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ABSTRACT

Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively
for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such
as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific
antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested
for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simi-
an-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance
with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both
in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO. ADCC ac-
tivity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; how-
ever, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and
vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral
activities and provide insights into the relationship between ADCC and neutralization important for the development of anti-
body-based vaccines and therapies for combating HIV-1 infection.

IMPORTANCE

This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC)
and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the pre-
vention and treatment of HIV-1 infection.

The recent isolation of a new generation of monoclonal anti-
bodies with remarkably potent and broad neutralizing activity

against diverse human immunodeficiency virus type 1 (HIV-1)
isolates has renewed interest in the use of antibodies to treat
HIV-1 infection (1, 2). Passive transfer experiments in animal
models have shown that many of these antibodies can protect
against HIV-1 or simian-human immunodeficiency virus (SHIV)
challenge (3, 4), and in some cases, they are able to suppress virus
replication to undetectable levels when administered during
chronic infection (5–7). While the ability to block viral infection is
a defining property of neutralizing antibodies, nonneutralizing
effector functions may also contribute to antiviral responses. The
IgG constant (Fc) domain can recruit cellular mediators of anti-
body-dependent cell-mediated cytotoxicity (ADCC) and phago-
cytosis through interactions with Fc� receptors (Fc�Rs) or initiate
complement-mediated lysis by binding to soluble factors in
plasma.

Studies of nonhuman primates and mice support a role for
Fc�R-dependent functions of antibodies in protection against im-
munodeficiency virus infection. Passive transfer experiments with
Fc variants of an HIV-specific broadly neutralizing antibody
(bNAb) revealed that protection of rhesus macaques against
pathogenic SHIV challenge is dependent in part on Fc�R interac-
tions, but not on complement fixation (8, 9). The preferential

engagement of activating, but not inhibitory, Fc�Rs was also
shown to contribute to the clearance of cell-free virus by antibod-
ies in murine models (10), and Fc�R-mediated functions of
bNAbs interfered with the establishment of persistent HIV-1 res-
ervoirs in humanized mice (11). Thus, the therapeutic potential of
HIV-1-specific antibodies may be significantly enhanced by opti-
mizing Fc�R-dependent antiviral activities.

Emerging evidence suggests that antibodies capable of engag-
ing Fc�RIIIa on NK cells to direct the lysis of virus-infected cells
may be especially important for containing or preventing HIV-1
infection (12, 13). ADCC responses are detectable in plasma
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shortly after the resolution of acute viremia and correlate inversely
with disease progression (14–20). Greater ADCC responses have
also been observed in individuals who exhibit elite control of
HIV-1 in the absence of antiretroviral therapy (21, 22). In the
setting of mother-to-child transmission, higher ADCC activity in
breast milk is associated with a lower risk of virus transmission by
breastfeeding, and passively acquired ADCC correlates with re-
duced infant mortality (23, 24). ADCC may also have contributed
to the modest protection observed in the RV144 trial as suggested
by exploratory analyses revealing an association between ADCC
and reduced risk of infection among vaccinated subjects with low
IgA titers (25). Although passive transfer of a nonfucosylated
bNAb with increased affinity for Fc�RIIIa did not enhance the
protection of macaques against pathogenic SHIV challenge rela-
tive to the fucosylated antibody (26), several studies of nonhuman
primates have also revealed correlations between vaccine-induced
ADCC and complete protection or reduced postchallenge viral
loads (27–31).

While these studies suggest that ADCC, and possibly other
Fc�R-dependent functions, contribute to the antiviral activity of
HIV-1-specific antibodies, the properties of antibodies that medi-
ate ADCC are not well defined. We therefore tested monoclonal
antibodies to diverse epitopes of the HIV-1 envelope glycoprotein,
including potent bNAbs and nonneutralizing antibodies, for their
ability to direct NK cell lysis of cells infected with primary versus
lab-adapted HIV-1 and SHIV isolates. These antibodies were also
tested for binding to Env on the surfaces of virus-infected cells and
for neutralization of viral infectivity. Our results show that al-
though ADCC generally correlates with Env binding and neutral-
ization, there are cases where these functions do not correspond,
revealing differences in epitopes exposed on virions versus in-
fected cells that differentiate these antiviral activities.

MATERIALS AND METHODS
Virus production. Virus stocks were produced by transfection of proviral
DNA into HEK 293T cells using GenJet transfection reagent (SignaGen).
Culture supernatants were collected 48 and 72 h posttransfection, cell
debris was removed by centrifugation, and aliquots of virus-containing
supernatant were stored at �80°C. Virus concentrations were determined
by anti-p24 or anti-p27 enzyme-linked immunosorbent assay (ELISA).
SHIVAD8-EO was provided by Malcolm Martin.

Antibodies. 2F5 and 4E10 were obtained from Polymun Scientific,
and X5 and 17b were obtained from Strategic Biosolutions. b12, b6, and
DEN3 were stably expressed in CHO-K1 cells. VRC01, PGV04, 2G12,
PG9, PG16, PGT121, PGT126, and 10E8 were transiently expressed using
the FreeStyle 293 Expression System (Invitrogen) as previously described
(32, 33). A32, C11, 3BNC117, and 10-1074 were transiently expressed in
HEK 293T or HEK 293-6E cells (5, 34, 35). 98-6, 126-7, 240D, and F240
were derived from Epstein-Barr virus (EBV)-transformed peripheral
blood mononuclear cells (PBMCs) from HIV-1-positive (HIV-1�) do-
nors fused with a human-mouse heteromyeloma cell line according to
established methods (36–40). All antibodies were purified from cell-free
supernatant using protein A or protein G affinity chromatography. Anti-
body concentrations were determined by absorbance at 280 nm and a
mass extinction coefficient of 13.7 for a 1% (10-mg/ml) IgG solution
(Nanodrop; Thermo Scientific) or by anti-human IgG ELISA using iso-
type-matched control immunoglobulins.

ADCC assay. ADCC activity was measured as previously described
(31, 41). CEM.NKR-CCR5-sLTR-Luc target cells, which express luciferase
(Luc) under the control of a Tat-inducible promoter, were infected by
spinoculation in the presence of 40 �g/ml Polybrene. At 4 days postinfec-
tion, infected cells were incubated with monoclonal antibodies and an NK

cell line expressing human CD16 for 8 h. The dose-dependent loss of Luc
activity was measured as an indication of antibody-mediated killing of
virus-infected cells. Infected target cells incubated with NK cells in the
absence of antibody were used to measure maximal Luc activity, and
uninfected target cells cultured with NK cells were used to determine
background Luc activity. Percent relative light units (RLU) were used to
determine partial area under the ADCC curve (pAUC) values and anti-
body concentrations required for half-maximal killing (50% ADCC), as
previously described (25, 41). Differences between log10-transformed
percent RLU values and 100% RLU, indicating no activity, were calcu-
lated. pAUC values were determined by multiplying the sum of these
differences at the four highest antibody concentrations tested by the log10-
transformed dilution factor of 2, yielding an area. Standard deviations
(SD) of individual measurements were propagated to yield the SD of the
pAUC.

Neutralization assay. Neutralization of viral infectivity was measured
using a TZM-bl reporter cell assay, according to standard methods (42,
43). In a flat-bottom 96-well plate, 5,000 cells per well were seeded the day
before the neutralization assay. Either 4 ng p24 (HIV-1NL4-3), 10 ng p24
(HIV-1JR-FL), or 20 ng p27 (SHIVAD8-EO) of virus per well was incubated
with serial dilutions of monoclonal antibody for 1 h at 37°C before being
added to the reporter cells. After 3 days, luciferase activity in cell lysates
was measured, and virus neutralization was calculated from reductions in
RLU relative to cells incubated with virus but no antibody. Uninfected
cells were measured to account for background luciferase activity. Partial
area under the neutralization curve (pAUC) values and antibody concen-
trations for 50% neutralization (IC50) were calculated by using the same
methods as for the ADCC assay.

Flow cytometry. Surface envelope staining was performed 3 days
postinfection as previously described (44, 45). Antibody binding to Env
was detected using 5 �g/ml of monoclonal antibody followed by anti-
human IgG F(ab=)2 (phycoerythrin [PE]; polyclonal). Cells were surface
stained for CD45 (peridinin chlorophyll protein [PerCP]; clone 2D1) and
CD4 (Alexa Fluor 700; clone RPA-T4), then permeabilized, and stained
for intracellular Gag (fluorescein isothiocyanate [FITC]; clone FH190-1-1
for HIV-1; clone 55-2F12 for SHIV). Nonviable cells were excluded using
LIVE/DEAD fixable dead cell aqua stain (Invitrogen), and data were col-
lected using a SORP BD LSR-II flow cytometer (Becton Dickinson). After
gating on viable CD45� CD4low Gag� cells, the geometric mean fluores-
cence intensity (gMFI) of Env staining was calculated using FlowJo, ver-
sion 9.7.7 (Tree Star, Inc.).

Statistical analysis. All statistical analysis was done using Prism ver-
sion 6.0g (GraphPad Software, Inc.). Correlations were determined by
calculating Pearson product-moment correlation coefficients. Signifi-
cance levels of ADCC activity and neutralization were calculated by com-
paring pAUC values of samples to negative-control values by two-way
analysis of variance (ANOVA) with a Dunnett correction for multiple
comparisons. Negative controls for ADCC assays were pAUC values of the
same antibody against SIVmac239-infected cells. For neutralization data,
comparisons were drawn to the hypothetical pAUC of a negative sample
with percent RLU of 100.

RESULTS
ADCC activity of HIV-1 Env-specific monoclonal antibodies.
Monoclonal antibodies targeting diverse epitopes of the HIV-1
envelope glycoprotein were tested for ADCC against target cells
infected with HIV-1NL4-3 and HIV-1JR-FL, which represent lab-
adapted and primary HIV-1 isolates, respectively, with tier 1 ver-
sus tier 2 sensitivity to neutralizing antibodies, SHIVAD8-EO, which
is a chemokine (C-C motif) receptor 5 (CCR5)-tropic simian-
human immunodeficiency virus isolate adapted for pathogenic
infection of rhesus macaques (46–48), and SIVmac239 as a control
for nonspecific killing. The antibodies (all IgG1) included bNAbs
to the CD4 binding site (CD4bs) (49–54), glycan and proteogly-
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can epitopes in gp120 (33, 55–60), and the membrane-proximal
external region (MPER) of gp41 (55, 61–63) and nonneutralizing
antibodies to CD4-inducible (CD4i) epitopes in gp120 (53, 64–
67) and cluster I and cluster II epitopes of gp41 (39, 40, 68–72).
ADCC was assessed using an assay designed to measure the lysis of
virus-infected cells expressing native conformations of Env, and
antibody concentrations for half-maximal lysis (50% ADCC) and
partial area under the curve (pAUC) values were calculated as
previously described (25, 41).

HIV-1NL4-3-infected cells exhibited the greatest susceptibility
to ADCC. Of the 22 antibodies tested, 20 mediated significant lysis
of cells infected with this virus (Table 1 and Fig. 1). These anti-
bodies included most of the bNAbs (except 2F5 and 4E10), anti-
bodies to CD4i epitopes in the coreceptor binding site (17b and
X5), as well as nonneutralizing antibodies to the gp120 inner do-
main (A32 and C11) and nonneutralizing antibodies to gp41
(F240, 240D, 98-6, and 126-7). In most cases, HIV-1NL4-3-infected
cells were also susceptible to ADCC at much lower antibody con-
centrations than cells infected with HIV-1JR-FL or SHIVAD8-EO

(Fig. 1). Thus, consistent with the well-documented sensitivity of
the lab-adapted isolate HIV-1NL4-3 to neutralizing antibodies

(73–75), cells infected with HIV-1NL4-3 were highly susceptible to
ADCC.

In contrast, cells infected with HIV-1JR-FL and SHIVAD8-EO

were susceptible to lysis only by bNAbs. With the exception of the
oligomannose-specific antibody 2G12 and the MPER-specific an-
tibodies 2F5, 4E10, and 10E8, HIV-1JR-FL-infected cells were sen-
sitive to all of the bNAbs (Table 1 and Fig. 1); however, SHIVAD8-EO-
infected cells were resistant to all but a handful of antibodies.
ADCC was detected against SHIVAD8-EO-infected cells for PGV04,
3BNC117, PGT126, PGT121, and 10-1074, but only PGV04 and
PGT121 mediated potent killing at 50% ADCC concentrations of
less than 100 �g/ml (58 �g/ml and 0.67 �g/ml, respectively)
(Table 2). ADCC activity was also measured at lower antibody
concentrations for HIV-1JR-FL-infected cells than SHIVAD8-EO-in-
fected cells (Fig. 1). These observations indicate that SHIVAD8-EO-
infected cells are less sensitive to recognition by most HIV-1-spe-
cific antibodies, perhaps as a consequence of extensive adaptation
of this virus for replication in rhesus macaques, as reflected by
changes in the neutralization profile of SHIVAD8-EO relative to the
parental HIV-1AD8 strain (76). In comparison to HIV-1NL4-3, the
greater resistance of HIV-1JR-FL- and SHIVAD8-EO-infected cells to

TABLE 1 Comparison of pAUC values for ADCC and virus neutralizationa

a Percent RLU values at the four highest antibody concentrations tested were used to calculate partial area under the curve (pAUC) values as
previously described (25, 41). Standard deviations were calculated from triplicate measurements. Red indicates potent ADCC or
neutralization (Neut) (top tertile), yellow indicates intermediate activity, green indicates weak activity (bottom tertile), and blue indicates a
lack of significant antiviral activity (P � 0.01). The tertiles for ADCC activity and neutralization were calculated separately from the
respective values against HIV-1NL4-3. n.s., not significant.
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FIG 1 ADCC activity of HIV-1 Env-specific monoclonal antibodies. CEM.NKR-CCR5-sLTR-Luc cells infected with HIV-1NL4-3, HIV-1JR-FL, SHIVAD8-EO, or
SIVmac239 were incubated with an NK cell line expressing human CD16 at a 10:1 effector-to-target ratio in the presence of the indicated concentrations of
monoclonal antibodies (mAbs). ADCC responses were measured as the dose-dependent loss of luciferase activity in relative light units (RLU) after an 8-h
incubation in comparison to control wells containing NK cells and either infected (maximal) or uninfected (background) CEM.NKR-CCR5-sLTR-Luc cells in the
absence of antibody. Values are the means � standard deviations (error bars) for triplicate wells, and the dotted line indicates half-maximal lysis of infected cells.
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ADCC is also consistent with the resistance of these primary isolates
to neutralizing antibodies.

ADCC activity correlates with binding to Env on the surfaces
of virus-infected cells. Antibody binding to virus-infected cells is
a prerequisite for ADCC. Cells infected with HIV-1NL4-3, HIV-
1JR-FL, and SHIVAD8-EO were therefore stained with each of the
HIV-1 Env-specific monoclonal antibodies and analyzed by flow cy-
tometry to determine the extent to which binding correlates with
susceptibility to ADCC (Fig. 2). The geometric mean fluorescence
intensities of Env staining (Table 3) were compared by nonparamet-
ric Spearman correlation to partial area under the curve values for
ADCC (Fig. 3), which capture responses for antibodies that did not
achieve 50% ADCC at concentrations less than 100 �g/ml.

Antibody binding correlated with ADCC for each of the three
viruses tested. Whereas binding was highly predictive of ADCC
for HIV-1JR-FL (P � 0.0001), less robust, but nevertheless signifi-
cant, associations were also observed for HIV-1NL4-3 (P 	 0.0104)
and SHIVAD8-EO (P 	 0.0422) (Fig. 3). The relationship between
binding and ADCC for HIV-1NL4-3-infected cells reflects greater
variability in these measurements and instances of antibody bind-
ing in the absence of detectable ADCC. For instance, 2F5 and 4E10
stained cells infected with HIV-1NL4-3 (Fig. 2), but they did not
mediate cell lysis (Fig. 1). The reason for this discrepancy is un-
clear, but it may be related to the limited accessibility of these
antibodies for engagement by Fc�Rs on NK cells when bound to
virus-infected cells due to their specificity for an epitope consist-

ing of phospholipids and sequences exposed at the base of gp41
(77–80). For SHIVAD8-EO-infected cells, there was almost com-
plete correspondence between antibody binding and susceptibil-
ity to ADCC (Fig. 1 and 2); however, the significance of this rela-
tionship was limited in comparison to HIV-1JR-FL by lower
responses that were detectable for a smaller subset of antibodies.

Correlation of ADCC activity with virus neutralization. The
antiviral activity of HIV-1-specific antibodies is typically defined
by their ability to neutralize viral infectivity. Each of the HIV-1
Env-specific monoclonal antibodies was therefore tested for neu-
tralization of HIV-1NL4-3, HIV-1JR-FL, and SHIVAD8-EO to investi-
gate the relationship between their ability to block viral infectivity
and to mediate NK cell lysis of virus-infected cells. Antibody con-
centrations for 50% neutralization (IC50) (Table 2) were calcu-
lated from neutralization curves (Fig. 4), and corresponded well to
previously published data (33, 50, 51, 59, 63, 81–84). pAUC values
for neutralization were also determined (Table 1) and compared
to pAUC values for ADCC by nonparametric Spearman correla-
tion (Fig. 5).

Neutralization correlated with ADCC for all three viruses. This
relationship was strongest for HIV-1JR-FL (P 	 0.0002), followed
by SHIVAD8-EO (P 	 0.0010) and HIV-1NL4-3 (P 	 0.0302) (Fig.
5). Several instances of neutralization in the absence of detectable
ADCC were observed, and in most cases, antibodies that directed
ADCC against cells infected with a particular isolate also neutral-
ized that virus (Tables 1 and 2). Indeed, all of the antibodies with

TABLE 2 Antibody concentrations for 50% ADCC and 50% neutralizationa

a Antibody concentrations (�g/ml) for half-maximal ADCC (50% ADCC) and virus neutralization (IC50) were calculated as previously
described (41). Standard deviations were calculated from triplicate neutralization curves. Red indicates potent ADCC or neutralization (top
tertile), yellow indicates intermediate activity, green indicates weak activity (bottom tertile), and blue indicates less than 50% activity at 100
�g/ml. The tertiles for ADCC activity and neutralization were calculated separately from the respective values against HIV-1NL4-3.
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FIG 2 Antibody binding to Env on the surfaces of virus-infected cells. CEM.NKR-CCR5-sLTR-Luc cells infected with HIV-1NL4-3, HIV-1JR-FL, or SHIVAD8-EO

were stained with HIV-1 Env-specific antibodies followed by a PE-conjugated anti-human IgG F(ab=)2. The cells were also stained for surface expression of CD45
and CD4, intracellular expression of the viral Gag protein, and with a viability dye. The histograms show Env staining on virus-infected (Gag� CD4low) cells of
the viable CD45� population. The shaded area indicates nonspecific staining with the DEN3 control antibody. Max, maximum.
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ADCC activity against HIV-1JR-FL- or SHIVAD8-EO-infected cells
also neutralized these viruses (Table 1). Furthermore, antibody
concentrations for 50% neutralization were generally lower than
for 50% ADCC (Table 2). However, in the case of HIV-1NL4-3, a
number of instances of ADCC in the absence of detectable neu-
tralization were observed (Table 1), and antibody concentrations
for 50% ADCC were sometimes lower than for 50% neutralization
(Table 2). Notably, 240D and F240, which recognize epitopes ex-
posed in gp41 that are nonneutralizing, mediated efficient NK
cell lysis of HIV-1NL4-3-infected cells (50% ADCC of 0.12 and
0.066 �g/ml, respectively) (Table 2). Overall, these results indicate
that most antibodies that are able to bind to Env expressed on the
surfaces of virus-infected cells to mediate ADCC are also able to
bind to Env trimers on the surfaces of virions to neutralize infec-
tivity. However, neutralization is not always predictive of ADCC,
and for lab-adapted viruses such as HIV-1NL4-3, conformations of
Env may be exposed on the surfaces of virus-infected cells that
render them susceptible to antibody-dependent killing but are not
relevant to blocking viral infectivity.

DISCUSSION

Increasing evidence suggests that Fc� receptor-dependent func-
tions of antibodies are important for the optimal antiviral activity
of HIV-1-specific antibodies (8–11, 85). Thus, a better under-
standing of the relationship between neutralizing and nonneutral-
izing functions of antibodies is needed to guide the development
of immunotherapies and antibody-based vaccines for the treat-

ment and prevention of HIV-1 infection. In the present study,
antibodies targeting diverse epitopes of the HIV-1 Env protein
were tested for ADCC against cells infected with HIV-1 or SHIV
isolates, and their ADCC activity was compared to their ability to
bind to Env expressed on the surfaces of virus-infected cells and to
neutralize viral infectivity. Consistent with recent findings (86,
87), ADCC activity correlated with Env binding and with neutral-
ization for each of the viruses tested, indicating that these func-
tions are largely overlapping; however, instances of ADCC in the
absence of detectable neutralization and neutralization in the ab-
sence of detectable ADCC were also observed, revealing differ-
ences in Env epitopes exposed on the surfaces of HIV-1-infected
cells and virions that confer susceptibility to these antiviral activ-
ities.

Sensitivity to ADCC corresponded closely with sensitivity to
neutralization for antibody-resistant primary isolates. All of the
antibodies that directed ADCC against HIV-1JR-FL- and SHIVAD8-EO-
infected cells also neutralized these viruses. Thus, most antibodies
capable of binding to Env on the cell surface and directing the lysis
of virus-infected cells are also able to bind functional Env trimers
on virions to block viral infectivity; however, this was not always
the case for HIV-1NL4-3. In accordance with the greater exposure
of the Env proteins of lab-adapted viruses to antibodies (73–75),
HIV-1NL4-3-infected cells were generally more sensitive to ADCC,
both in terms of the number of antibodies and the magnitude of
responses. Although ADCC corresponded with neutralization for
many of the bNAbs, cells infected with HIV-1NL4-3 were also sus-
ceptible to killing by nonneutralizing antibodies. This was partic-
ularly evident for F240 and 240D, which mediated potent ADCC
against HIV-1NL4-3-infected cells despite their inability to block
viral infection (Fig. 4) (88). ADCC responses were also detected
for 98-6 and 126-7, which recognize epitopes exposed in the post-
fusion conformation of gp41 (39, 70, 71), and for A32 and C11,
which target CD4i epitopes of the gp120 inner domain (66, 67,
89–91). The ADCC activity of nonneutralizing antibodies against
HIV-1NL4-3-infected cells suggests that Env epitopes that are not

FIG 3 Comparison of ADCC activity and Env binding by HIV-1 Env-specific
antibodies. Partial area under the curve values (pAUC) for ADCC activity were
calculated from percent RLU measurements at the four highest antibody con-
centrations tested, as previously described (25, 41). pAUC values for HIV-
1NL4-3, HIV-1JR-FL, and SHIVAD8-EO were compared to the geometric mean
fluorescence intensities (gMFIs) of Env staining on the surfaces of virus-in-
fected cells by Spearman correlation.

TABLE 3 Env staining on the surface of virus-infected cellsa

Antibody

gMFI of Env staining

HIV-1NL4-3 HIV-1JR-FL SHIVAD8-EO

DEN3 391 361 311
b12 5,370 1,179 355
b6 4,391 719 396
VRC01 2,289 901 351
PGV04 2,744 851 389
3BNC117 3,041 1,358 437
PG9 872 466 313
PG16 1,109 672 335
PGT126 1,882 1,930 620
PGT121 483 1,193 599
10-1074 1,951 1,191 540
2G12 6,167 1,148 411
2F5 800 482 333
4E10 1,768 756 341
10E8 1,836 619 349
17b 4,451 473 382
X5 1,743 412 322
A32 3,073 642 446
C11 2,108 504 396
240D 5,205 533 373
F240 4,996 560 402
98-6 1,438 473 327
126-7 1,740 471 331
a CEM.NKR-CCR5-sLTR-Luc cells infected with HIV-1NL4-3, HIV-1JR-FL, or SHIVAD8-EO

were stained with HIV-1 Env-specific antibodies followed by a PE-conjugated anti-
human IgG F(ab=)2. The cells were also stained for surface expression of CD45 and
CD4, intracellular expression of the viral Gag protein, and with a viability dye. Values
indicate the geometric mean fluorescence intensity (gMFI) of Env staining on the surfaces of
virus-infected (Gag� CD4low) cells of the viable CD45� population. DEN3 is a dengue
virus-specific monoclonal antibody included as a control for nonspecific staining.
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FIG 4 Neutralization of HIV-1NL4-3, HIV-1JR-FL, and SHIVAD8-EO by Env-specific antibodies. HIV-1 Env-specific monoclonal antibodies were tested for the
ability to block viral infectivity. HIV-1NL4-3, HIV-1JR-FL, and SHIVAD8-EO were incubated with serial dilutions of each antibody for 1 h before addition to TZM-bl
reporter cells. Three days postinfection, neutralization was calculated from the luciferase activity (RLU) in TZM-bl cell lysates for cells inoculated with virus plus
antibody relative to cells inoculated with virus in the absence of antibody. The error bars indicate standard deviations of the means for triplicate wells, and the
dotted line indicates half-maximal infection or 50% neutralization.
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relevant to blocking viral infectivity are exposed on the surfaces of
cells infected with lab-adapted viruses that render them suscepti-
ble to ADCC.

The striking difference in the susceptibility of HIV-1NL4-3- ver-
sus HIV-1JR-FL-infected cells to ADCC illustrates the importance
of using primary virus isolates for studying antiviral functions of
antibodies. To facilitate virus replication in the face of ongoing
immune responses, the HIV-1 envelope glycoprotein has evolved
structural features that make it inherently resistant to antibodies
(92–95). These features can become attenuated as virus is pas-
saged in T cell lines, accounting for the well-documented increase
in the susceptibility of lab-adapted HIV-1 to neutralizing antibod-
ies (73–75, 96, 97). The much greater sensitivity of HIV-1NL4-3-
infected cells to opsonization by Env-specific monoclonal anti-
bodies, including antibodies that do not neutralize this virus,
suggests that this is also true for ADCC. These observations there-
fore advocate for the use of primary HIV-1 isolates expressing
physiologically relevant conformations of Env on the surfaces of
infected cells for studies investigating ADCC or other Fc�R-de-
pendent functions of antibodies.

Contrary to earlier reports identifying A32 as a potent media-
tor of ADCC (98, 99), we found that HIV-1- and SHIV-infected
cells are highly resistant to lysis by this antibody. Indeed, ADCC
was detected against HIV-1NL4-3-infected cells only at high
concentrations of A32, and not at all against HIV-1JR-FL- or
SHIVAD8-EO-infected cells. Recent evidence suggests that this dis-
parity probably reflects differences in the methods used to mea-
sure ADCC. A32 is specific for an epitope on the inner domain of
gp120 that is normally occluded in the unliganded Env trimer but
can be exposed upon CD4 engagement (53, 94). The accumula-
tion of Env-CD4 complexes on the surfaces of cells infected with
viruses deficient for Nef- and/or Vpu-mediated CD4 downregu-
lation was accordingly found to increase exposure of this epitope
(100, 101). Shed gp120 released from productively infected cells
was also found to sensitize uninfected bystander cells to A32-me-
diated ADCC (102). These studies help to explain the robust

ADCC activity for A32 initially observed using target cells pulsed
with soluble gp120 or chronically infected with a Nef-deficient
HIV-1 (98). The measurement of NK cell degranulation as a sur-
rogate for the direct lysis of virus-infected cells, which cannot
differentiate ADCC responses to virus-infected cells from re-
sponses to uninfected cells coated with gp120, may also explain
the detection of ADCC activity for A32 against cells infected with
HIV-1 isolates that retain CD4 downmodulation (98, 99). In ac-
cordance with this interpretation, other recent studies using
ADCC assays that directly measure the elimination of virus-in-
fected cells have found that viruses that downmodulate CD4 are
resistant to A32-mediated lysis (100, 101, 103). These observa-
tions therefore further argue for the use of ADCC assays that di-
rectly measure the killing of cells infected with HIV-1 isolates
expressing functional accessory proteins and native conforma-
tions of Env.

Instances of neutralization in the absence of ADCC include the
MPER-specific antibodies 2F5, 4E10, and 10E8, and the glycan-
specific antibody 2G12. The lack of ADCC activity for the MPER
bNAbs is probably due in part to the lower affinity of these anti-
bodies for Env on virus-infected cells, which is consistent with
their specificity for an epitope consisting of gp41 sequences that
are transiently exposed during fusion and phospholipids that are
preferentially enriched in viral membranes (77–80). Yet these an-
tibodies still bound to HIV-1NL4-3- and HIV-1JR-FL-infected cells,
as indicated by levels of Env staining similar to other antibodies
with ADCC against these viruses, such as the V2 apex bNAbs PG9
and PG16. The reason for this discrepancy in binding versus
ADCC is unclear at this time but potentially reflects the orienta-
tion of MPER-specific antibodies bound to gp41, which may hin-
der their accessibility for engagement by NK cells. The lack of
detected ADCC activity for 2G12 was also surprising considering
the ability of this antibody to stain Env on the surfaces of HIV-
1NL4-3- and HIV-1JR-FL-infected cells. 2G12 is specific for a cluster
of high-mannose glycans on the outer domain of gp120 that
should not limit its accessibility (56, 104); however, 2G12 has an
unusual domain-swapped configuration and propensity for
dimerization that may impair Fc�R interactions (105, 106). Al-
though monomeric and dimeric forms of 2G12 were shown to
mediate ADCC against a cell line expressing HIV-1 HXB2 gp160
(107), our data are consistent with recent reports that have found
negligible ADCC activity for 2G12 against HIV-1-infected cells
(86, 98, 103).

Overall, our results reveal a general correlation between
ADCC and neutralization by HIV-1 Env-specific antibodies,
which implies, perhaps not surprisingly, that most antibodies
that are able to bind to functional Env trimers on virions to
block infectivity are also able to bind to Env expressed on the
surfaces of virus-infected cells to direct their elimination by
ADCC. This correlation was imperfect, however, as several in-
stances where these antiviral activities did not correspond were
observed. These exceptions point to underlying differences in
Env epitopes on the surfaces of virions and infected cells that
differentiate susceptibility to neutralization versus ADCC.
Hence, this study provides new insights into the relationship
between neutralization and ADCC that may help to guide the
development of antibody-based vaccines and immunothera-
pies for the prevention and treatment of HIV-1 infection.

FIG 5 Comparison of ADCC and neutralizing activity of HIV-1 Env-specific
antibodies. Partial area under the curve values (pAUC) for ADCC and neu-
tralization were calculated from percent RLU measurements at the four high-
est concentrations of each antibody, as previously described (25, 41). pAUC
values for ADCC and neutralization against HIV-1NL4-3, HIV-1JR-FL, and
SHIVAD8-EO were compared by Spearman correlation.
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