our hypothesis that FlgZ interacts
with the flagellar machinery via a direct interaction with MotC.

MotCD stator overexpression restores swarming motility in
high-c-di-GMP backgrounds lacking Pel. We previously demon-
strated that the MotCD stator set is required for swarming motil-
ity and that there is a decrease in polar localization of MotD under
conditions of high levels of c-di-GMP (24). We hypothesized that
overexpression of MotCD would increase the presence of this sta-
tor at the flagellar motor and that this increase in MotCD levels
could restore swarming to high-c-di-GMP backgrounds by over-
coming the FlgZ-mediated swarming repression mechanism.

We found that, similarly to the impact of deleting the flgZ gene,
overexpression of MotCD partially restores swarming motility to
the 	bifA 	pelA mutant (Fig. 6). However, MotCD overexpres-
sion does not restore swarming motility in the 	bifA mutant in

which elevated Pel polysaccharide is produced. This result is con-
sistent with our hypothesis that the effect of c-di-GMP on flagellar
motor function can be masked by the contribution of Pel polysac-
charide.

DISCUSSION

The second messenger c-di-GMP coordinately regulates motility
and extracellular polysaccharide synthesis to allow bacteria to ef-
ficiently transition between motile and sessile lifestyles. Regula-
tion via c-di-GMP can occur at the level of transcription as well as
posttranscriptionally and posttranslationally (52). In P. aerugi-
nosa, c-di-GMP regulates the biosynthesis of both flagellar
components and extracellular polysaccharide through the tran-
scription factor FleQ (53). Posttranscriptional regulation of extra-
cellular polysaccharide production is controlled by another c-di-
GMP binding protein, PelD (54). Here we describe an additional
layer of motility regulation: the first PilZ domain protein in P.
aeruginosa with a role in flagellum-dependent swarming motility
control.

Deletion mutants lacking the genes encoding each of the eight
PilZ proteins of P. aeruginosa revealed that c-di-GMP-mediated
repression of swarming motility is largely restored by the deletion
of both flgZ and pelA genes. This finding indicates that inhibition
of motility can be controlled by FlgZ and highlights a role for Pel
polysaccharide in this process. The finding that Pel polysaccharide
plays a role in motility repression in the absence of c-di-GMP
effector protein FlgZ, particularly in the 	bifA 	flgZ and 	hptB
	flgZ mutants, aligns with previous findings indicating that extra-
cellular polysaccharides impair motility in other species, includ-
ing S. enterica (19), B. subtilis (43), and L. monocytogenes (44).
However, P. aeruginosa is different from these and other organ-
isms using c-di-GMP-dependent motility control in that eliminating
either the c-di-GMP binding protein or the exopolysaccharide singly
has no significant impact on motility in the high-c-di-GMP back-
ground.

It has been previously demonstrated that FlgZ binds c-di-
GMP. We show that mutants with an amino acid substitution in
the conserved c-di-GMP binding motif of FlgZ behave like a flgZ
null mutant, suggesting that the PilZ domain of FlgZ is required
for swarming motility inhibition and, consequently, that c-di-
GMP binding is critical for FlgZ’s function in swarming motility
control. We measured global levels of c-di-GMP in flgZ mutants to

FIG 5 Localization of GFP-FlgZ is impacted by c-di-GMP levels and MotCD.
(A) Representative images of WT, 	bifA, and 	motCD strains expressing GFP-
FlgZ. (B) For each strain, more than 2,000 bacteria from three independent
experiments were analyzed, and values are reported as means � SEM. Signif-
icance was determined by analysis of variance and Dunnett’s posttest compar-
ison for differences relative to WT. ***, P � 0.001.

FIG 6 MotCD overexpression restores c-di-GMP-inhibited swarming only in
the absence of Pel. (A) Representative swarm plates of the indicated strains
carrying either an empty vector or a MotCD-His-expressing plasmid
(pMotCD-His). Swarm plates contained 0.2% arabinose. (B) Protein levels
determined by the use of Western blotting and anti-His antibody to detect
expression of pMotCD-His.
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ensure that the increased motility of the 	bifA 	flgZ 	pelA mutant
was not due to an overall decrease in c-di-GMP levels. Unexpectedly,
we found that the 	bifA 	flgZ 	pelA mutant has elevated levels of
c-di-GMP compared to the 	bifA 	pelA mutant despite the en-
hanced swarming motility of the 	bifA 	flgZ 	pelA triple mutant; we
currently do not understand the basis for this observation.

P. aeruginosa has two stator sets to power a single flagellar
motor, distinguishing it from many organisms that use PilZ pro-
teins to control motility. We hypothesize that c-di-GMP-bound
FlgZ inhibits swarming motility by specifically targeting the stator
set that promotes swarming motility—MotCD. This hypothesis is
supported by results of bacterial two-hybrid assays, coimmunopre-
cipitation experiments, and localization studies, all of which indicate
a protein-protein interaction between FlgZ and MotC. These exper-
iments also demonstrated that the presence of c-di-GMP and that of
the conserved PilZ domain of FlgZ, which are necessary for motility
inhibition, are also required for FlgZ-MotC interaction.

By impacting flagellar motor function in response to c-di-
GMP, FlgZ can allow P. aeruginosa to regulate swarming motility
after flagellar assembly is complete, thus enabling cells to quickly
adapt to changing environmental conditions. The mechanism by
which FlgZ’s interaction with MotC may be altering MotCD en-
gagement with the rotor will be the focus of future studies. Inter-
estingly, evidence for stator exchange in the context of a dual-
stator system also comes from studies in Shewanella oneidensis, in
which sodium-dependent PomAB and proton-dependent MotAB
drive rotation of a single flagellar rotor (55). In S. oneidensis, so-
dium levels drive stator dynamics by influencing the efficiency of
incorporation of MotAB into the motor (56); however, the mech-
anism of stator switching in this organism is not yet clear. We
propose that, due to the dynamic nature of the stator proteins with
respect to the flagellar motor (57, 58), in the case of P. aeruginosa,
one possibility is that, under conditions of high c-di-GMP levels,
FlgZ interacts with MotCD stators to prevent MotCD engagement
with the flagellar rotor, leaving room for increased incorporation
of MotAB stators, which cannot drive swarming motility. Perhaps
analogous mechanisms function to promote stator exchange in
other organisms.
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