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ABSTRACT

Although all 12 subtypes of human interferon alpha (IFN-�) bind the same receptor, recent results have demonstrated that they
elicit unique host responses and display distinct efficacies in the control of different viral infections. The IFN-�2 subtype is cur-
rently in HIV-1 clinical trials, but it has not consistently reduced viral loads in HIV-1 patients and is not the most effective sub-
type against HIV-1 in vitro. We now demonstrate in humanized mice that, when delivered at the same high clinical dose, the
human IFN-�14 subtype has very potent anti-HIV-1 activity whereas IFN-�2 does not. In both postexposure prophylaxis and
treatment of acute infections, IFN-�14, but not IFN-�2, significantly suppressed HIV-1 replication and proviral loads. Further-
more, HIV-1-induced immune hyperactivation, which is a prognosticator of disease progression, was reduced by IFN-�14 but
not IFN-�2. Whereas ineffective IFN-�2 therapy was associated with CD8� T cell activation, successful IFN-�14 therapy was
associated with increased intrinsic and innate immunity, including significantly higher induction of tetherin and MX2, in-
creased APOBEC3G signature mutations in HIV-1 proviral DNA, and higher frequencies of TRAIL� NK cells. These results
identify IFN-�14 as a potent new therapeutic that operates via mechanisms distinct from those of antiretroviral drugs. The abil-
ity of IFN-�14 to reduce both viremia and proviral loads in vivo suggests that it has strong potential as a component of a cure
strategy for HIV-1 infections. The broad implication of these results is that the antiviral efficacy of each individual IFN-� sub-
type should be evaluated against the specific virus being treated.

IMPORTANCE

The naturally occurring antiviral protein IFN-�2 is used to treat hepatitis viruses but has proven rather ineffective against HIV
in comparison to triple therapy with the antiretroviral (ARV) drugs. Although ARVs suppress the replication of HIV, they fail to
completely clear infections. Since IFN-� acts by different mechanism than ARVs and has been shown to reduce HIV proviral
loads, clinical trials are under way to test whether IFN-�2 combined with ARVs might eradicate HIV-1 infections. IFN-� is actu-
ally a family of 12 distinct proteins, and each IFN-� subtype has different efficacies toward different viruses. Here, we use mice
that contain a human immune system, so they can be infected with HIV. With this model, we demonstrate that while IFN-�2 is
only weakly effective against HIV, IFN-�14 is extremely potent. This discovery identifies IFN-�14 as a more powerful IFN-�
subtype for use in combination therapy trials aimed toward an HIV cure.

In 1957, Isaacs and Lindenmann discovered the potent antiviral
effects of type I interferons (IFNs), and when C. Weissmann

succeeded in cloning IFN genes into bacterial vectors in 1979, the
scientific community believed that IFN would be an effective
treatment for most viral infections. Thirty-five years later, only
two viral infections, hepatitis B (HBV) and C (HCV) virus infec-
tions, are treated with interferon alpha (IFN-�). Interestingly, hu-
man IFN-� is not a single entity, but rather, the products of a
multigene family encoding 12 IFN-� subtypes (1), all of which
bind to the IFN-�/� receptor. Each subtype binds the receptor
using distinctive contacts (2), thereby eliciting distinct signaling
events (3, 4) and variable biological outcomes (5). While the
unique affinity of the subtypes for each receptor subunit seems to
contribute to differential downstream signaling, there appear to
be additional factors influencing the unique outcomes elicited by
individual subtypes that are currently not fully understood. Addi-
tionally, evolutionary selection of multiple functional IFN-� sub-

types indicates that each subtype has essential and nonredundant
functions (6). Evidence of this includes studies in the Friend ret-
rovirus (FV) model, which showed that treatment with distinct
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IFN-� subtypes induced specific downstream responses that ef-
fectively controlled FV infections, whereas other subtypes induced
responses that were ineffective (7, 8). Furthermore, murine her-
pesvirus or influenza virus infections were controlled by different
subtypes than those inhibiting FV (9–13). Recent in vitro work
demonstrated not only differential relative expression of IFN-�
subtypes in human plasmacytoid dendritic cells (pDCs) after hu-
man immunodeficiency virus type 1 (HIV-1) exposure, but also
variable HIV-1 antiviral potencies of IFN-� subtypes in gut lam-
ina propria mononuclear cell (LPMC) cultures (14). Thus, effec-
tive antiviral therapy with IFN-� is quite specific to both the
IFN-� subtype and the virus. This raises the critical question of
whether the IFN-�2 subtype is the most efficacious subtype to be
using against HIV-1 therapeutically.

IFN-� is rapidly induced and secreted by cells to limit virus
replication through numerous and varied mechanisms, including
the induction of intrinsic restriction factors (15–18) and the acti-
vation of innate and adaptive immune responders. In vitro studies
with pDCs, which are the primary producers of IFN-�, indicated
that the predominant IFN-� subtypes produced by pDCs in re-
sponse to HIV-1 (IFN-�1, -2, and -5) have only weak anti-HIV-1
activities (14). Thus, HIV-1 predominantly induces IFN-� sub-
types that are ineffective against HIV-1 in vitro. Analyses of
IFN-� subtype profiles from peripheral blood mononuclear cells
(PBMCs) collected from HIV-1-infected patients during different
stages of disease also revealed that some of the subtypes shown to
be most potent against HIV-1 in vitro are not produced until late-
stage disease, when the immune system may be too damaged to
respond effectively (14, 19). Thus, it is possible that the IFN-�
subtypes most protective against HIV-1 are not induced in a
timely manner and that therapeutic delivery of a more efficacious
subtype(s) may be beneficial. This approach was previously suc-
cessful in the FV mouse retrovirus model (8). One hesitation in
using IFN-� as a therapeutic is that plasma IFN-� levels in HIV-1
patients have been shown to correlate with pathogenic immune
activation (20) and possibly induction of apoptosis in CD4� T
cells (21). However, whether all IFN-� subtypes are associated
with this chronic activation has not been delineated, and while
studies suggest that there is dysregulation of the IFN-� response in
pathogenic HIV/simian immunodeficiency virus (SIV) infections,
a direct role for IFN-� in mediating chronic activation and disease
progression has yet to be definitively proven (reviewed in refer-
ence 22).

Until now, IFN-� therapy in humans has focused almost ex-
clusively on IFN-�2. While IFN-�2 is efficacious in the treatment
of HBV and HCV, HIV-1 studies have shown much less promise
(23–34). However, encouraging results from recent clinical stud-
ies (23, 26, 35) and new discoveries demonstrating IFN-� induc-
tion of antiretroviral restriction factors have led to a renewed in-
terest in IFN-� therapy. IFN-� and antiretroviral (ARV) drugs
work via different mechanisms, and IFN-�’s unique capacity to
reduce the proviral load combined with ARV therapy could lead
to a functional cure for HIV-1. To this end, new IFN-�2 clinical
trials have recently been approved. However, given the recently
discovered widely divergent anti-HIV-1 activities of different
IFN-� subtypes in vitro, we believe that a key to the success of such
therapy is the identification of the IFN-� subtype that has the most
potent anti-HIV-1 activity in vivo. These studies are now necessary
to assess the complex immunomodulatory effects of different
IFN-� subtypes that cannot be analyzed in vitro. Since the inter-

actions between IFNs and their receptors are relatively species
specific (36), and since the highly variable antiviral efficacies of
IFN-� subtypes in disparate viral systems are now well recognized,
it is critical to test the effects of human IFN-� subtypes in a human
system infected with HIV-1. At this time, the only practical model
to test human IFN-� subtypes against HIV-1 in vivo is the human-
ized mouse. We used triple-knockout bone marrow-liver-thymus
(TKO-BLT) mice reconstituted with a human immune system.
These mice have multilineage human hematopoietic cell reconsti-
tution, including T cells, B cells, NK cells, dendritic cells, and
monocytes/macrophages; they are susceptible to HIV infection;
and they are able to mount HIV-specific B cell and T cell responses
(37). All of the lymphocytes in these mice are of human origin, and
the mice support and recapitulate the hallmarks of a bona fide
human HIV-1 infection (37, 38). Since in vitro studies indicated
that IFN-�14 was extremely potent against HIV-1 in comparison
to the clinically approved IFN-�2, we compared the two subtypes
in vivo.

MATERIALS AND METHODS
Ethics statement. Fetal tissues for reconstitution of humanized mice were
obtained through anonymous donations with informed written consent
via Advanced Bioscience Resources. This research was conducted under
NIH Office of Human Subjects Research Exemption 4980. All animal
studies were performed under an animal study proposal approved by the
Rocky Mountain Laboratories, NIAID, NIH Animal Care and Use Com-
mittee (number 2012-61) following all regulations and guidelines of the
Public Health Service’s Office of Laboratory Animal Welfare. Rocky
Mountain Laboratories is fully accredited by the Association for Assess-
ment and Accreditation of Laboratory Animal Care.

Humanized TKO-BLT mice. C57BL/6 Rag2�/� �c
�/� CD47�/�

(TKO) mice were humanized using the BLT method, as previously de-
scribed (37, 38). Briefly, 6- to 10-week-old mice received 5.0 Gy whole-
body irradiation prior to transplantation of 17- to 22-week-gestation hu-
man thymus and liver under the kidney capsule, followed by intravenous
injection of autologous liver-derived CD34� hematopoietic progenitor
cells. The animals in this study were housed under specific-pathogen-free
conditions.

Recombinant IFN-� subtypes. Human IFN-� subtype genes were
optimized for expression in Escherichia coli. Isolated inclusion body pro-
teins denatured with guanidine hydrochloride were refolded in arginine
refolding buffer and purified by anion-exchange and size exclusion chro-
matography (39). Protein concentrations were determined using Nano-
Drop 2000c (Thermo Scientific, Wilmington, DE), and endotoxin levels
were less than 0.0025 endotoxin units (EU)/ml (ToxinSensor; Genscript,
Piscataway, NJ). These laboratory-produced proteins were used for all
experiments except those shown in Fig. 1D. For the experiments in Fig.
1D, the IFN-� proteins were purchased from PBL Assay Science (Piscat-
away, NJ) as indicated below.

Determination of IFN-� units. Because the standard biological
method to quantify interferons is with antiviral assays, we were concerned
that the differential antiviral effects of the various interferon subtypes
might produce aberrant results. Therefore, we developed a stable reporter
cell line using human retinal pigment epithelial cells (ATCC CRL2302)
transfected with a plasmid containing interferon-stimulated response el-
ement (ISRE) promoter/enhancer elements driving a luciferase reporter
gene (pISRE; Stratagene) (40). Cells were grown for 24 h before adding
serial dilutions of our recombinant IFN-� subtypes and commercially
available IFN-� subtypes (PBL Assay Science, Piscataway, NJ) for 4 h. The
cells were lysed with Bright Glo lysis buffer (Promega), and luciferase
activity was measured 10 min later. Six experiments were done comparing
the stated activities of commercially available IFN-� subtypes (PBL Assay
Science, Piscataway, NJ) with relative light units (RLU) obtained from our
ISRE assay; 500 U/ml (PBL units) corresponded to a mean of 7,610 RLU
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for IFN-�2 and 7,182 RLU for IFN-�14. The RLU for the IFN-� subtypes
we synthesized were then converted to PBL units for the in vivo experi-
ments. All the units given in the text correspond to PBL units. PBL deter-
mines the activities of interferons using a cytopathic inhibition assay on
bovine kidney cells (MDBK) with vesicular stomatis virus (VSV) and on
the human lung carcinoma cell line A549 with encephalomyocarditis vi-
rus (EMCV).

In vitro viral inhibition assay. Coisogenic X4- and R5-tropic HIV-1
stocks were produced by transfection of HEK293T cells with X4- HIV-
1NL4-3_IRES_eGFP and R5- HIV-1NL4-3_92TH014.12_IRES_eGFP, respectively.
R5- HIV-1NL4-3_92TH014.12_IRES_eGFP contains an exchanged R5-tropic
env V3 loop, as described previously (41, 42). One million phytohemag-
glutinin (PHA) (1 �g/ml)- and interleukin 2 (IL-2) (10 ng/ml)-stimulated
PBMCs from 5 healthy donors were incubated with 350 �l of virus con-
taining 250 ng of p24 antigen, with or without IFN-� subtypes (10 ng/ml),
for 6 h at 37°C. The cells were washed twice with 1 ml of phosphate-
buffered saline (PBS) and resuspended in complete RPMI 1640 medium
supplemented with IL-2 (10 ng/ml) and IFN-� subtypes for 2 days at
37°C. The level of infectious HIV-1 in the supernatant was determined by
TZM-bl assay 3 days postinfection in triplicate. Pelleted PBMCs were
lysed before measuring cell-associated p24 by enzyme-linked immu-
nosorbent assay (ELISA). Briefly, Nunc Immuno Maxi Sorb surface 96-
well plates were coated with a mouse anti-p24 monoclonal antibody
(MAK183; EXBIO) overnight. After blocking, Triton X-100-lysed super-
natants or cells were transferred to the 96-well plates. The next day, the
plates were washed and incubated with a polyclonal rabbit anti-HIV-1
p24 antibody (Eurogentec) for 1 h. Next, the plates were washed and
incubated with a goat anti-rabbit antibody conjugated with horseradish
peroxidase (Dianova; 111-035-008), followed by the addition of tetra-
methylbenzidine (TMB) peroxidase substrate. The reaction was stopped
with 0.5 M H2SO4. The absorbance of each microplate well was deter-
mined using a microplate reader and calibrated against the absorbance of
an HIV-1 p24 antigen standard or standard curve.

Dose-response curves in LPMCs. Macroscopically normal human je-
junum tissues that would otherwise be discarded were obtained from
patients undergoing elective abdominal surgery. The patients signed a
release form for the unrestricted use of these discarded tissues, and all
protected information was deidentified to laboratory personnel. The pro-
tocol was given exempt research status by the Colorado Multiple Institu-
tional Review Board at the University of Colorado. Human gut LPMCs
from 6 different donors (each in duplicate) were obtained following tissue
disaggregation and collagenase digestion (43, 44). The LPMCs were spin-
oculated with HIV-1BaL at 10 ng p24/106 cells (AIDS Research Reagent
Program; catalog number 4984) and resuspended in different IFN-�2 or
IFN-�14 concentrations, and the percentage of p24� cells in the CD3�

CD8� cell fraction was evaluated at 4 days postinfection (dpi) by flow
cytometry, as previously described (14). The recombinant IFN-�2 and
IFN-�14 proteins were purchased from PBL Assay Science (catalog num-
ber 11002-1). Data were normalized against the mock-treated control for
each donor, set as 100%. Normalized data from all 6 donors were aver-
aged, and the 50% inhibitory concentration (IC50) and Vres (residual rep-
lication at maximal IFN-� concentrations) (45) were calculated using a
one-phase decay equation in Prism 5.0.

HIV-1 challenge and IFN-� treatment. HIV-1JR-CSF stocks were pre-
pared by transfection of 293FT cells (Invitrogen, Grand Island, NY) with
clone pYK-JRCSF, obtained from Irvin S. Y. Chen and Yoshio Koyanagi
through the NIH AIDS Research and Reference Reagent Program.
TZM-bl reporter cells (NIH AIDS Research and Reference Reagent Pro-
gram, from John Kappes, Xiaoyun Wu, and Tranzyme Inc.) were used to
determine stock concentrations. Experimental-group sizes were chosen to
ensure adequate statistical power. Mice were assigned to groups to control
as closely as possible for gender and the level of human reconstitution and
for the level of p24 antigenemia at 5 weeks postinfection. The mice were
infected intraperitoneally with 10,000 tissue culture infectious units
(TCIU) of HIV-1JR-CSF. IFN-� subtypes (1.5 � 105 U/mouse) were in-

jected either within 2 h of infection or after 5 weeks of infection and
subsequently at 24-h intervals for 10 days. The interferon dose for treating
the mice (0.14 million international units [MIU]/m2) was based on the
dose of IFN-�2b used to treat humans for melanoma (20 MIU/m2) (46,
47) normalized to the body surface area (48).

Isolation of plasma and human leukocytes. Blood samples were col-
lected in EDTA and centrifuged to obtain plasma. Splenocytes were ob-
tained by passage through 70-�m filters, followed by blood cell lysis with
ACK (NH4Cl, 0.15 M; KHCO3, 10 mM; EDTA, 0.1 M). CD4� splenocytes
used for proviral quantification were preenriched using positive selection
(Miltenyi, San Diego, CA).

Flow cytometry. Splenocytes were analyzed by staining using CCR7-
phycoerythrin (PE)-Cy7, Ki67-eFluor 488, CD107a-fluorescein isothio-
cyanate (FITC), CD45-V500, and CD3-V450 (BD Biosciences, San Jose,
CA); HLA-DR and CD56-A700 Alexa Fluor 700 (Biolegend, San Diego,
CA); CD45RA-PE, CD38-PE, CD4-PE-Cy7, CD8-allophycocyanin
(APC)-eFluor 780, Lin (CD3, CD14, and CD19) peridinin chlorophyll
protein (PerCP)-Cy5.5, and TRAIL-PE (eBioscience, San Diego, CA); and
Granzyme B-PerCP (R&D Systems, Minneapolis, MN).

Quantification of plasma viremia, plasma cytokines, and proviral
burden. HIV-1 p24 levels in plasma were determined by ELISA (Ad-
vanced Bioscience Laboratories, Rockville, MD). Plasma cytokine levels
were quantified using a Bio-Plex cytokine assay specific for human cyto-
kines on the Bioplex-200 system. Analyses were done using Bio-Plex Man-
ager software v6.1.1 (Bio-Rad, Hercules, CA).

HIV-1 RNA and HIV-1 DNA detection. Plasma HIV-1 RNA was
measured by using the Abbott RealTime HIV-1 assay on the m2000 sys-
tem. The detection limit for an input volume of 200 �l plasma was 150
copies/ml. Genomic DNA was isolated with the QIAamp DNA minikit
(Qiagen). Determination of proviral HIV-1 DNA was performed by
quantitative real-time PCR on a per cell basis as detailed previously (49),
using lysate from 5 � 106 CD4-enriched splenocytes.

Real-time PCR for antiretroviral interferon-stimulated genes
(ISGs). RNA was isolated from 5 � 106 splenocytes using the ZR-Duet
DNA/RNA MiniPrep kit (Zymo Research, Irvine, CA). Real-time PCR
analysis of mRNA expression was completed as previously described (50).
Primers were tested on controls to ensure amplification of a single prod-
uct. Data for each sample were calculated as the percent difference in the
threshold cycle (CT) value (	CT 
 CT GAPDH � CT gene). Gene expres-
sion was plotted as a percentage of gene expression relative to that of
GAPDH for each sample.

Mutation analysis of proviral HIV-1 DNA. Genomic DNA was ex-
tracted from lymph node samples using a Qiagen DNAEasy kit. Amplifi-
cation of the gp41/nef region was performed by nested PCR using Phusion
Taq (New England BioLabs). Following preamplification, nested PCR was
performed using Illumina MiSeq-configured primers. Amplicons were
sequenced by Illumina MiSeq as previously described (51). Sequences
with �80% identity to the JR-CSF sequence (GenBank accession number
M38429) were analyzed. Total mutations (including gaps) and GG¡AG
mutations were evaluated using custom Perl scripts (52).

Statistics. Statistical calculations were performed with GraphPad
Prism (GraphPad Software, La Jolla, CA) using the tests specified in the
figure legends.

RESULTS
Antiviral activities of IFN-� subtypes on HIV-1 replication in
PBMCs. A recent in vitro study using human gut LPMCs showed
that the antiviral effects of different IFN-� subtypes on HIV-1
suppression were not equal (14). To assess and confirm the best
IFN-� subtypes to follow up with experiments in humanized
mice, we conducted an in vitro screening assay. Activated PBMCs
from five different healthy human donors were infected with
HIV-1 in the presence or absence of 10 ng/ml of each of the 12
human IFN-� subtypes. HIV-1 infectivity in supernatants was
measured 2 days later using a reporter cell line (Fig. 1A). Analysis
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FIG 1 Inhibition of HIV-1 replication by IFN-� subtypes in vitro. (A and B) The infectivity of supernatants harvested from PBMCs exposed to X4-tropic
HIV-1NL4-3_IRES_eGFP in the presence of different human IFN-� subtypes for 2 days was determined. (A) The supernatants were incubated with TZM-bl reporter
cells, and �-galactosidase activity was compared to that of untreated supernatants after 3 days of incubation. (B) Additionally, the cells were lysed, and the cellular
p24 protein content was analyzed by ELISA. Five healthy donors were used for the IFN-� inhibition assay, and the TZM-bl assay was measured in triplicate. Mean
values plus standard errors of the mean (SEM) are shown, and individual donors are represented by dots. ***, P � 0.001; **, P � 0.01; *, P � 0.05; determined
by one-way analysis of variance (ANOVA) with Dunnett’s posttest. (C) The infectivities of IFN-�-treated X4- and R5-tropic viruses relative to untreated PBMCs
were determined and compared using a Pearson correlation test. (D) Dose-response inhibition in mucosal immune cells. LPMCs (n 
 6 donors) were infected
with HIV-1BaL, resuspended with various doses of IFN-�2 and IFN-�14 (or mock infected), and evaluated for intracellular Gag p24� expression in CD3� CD8�

cells at 4 dpi by flow cytometry. The data were normalized against mock infection for each donor. The dose-response curves were generated using a one-phase
decay equation that was also used to evaluate the IC50.
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of cell-associated HIV-1 was also assessed by p24 ELISA (Fig. 1B).
The two assays gave similar results in that IFN-�2 only moderately
suppressed HIV-1 compared to IFN-�14, which exhibited the
most potent anti-HIV-1 activity of all the subtypes, a result that
was consistent with the recent findings in LPMC cultures (14).
Levels of suppression by the different subtypes were equivalent for
both X4 and R5 viruses (Fig. 1C).

The relative potencies of commercially obtained IFN-�2 and
IFN-�14 (PBL Assay Science) were next tested in a dose-response
experiment using LPMCs infected with HIV-1BaL. The aggregate
data from six different LPMC donors are shown in Fig. 1D. IFN-
�14 was 10.8-fold more potent (in picograms per milliliter), 13.6-
fold more potent (in units per milliliter), and 11.0-fold more po-
tent (nanomolar) than IFN-�2. IFN-�14 also inhibited HIV-1
with greater potency than IFN-�2 at maximal IFN-� concentra-
tions, as there was more residual HIV-1 replication (Vres) (45) in
HIV-1-infected LPMCs treated with IFN-�2 (Vres 
 40%) versus
IFN-�14 (Vres 
 30%). Based on these results, IFN-�14 was se-
lected for in vivo studies in HIV-1-infected humanized mice using
the clinically approved IFN-�2 subtype as the comparison con-
trol.

IFN-�14-mediated suppression of HIV-1 replication in hu-
manized mice. Recently described humanized TKO-BLT mice
were used as the model for HIV-1 infection using R5-tropic HIV-
1JR-CSF. TKO-BLT mice develop high levels of multilineage human
hematopoietic cells with lymphoid tissues of human origin, are
susceptible to HIV-1 infection, and recapitulate the classic hall-
marks of human HIV-1 infection, including persistent infection
and CD4� T cell depletion (37, 38). To quantify the biological
activities of our recombinantly produced IFN-� subtypes, we used
an ISRE reporter assay normalized to commercially available
IFN-�2 and IFN-�14. Since the dosage of IFN-� that can be used
clinically is limited by undesirable side effects (53), we chose a high
unit dose of IFN-�2 that is used to treat melanoma patients (46)
(converted to the mouse equivalent [48]) to demonstrate the
maximal efficacy that would be clinically achievable by IFN-�2
compared to the same unit dose of IFN-�14. To simulate postex-
posure prophylaxis, IFN-� was administered within 2 h of HIV-1
infection and continued daily for 10 days. The mice were eutha-
nized at 11 dpi for analysis or were left untreated for an additional
10 days (to 21 dpi) to assess for viral rebound (Fig. 2A). Plasma
samples from two separate cohorts of TKO-BLT mice reconsti-
tuted from separate human donors were tested for HIV-1 p24 at
11 dpi (1 day after the final IFN-� treatment). By chi-square anal-
ysis, there were significantly more p24-negative animals in the
IFN-�14 group than in the IFN-�2 group (P 
 0.0019). There was
also a higher proportion of p24-negative animals in the IFN-�2
group than in the untreated controls (P 
 0.0475), but the P value
is above the Bonferroni-corrected statistical significance level (a P
value of 0.025) required for multiple-comparison analyses. How-
ever, it is quite possible that larger group sizes would show that
IFN-�2 had a significant effect. Regardless, the number of HIV
p24-negative animals in the IFN-�14 group was significantly
greater than in the IFN-�2 group by chi-square analysis (Fig. 2B).

A third cohort was infected and treated in the same manner so
that sufficient plasma from a terminal bleed could be obtained to
test for viremia using a highly sensitive RNA PCR assay. HIV-1
RNA levels were lower than the detection limit of 150 copies/ml of
plasma in four of six mice treated with IFN-�14 and low in the
other two (Fig. 2C). The mean reduction in HIV-1 RNA com-

pared to the mock-treated controls was 154-fold. In contrast,
treatment with IFN-�2 provided only a 2.5-fold reduction in
plasma viral RNA levels. HIV-1 proviral loads in human CD4� T
cells isolated from spleens by magnetic-bead sorting were also
analyzed. Interestingly, IFN-�2 treatment significantly reduced
provirus levels in spleen cells, although the reduction (3.7-fold)
was not as strong as with IFN-�14 treatment (7.9-fold) (Fig. 2D).
Thus, a brief postexposure prophylaxis therapy with IFN-�14 ef-
fectively reduced both viremia and splenic proviral loads. In con-

FIG 2 IFN-�14 suppression of HIV-1 replication in vivo. (A) The in vivo
experimental design consisted of intraperitoneal infection of TKO-BLT mice
with 104 TCIU of HIV-1JR-CSF, followed by intravenous administration of
either IFN-�2, IFN-�14, or mock saline within 2 h of infection. Treatment was
administered daily for 10 consecutive days, followed by sample collection ei-
ther 24 h after the final injection (11 dpi) or after an additional 10-day period
of no treatment (21 dpi). (B) HIV-1 p24 levels detected by ELISA in plasma
collected from HIV-1JR-CSF-infected TKO-BLT mice 24 h after the final IFN
treatment (11 dpi). The dots represent individual mice reconstituted from
three separate human donors. The results comparing controls to IFN-�2 and
IFN-�2 to IFN-�14 (detectable p24 versus undetectable p24) were analyzed by
chi-square analysis with a Bonferroni correction for multiple comparisons (**,
P 
 0.0019; ns, not significant). (C) HIV-1 RNA copies per milliliter of plasma
at 11 dpi, detected by quantitative PCR (qPCR). (D) HIV-1 proviral copies
detected in CD4 cell-enriched TKO-BLT splenocytes at 11 dpi. One of the
samples from the IFN-�2 group did not provide data, as the PCR was inhib-
ited. (B to D) The horizontal lines denote means. (C and D) Statistical analyses
were done by one-way ANOVA with Dunnett’s posttest for multiple compar-
isons. ***, P � 0.001; **, P � 0.01; *, P � 0.05. Each dot represents a separate
mouse.
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trast, high-dose administration of IFN-�2 reduced proviral loads
but had little effect on viremia.

HIV-1 relapse following cessation of therapy. The undetect-
able viral RNA and provirus in some IFN-�14-treated animals
suggested that treatment might have prevented establishment of
latent infection. To examine that possibility, mice were treated as
before and treatments were discontinued at day 10. The mice were
then rested until 21 dpi, at which point they were tested for viral
rebound. Even though all IFN-�14-treated mice were negative for
HIV-1 p24 at 11 dpi, they all rebounded to the levels of untreated
mice following 10 days without therapy (Fig. 3A). The results from
a recent rhesus macaque study that treated SIV infection with
human IFN-�2 suggested that IFN-� therapy might exacerbate
aspects of the disease, such as T cell activation and depletion (54).
However, examination of the HIV-1-infected humanized mice
treated with human IFN-� showed similar CD4� T cell counts
(Fig. 3B) and levels of CD4� T cell activation and proliferation
(Fig. 3C) after viral rebound. Of note, the IFN-�14 group had
significantly better preservation of CD4� central memory T cells
at 21 dpi (Fig. 3D). Thus, 10 days of IFN-�14 therapy did not clear
infectious virus, but it did not increase CD4� T cell depletion, and
the central memory compartment was better maintained than in

HIV-1-infected control mice. Thus, human IFN-� therapy in
HIV-1-infected humanized mice did not exacerbate negative se-
quelae but instead preserved critical immune cell subsets by sup-
pressing viral replication. Furthermore, the superior suppression
of HIV-1 by IFN-�14 during the time of therapy suggested that it
would be a more efficacious subtype than IFN-�2 for the treat-
ment of HIV-1 infections.

IFN-�14 suppresses acute HIV-1 infection in humanized
mice. To investigate the efficacy of IFN-�14 in reducing acute
HIV-1 infections, humanized mice were again infected with HIV-
1JR-CSF, and the infections were allowed to progress for 5 weeks
prior to initiation of treatment with either IFN-�2 or IFN-�14
(Fig. 4A). The mice were then tested for p24 levels and placed in

FIG 3 Cessation of IFN-�14 treatment. (A) HIV-1 p24 levels (means plus
standard deviations [SD]) in plasma of mice 24 h after the final IFN injection
(11 dpi) and after 10 additional days of no treatment (21 dpi). Limit, limit of
detection within each assay. HIV�, n 
 7; HIV�, n 
 7; HIV� IFN-�2, n 
 7;
HIV� IFN-�14, n 
 6. Paired t tests between 11 and 21 dpi were done for each
treatment group; one-way ANOVA with Tukey’s posttest was used to compare
treatment groups at 21 dpi. (B) CD4� T cell counts in spleens of mice at 21 dpi.
(C and D) Frequencies of activated (CD38�) and proliferating (Ki67�) (C)
and central memory (CD45RA� CCR7�) (D) CD4� T cells at 21 dpi. The
horizontal lines denote means. ns, not significant; *, P � 0.05 (one-way
ANOVA with Tukey’s posttest). Each dot represents a separate mouse.

FIG 4 IFN-�14 suppression of established HIV-1 infection. (A) The in vivo
experimental design consisted of intraperitoneal infection of TKO-BLT mice
with 104 TCIU of HIV-1JR-CSF, followed by 5 weeks of infection. At 35 dpi,
plasma p24 levels were determined and the mice were assigned to similarly
infected treatment groups for intravenous (IV) administration of IFN-�2,
IFN-�14, or mock saline. Treatment was administered daily for 10 consecutive
days, followed by sample collection 24 h after the final injection (45 dpi). (B)
Levels of HIV-1 antigenemia as determined by p24 ELISA at the start (35 dpi)
and 24 h after the final IFN injection (45 dpi). The percent reduction in plasma
p24 was used to determine significance by one-way ANOVA with Tukey’s
posttest. (C) HIV-1 RNA copies per milliliter of plasma at 45 dpi, detected by
qPCR. (D) HIV-1 proviral copies detected in CD4 cell-enriched TKO-BLT
splenocytes at 45 dpi. The horizontal lines denote means. Statistical analyses
were done by one-way ANOVA with Tukey’s posttest. ns, not significant; ***,
P � 0.001; **, P � 0.01; *, P � 0.05. Each dot represents a separate mouse.
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treatment groups so that the mean plasma p24 levels of all the
groups before the initiation of therapy were closely equivalent
(Fig. 4B, 35 dpi). Again, the mice were treated daily for 10 days,
followed by analysis the following day. HIV-1 plasma viremia was
still in the acute phase at the start of IFN-� treatment, so plasma
p24 antigen levels dropped over the next 10 days, even in mock-
treated mice (Fig. 4B). Ten days of therapy with IFN-�2 did not
produce a statistically significant reduction in p24 compared to
mock-treated mice (Fig. 4B). In contrast, mice treated with IFN-
�14 had 3.4-fold-lower p24 levels than mock-treated mice and
3-fold-lower levels than the IFN-�2-treated mice (Fig. 4B). Using
the more sensitive plasma RNA quantification by PCR at the ter-
mination of the experiment, the mean plasma HIV-1 RNA levels
were 5-fold (0.704 log10) lower in the IFN-�14 group than in the
IFN-�2 group (Fig. 4C). IFN-� is unique among commonly pre-
scribed antiretroviral drugs in its ability to reduce HIV-1 proviral
loads later in infection (26, 35) and therefore is considered a
promising candidate to be used in cure strategies. Indeed, analysis
of proviral loads in human CD4� T cells isolated from spleens of
mice treated in acute infection revealed 30% lower proviral loads
in the IFN-�14 group than in controls (Fig. 4D). Treatment with
IFN-�2 reduced proviral loads by 20%, but that reduction did not
reach the P value of 0.05 for statistical significance. Thus, IFN-�14
suppressed both plasma HIV-1 loads and levels of cellular provi-
rus even during acute infection.

Cytokine profile after IFN-�14 therapy. HIV-1 infection and
the resultant IFN-� responses are known to induce the produc-
tion of cytokines. Proinflammatory factors, such as IL-1�, tumor
necrosis factor alpha (TNF-�), and CXCL10 (IP-10), appear to be
detrimental to the host (55, 56), while MIP-1� is likely beneficial
(57). To assess these responses in our model, we analyzed plasma
samples at 11 dpi for the presence of 11 different human cytokines.
The cytokines IL-1�, IL-4, IL-5, IL-6, and TNF-� were not de-
tected above baseline levels, and no differences between treatment
groups were found for IL-2, IL-10, IL-15, IFN-�, or MIP-1� (Fig.
5A). Compared to uninfected controls, CXCL10 concentrations
were similarly elevated in both IFN-�2-treated and mock-treated
HIV-1-infected mice. The mice with the highest levels of p24 in
plasma also had the highest levels of CXCL10 (data not shown).
Thus, it appeared that HIV-1 infection induced CXCL10 rather
than IFN-�2 treatments. CXCL10 levels in IFN-�14-treated mice
were significantly lower than in mock-treated controls at 11 dpi
(Fig. 5B). Cytokines from mice treated at 5 weeks postinfection
were also analyzed. Again, there were no significant differences in
plasma cytokine levels between any groups (data not shown), ex-
cept for CXCL10. At 45 dpi, CXCL10 levels were generally lower
than at 11 dpi and were again significantly reduced in IFN-�14-
treated mice compared to controls (Fig. 5B). The combined re-
sults suggested that IFN-�14 therapy suppressed CXCL10 pro-
duction either directly or through its ability to suppress HIV-1
loads.

Cellular immune responses in IFN-�-treated mice. Since
type I IFNs can stimulate lymphocyte responses, we tested for
their effects on NK cells and T cells 1 day after termination of
IFN-� therapy. HLA-DR expression is a marker of T cell activa-
tion, but we saw no increase in the frequency of HLA-DR-express-
ing CD4� T cells (Fig. 6A, left). Compared to untreated controls,
mice treated with IFN-�2 showed a slightly increased percentage
of HLA-DR-positive CD8� T cells (Fig. 6A, right). Although the
HLA-DR increase was not statistically significant, it was associated

with a significantly increased frequency of CD8� T cells express-
ing two cytotoxicity-associated molecules, granzyme B and
CD107a (Fig. 6B). These results are consistent with the known
ability of IFN-�2 to activate CD8� T cells (58). In contrast, IFN-
�14 had no detectable effect on CD8� T cells but was associated
with significantly higher percentages of NK cells expressing the
cytotoxic molecule TRAIL (Fig. 6C). Thus, treatment with differ-
ent IFN-� subtypes activated unique downstream immune effec-
tors with IFN-�2 treatment, resulting in activated CD8� T cells,
and with IFN-�14 treatment, producing more activated NK cells.

Subtype-specific induction of ISGs. We next sought to deter-
mine if subtype efficacy might be associated with differential in-
duction of ISGs. Since hundreds of genes are regulated by inter-
feron (59), we focused on those previously associated with
restricting HIV-1 replication. To analyze subtype-specific induc-

FIG 5 Plasma cytokine analysis. (A) Plasma was collected 24 h after the final
IFN-� injection in both the acute- and established-infection experiments and
assayed for human cytokine and chemokine levels using a custom 11-plex bead
assay. Data from 11 days postinfection are shown. (B) Comparison of CXCL10
levels in plasma collected from mice at 11 dpi (one-way ANOVA with Dun-
net’s posttest; *, P � 0.05) or 45 dpi (unpaired t test; *, P � 0.05). Analyte levels
were quantified in picograms per milliliter of TKO-BLT plasma using stan-
dards provided with the assay. Each dot represents a separate mouse.

IFN-�14 Suppression of HIV-1 Infection In Vivo

July 2016 Volume 90 Number 13 jvi.asm.org 6007Journal of Virology

http://jvi.asm.org


tion of ISG transcription, uninfected TKO-BLT mice were in-
jected with either saline, IFN-�2, or IFN-�14, and splenocyte
RNA was analyzed 6 h later. No significant upregulation of the
innate viral sensor MB21D1/cGas or the viral restriction factors
APOBEC3G, SAMHD1, or TRIM5� were observed (Fig. 7A).
However, similar to the IFN-� subtype-specific ISG induction
previously seen in vitro (14), IFN-�14, but not IFN-�2, induced
statistically significant upregulation of BST2, which encodes the
HIV restriction factor tetherin, and MX2, which encodes myxovi-
rus resistance 2, also a potent inhibitor of HIV-1 (17, 18) (Fig. 7A).
Thus, IFN-�14 upregulated in vivo transcription of two genes en-
coding proteins with demonstrated anti-HIV-1 activity.

Although APOBEC3G transcription was not upregulated by
IFN-�14, it was reported in FV infection that IFN-� activation of
critical APOBEC3 antiviral functions occurred at a posttranscrip-
tional level (60). Additionally, treatment of HIV-1-infected

LPMC cultures with specific IFN-� subtypes has been shown to
result in increased APOBEC3 activity, but not increased transcrip-
tion (14). Encapsidation of APOBEC3G into HIV-1 virions results
in decreased reverse transcription and increased G-to-A hyper-
mutation of the integrating provirus (61), causing both lower viral
replication and potentially defective provirus incapable of pro-

FIG 6 IFN-�-induced changes in cell-mediated responses. Flow cytometry
was used to analyze activation and functional markers on T cells and NK cells.
(A) Frequency of activated (HLA-DR�) CD4 and CD8 T cells in spleens of
mice from each treatment group at 11 dpi. (B) Frequency of splenic CD8� T
cells positive for cytoplasmic Granzyme B and membrane-bound CD107a at
11 dpi. Statistical analyses were done by one-way ANOVA with Dunnet’s post-
test. ***, P � 0.001; *, P � 0.05. (C) Percentages of splenic NK cells expressing
the cytotoxic effector molecule TRAIL at 11 dpi. *, P � 0.05 (t test between
HIV-1� mock-treated and IFN-�14-treated groups). The horizontal lines de-
note the means. Each dot represents a separate mouse.

FIG 7 Induction of ISGs. (A) The transcription levels of six ISGs encoding
HIV-1 sensors or restriction factors were determined in splenocytes harvested
from HIV-1-negative TKO-BLT mice 6 h after intravenous injection with a
single 1.5 � 105 U dose of the indicated IFN or mock saline control injection.
RNA levels were determined by qPCR and are expressed as a percentage
(means � SEM) of the human housekeeping GAPDH transcripts detected in
the same sample. n 
 5 mice per group. Statistical analyses were done by
one-way ANOVA with Tukey’s posttest. ns, not significant; **, P � 0.01; *, P �
0.05. (B) Evaluation of APOBEC3G signature mutations in IFN-�-treated
mice. A 350-bp segment of the HIV-1 gp41/nef region was amplified from
lymph node DNA from humanized mice treated with saline (n 
 5), IFN-�14
(n 
 4), and IFN-�2 (n 
 3) at 11 dpi for next-generation sequencing. (Left)
DNA sequences from all mice per cohort were pooled, and the relative num-
bers of GG¡AG mutations relative to the total number of mutations were
compared using a 2-by-2 contingency test with Yates’ correction. The numbers
of sequences analyzed are shown in parentheses, and the percentages of
GG¡AG mutations relative to the total number of mutations are shown.
(Right) Percentages (means � SD) of GG¡AG mutations relative to the total
number of mutations computed per mouse. **, P � 0.01 (one-way ANOVA
with Bonferroni’s posttest).
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ducing infectious virus. Thus, a predominance of GG¡AG mu-
tations is a signature of APOBEC3G activity. To look for evidence
of APOBEC3G signature mutations, we used a recently described
(14, 52) next-generation sequencing approach to analyze lymph
node samples from mice at 11 dpi for proviral HIV-1 GG¡AG
DNA mutations. Indeed, relative to mock treatment, IFN-�14
treatment, but not IFN-�2 treatment, significantly increased
APOBEC3G signature mutations in HIV-1 (Fig. 7B).

DISCUSSION

This study presents new evidence that IFN-� subtypes elicit dif-
ferential anti-HIV-1 activity in vivo, with much more potent re-
sponses induced by IFN-�14 than IFN-�2 when administered at
the same dose. The results were consistent between different as-
says and between cohorts of mice reconstituted from different
donors. Ten days of IFN-�14 therapy either as a postexposure
prophylactic or in the treatment of acute HIV-1 infections pro-
duced significant drops in antigenemia, viremia, and proviral
loads. In contrast, IFN-�2 did not control antigenemia and
viremia effectively despite the administration of a dose known to
be at the upper limit of clinical tolerability. Interestingly, proviral
load decreases were observed following IFN-�2 treatments, al-
though the decrease during acute infection was not significant or
as great as that observed with IFN-�14. Decreases may have re-
sulted from the killing of infected cells by IFN-�2-induced cyto-
lytic T lymphocytes (CTL), as shown in Fig. 6B. Additionally, the
remaining proviruses in IFN-�2-treated mice may have been
more replication competent than the APOBEC3G-mutated pro-
virus detected in IFN-�14-treated mice. Interestingly, the supe-
rior efficacy of IFN-�14 therapy was associated, not with CD8�

CTL activity, but rather, with the induction of multiple mecha-
nisms of intrinsic and innate immunity. That said, it is not cur-
rently known whether any or all of the associated mechanisms
were responsible for the in vivo control of HIV-1 in this study. In
agreement with recent work in human LPMC cultures (14), we
found that in vivo, IFN-�14, but not IFN-�2, significantly upregu-
lated the transcription of two intrinsic restriction factors with
well-established anti-HIV-1 activity, MX2 and tetherin (Fig. 7A).
We also found evidence of increased APOBEC3G-mediated hy-
permutation of the HIV-1 provirus in IFN-�14- but not IFN-�2-
treated mice (Fig. 7B). Finally, IFN-�14 therapy resulted in an
expanded population of TRAIL-expressing NK cells. Given that
IFN-� induces hundreds of genes, it is not surprising to find that
multiple potential mechanisms of protection were induced in
IFN-�14-treated mice. The ability of IFN-�14 to induce a multi-
pronged attack on HIV-1 is one of the aspects that makes it so
appealing as a therapeutic, especially since the potential mecha-
nisms of protection involved are different from those employed by
current antiretroviral drugs and could therefore potentiate their
effects.

HIV-1 has evolved mechanisms to evade the antiviral activities
of both tetherin and APOBEC3G, but no antagonist of MX2 has
yet been described. MX2 is a key interferon-inducible inhibitor of
HIV-1 that blocks at a postentry/early preintegration step of the
HIV-1 replication cycle in vitro (17, 18). Expression of MX2 by
target cells renders them resistant to HIV-1 infection, so the in-
duction of MX2 by IFN-�14 could play a significant role in pre-
venting infection and spread in vivo. The results presented here
demonstrate the first in vivo association between MX2 expression
and HIV-1 resistance. Also upregulated by IFN-�14 was tetherin,

which inhibits the release of virions from infected cell membranes
and is antagonized by HIV-1 Vpu (62). The extent of tetherin
induction has been shown to correlate with reduced viral loads in
HCV/HIV-1-coinfected patients treated with ribavirin and
IFN-�2 (16). In addition to its direct antiviral effects, tetherin has
also been associated with improved antiretroviral NK cell re-
sponses (63, 64). In the current study, IFN-�14 treatment induced
expression of the cytotoxic molecule TRAIL on NK cells, which
has been associated with the control of HCV in patients treated
with pegylated IFN-�2 and ribavirin (65). In addition, IFN-�-
induced NK cell activation and increased TRAIL expression cor-
related with retroviral control in a mouse model (8), and NK cell
responses have been shown to play an important role in HIV-1
immunity (66). APOBEC3G is an intrinsic HIV restriction factor
(67, 68), which upon incorporation into newly assembled virions
restricts HIV-1 replication in the next target cell by physically
impeding reverse transcription and/or inducing lethal G-to-A hy-
permutations (68–72), primarily converting tryptophans (TGG)
to stop codons (TGA). Retrovirus restriction by APOBEC3 is evo-
lutionarily conserved, and deletion of APOBEC3 in mice abro-
gated the therapeutic effect of IFN-� during FV infection (60). We
identified a significant increase in APOBEC3G signature muta-
tions in IFN-�14-treated but not IFN-�2-treated mice. Overall,
multiple mechanisms were associated with IFN-�14-induced
control of HIV-1, including increased transcription (MX2 and
tetherin) and activity (APOBEC3G) of intrinsic immune factors
and activation of innate immunity (TRAIL� NK cells).

There is evidence from both macaques and HIV-1 patients that
treatment with IFN-� might lead to detrimental effects from in-
creased immune hyperactivation and dysfunction (54, 73). Thus,
it was important to determine whether IFN-� therapy elevated
levels of plasma CXCL10, a hallmark of HIV-1-induced immune
dysregulation (55, 56). CXCL10 has been reported to be inducible
by IFN-� (74, 75) and is produced by HIV-1-infected macro-
phages and dendritic cells as a chemoattractant to recruit activated
T cells to sites of infection (76). As CD4� T cells are major targets
for HIV-1, such recruitment accelerates their infection and loss
(76). Thus, CXCL10 levels are predictive of both HIV-1 loads (77)
and disease progression (78). In this study, elevated CXCL10 was
indeed observed in HIV-1-infected controls and in HIV-1-in-
fected, IFN-�2-treated animals. In contrast, IFN-�14-treated
mice, which had only very low levels of HIV-1 infection, also had
low levels of CXCL10. Thus, elevated CXCL10 was associated with
HIV-1 viremia rather than IFN-� treatment. Importantly, IFN-
�14-treated mice also had significantly better preservation of
central memory CD4� T cells, indicative of less HIV-1-induced
immunopathology. These results are consistent with studies in
SIV-infected African green monkeys (AGM) and sooty mang-
abeys (SM), demonstrating that administration of high-dose rhe-
sus macaque IFN-�2 did not impede the resolution of immune
activation and ISG expression that is specific to these nonpatho-
genic models (79), nor did it exacerbate disease (80, 81). They are
also consistent with studies in SIV-infected macaques showing
that blockade of the IFN receptor accelerated disease progression
(54), indicating that endogenous type I IFN responses are benefi-
cial and impede SIV pathology. This is in contrast to studies where
macaques receiving human IFN-�2 displayed accelerated disease
progression despite downregulation of ISG expression and levels
of immune activation similar to or lower than those of placebo
controls (54).
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It is becoming apparent that subtle differences in the amino
acid sequences of IFN-� subtypes can produce a significant effect
on the binding affinity for the IFN-�/� receptor, downstream
signaling events, and antiviral efficacy (2–5, 82). Given that rhesus
macaque IFN-�2 sequences compared to human and SM/AGM
IFN-�2 are only 92 and 98% identical, respectively, future studies
in macaques should consider using species-specific IFNs rather
than human IFNs (83). In fact, IFN-�14 may not be the most
effective subtype in suppressing SIV, and a complete in vitro anal-
ysis of all subtypes is warranted before in vivo studies are initiated.
Additionally, a recent study in mice chronically infected with
LCMV (84) suggested that persistent IFN-�, but not IFN-�, re-
sponses are associated with immune dysregulation and virus chro-
nicity. This result supports two pivotal concepts in our study: (i)
different type I IFN subtypes can mediate distinct biological ef-
fects despite binding to the same receptor and (ii) type I IFNs may
be useful drugs for the treatment of chronic viral infections if one
determines the optimal subtype for the particular virus.

Although therapy of HIV-1 patients with IFN-�2 has pro-
duced decreases in viremia in some studies (24–31), the use of
IFN-�2 has been based more upon its availability as a pharmaceu-
tical-grade protein and its efficacy in treating HCV and HBV in-
fections than upon evidence that it is the most efficacious subtype
against HIV-1. Recent in vitro work (14), combined with these
new in vivo results, suggest that, based on differential expression
patterns, restriction factor induction, mobilization of immune ef-
fectors, and ultimate anti-HIV-1 potency, not all subtypes play
redundant roles in HIV-1 infection, and therefore, they should be
individually evaluated as anti-HIV-1 therapeutics. Extrapolation
of the results in humanized mice to HIV-1 infections in humans
suggests that IFN-�14 might prove more effective than IFN-�2,
which is currently in clinical HIV-1 trials. Such IFN studies would
most likely be done in patients undergoing standard antiretroviral
therapy, something that we have not yet tested in our model. Thus,
it remains to be seen whether IFN-�14 will be similarly effective in
that scenario.

It should be noted that these humanized mice do not have an
entirely intact human immune system. For example, the lym-
phoid organ structure is not completely normal because the T cells
and B cells are interspersed rather than delineated into zones (37).
The impact of differences between these chimeric animals and
intact animals on the current results is not known. However, since
HIV does not infect mouse cells, no direct effect of human IFN-�
interaction with mouse cells could impact HIV-1 levels. Further-
more, the lack of mouse lymphocytes and NK cells in this model
precludes any indirect effects from cytokines or chemokines pro-
duced by these cells. TKO-BLT mice do contain murine myeloid
cells that could potentially respond to human IFN-�. Most cyto-
kines produced by mouse macrophages, including macrophage
colony-stimulating factor (M-CSF), granulocyte-macrophage
colony-stimulating factor (GM-CSF), and IL-6, are not reactive
with human receptors (85). However, IL-1� has weak reactivity
with the human receptor (86), as does mouse TNF-�. Thus, there
remains the possibility of an indirect effect on HIV-1-infected
human cells. That said, the current results from our in vivo studies
comparing IFN-�2 and IFN-�14 are highly consistent with the in
vitro results in Fig. 1, as well as results from the recent IFN-�
subtype study using human LPMCs infected with HIV-1 (14).
Studies are under way to determine if latent HIV infections can be
established in this model using antiretroviral therapy. Since IFN-

�14 functions via different mechanisms than antiretroviral drugs,
it will be of great interest to test a combination of the two in an
attempt to eliminate the replication-competent HIV-1 reservoir,
thereby producing a functional cure. A clinical study of this nature
is under way with IFN-�2 (https://clinicaltrials.gov/ct2/show
/NCT02227277). Our results suggest that IFN-�14 may provide
even stronger benefits in such a trial. The results from our study
have implications for the use of IFN-� as an antiviral therapeutic
for other viruses, as well. Although IFN-�2 is approved for the
treatment of HBV, HCV, and AIDS-related Kaposi’s sarcoma, it
will be important in the future to determine if IFN-�2 is the most
effective and safe subtype for these and other viruses.
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