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ABSTRACT

HIV establishes reservoirs of infected cells that persist despite effective antiretroviral therapy (ART). In most patients, the virus
begins to replicate soon after treatment interruption. However, a low frequency of infected cells at the time of treatment inter-
ruption has been associated with delayed viral rebound. Likewise, individuals who control the infection spontaneously, so-called
HIV-1 controllers (HICs), carry particularly low levels of infected cells. It is unclear, however, whether and how this small num-
ber of infected cells contributes to durable viral control. Here we compared 38 HICs with 12 patients on effective combined anti-
retroviral therapy (cART) and found that the low frequency of infected cells in the former subjects was associated both with less
efficient viral reactivation in resting CD4� T cells and with less efficient virion production ex vivo. We also found that a potent
HIV-specific CD8� T cell response was present only in those HICs whose CD4� T cells produced virus ex vivo. Long-term spon-
taneous control of HIV infection in HICs thus appears to be sustained on the basis of the inefficient reactivation of viruses from
a limited number of infected cells and the capacity of HICs to activate a potent HIV-specific CD8� T cell response to counteract
efficient viral reactivation events.

IMPORTANCE

There is a strong scientific interest in developing strategies to eradicate the HIV-1 reservoir. Very rare HIV-1-infected patients
are able to spontaneously control viremia for long periods of time (HIV-1 controllers [HICs]) and are put forward as a model of
HIV-1 remission. Here, we show that the low viral reservoirs found in HICs are a critical part of the mechanisms underlying viral
control and result in a lower probability of HIV-1 reactivation events, resulting in limited HIV-1 release and spread. We found
that those HICs in whom viral reactivation and spread from CD4� T cells in vitro were the most difficult were those with dimin-
ished CD8� T cell responses. These results suggest that, in some settings, low HIV-1 reservoirs decisively contribute to at least
the temporary control of infection without antiretroviral therapy. We believe that this work provides information of relevance in
the context of the search for HIV-1 remission.

So-called human immunodeficiency virus type 1 (HIV-1) con-
trollers (HICs) provide a valuable model of natural, durable

control of HIV-1 infection (1). A better understanding of the
mechanisms underlying this viral control could help with the de-
velopment of therapeutic interventions capable of achieving
HIV-1 remission in other patients. Numerous reports point to a
prominent role of CD8� T cells in the control of infection ob-
served in HICs. Indeed, many HICs have high frequencies of
CD8� T cells that exert multiple effector functions in response to
HIV-1 antigens (2–4). In particular, CD8� T cells from many
HICs efficiently eliminate infected CD4� T cells ex vivo (4). Cer-
tain HLA class I alleles, such as B*57 and B*27, are overrepre-
sented in HICs (4–7), but efficient anti-HIV CD8� T cell re-
sponses are not restricted to individuals carrying these alleles (8).
In addition, potent HIV-specific CD8� T cell responses are not
found in all HICs, at least during the chronic phase of infection (8,
9). We have found that HIV-specific CD8� T cell responses in
some HICs enrolled in the ANRS CO21 cohort wane over time, yet
the plasma viral load remains undetectable (unpublished obser-

vations). Similar observations have been made in macaques
spontaneously controlling simian immunodeficiency virus
(SIV) SIVmac251 infection (10). In HICs, highly responsive
CD8� T cells tend to have an effector phenotype (4, 8, 11),
whereas weakly responsive CD8� T cells tend to have a resting
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memory phenotype (8, 9). Weakly responsive CD8� T cells from
HICs can regain their effector functions upon antigen stimulation
(12), but their role in HIV-1 control in vivo is unclear. These
results suggest that several factors probably contribute to long-
term spontaneous HIV-1 control, acting in synergy or relieving
each other during the period of control.

We and others have previously shown that despite the presence
of replication-competent viruses (13–15), HICs are characterized
by low levels of CD4� T cell-associated HIV DNA (16, 17). Al-
though this may be the consequence of viral control, different
results indicate that the low frequencies of HIV-1-infected CD4�

T cells might also contribute to the maintenance of such control.
The stochastic nature of HIV-1 reactivation from latency suggests
that very low HIV-1 reservoirs might result in at least the tempo-
rary control of infection without therapy (18). Along this line, the
control of HIV-1 viremia or a delayed viral rebound after the
discontinuation of antiretroviral therapy (ART) has consistently
been associated with low levels of cell-associated HIV DNA at the
time of treatment interruption (19–22), even when a specific anti-
HIV immune response was not present (23).

In the present study, we analyzed what the low frequency of
HIV-1-infected CD4� T cells found in HICs may represent in
terms of virus reactivation and its contribution to the control of
infection. We found that the low number of HIV-1-infected cells
in HICs was associated with the less frequent and inefficient reac-
tivation of HIV-1 infection in vitro and impaired viral spread. We
also found that HICs whose CD4� T cells did not produce HIV-1
proteins in vitro had a diminished HIV-specific CD8� T cell re-
sponse, suggesting that inefficient viral reactivation may suffice to
maintain, at least temporarily, control of infection in the absence
of antiretroviral treatment.

MATERIALS AND METHODS
Patients and samples. We studied 38 HICs from the ANRS CO21 CODEX
cohort and 12 patients receiving combined antiretroviral therapy (cART pa-
tients) from the Kremlin-Bicêtre University Hospital (France) and the
Germans Trias i Pujol Hospital (Badalona, Spain). The HICs were pa-
tients who had been infected with HIV-1 for at least the previous 5 years
and whose last five consecutive viral loads were below 400 HIV RNA
copies/ml of plasma. Their median age at the time of the study was 49
years (interquartile range [IQR], 36 to 74 years), their median CD4� T cell
count was 786 cells/mm3 (IQR, 515 to 1,203 cells/mm3), and their median
RNA load was �50 HIV RNA copies/ml (IQR, �50 to 213 HIV RNA
copies/ml). The cART patients were individuals in whom ongoing anti-
retroviral treatment had suppressed their viral load (�50 copies HIV
RNA/ml) for at least the past 2 years. Their median age at the time of the
study was 56 years (IQR, 52 to 57 years), and their median CD4� T cell
count was 677 cells/mm3 (IQR, 433 to 1,165 cells/mm3). A detailed de-
scription of the patients is provided in Table 1.

Blood samples from HIV-seronegative donors used for viral amplifi-
cations experiments were obtained through the collaborative programs
between the Institute Pasteur or the AIDS Research Institute-IrsiCaixa
and the respective national blood banks.

Ethics statement. All the subjects provided their written informed
consent to participate in the study. The CO21 CODEX cohort and this
substudy were funded and sponsored by ANRS and approved by the Ile de
France VII Ethics Committee. The study was conducted according to the
principles expressed in the Declaration of Helsinki.

HIV-1 reactivation from resting CD4� T cells. Peripheral blood
mononuclear cells (PBMCs) were collected by Ficoll gradient centrifuga-
tion of 50 ml of fresh EDTA-treated blood. A first negative isolation step
for total CD4� T cells was performed with anti-CD8, -CD14, -CD16 (a

and b), -CD19, -CD36, -CD56, -CD123, and -CD235a antibodies together
with magnetic Dynabeads (Life Technologies, Foster City, CA, USA). A
second negative isolation step was performed after CD25� CD69�

HLADR� cell depletion with unlabeled anti-CD25 (clone MA251), anti-
CD69 (clone FN50), and anti-HLADR (clone L243) (all from BD Biosci-
ence), followed by Dynabeads separation (Life Technologies, Foster City,

TABLE 1 Clinical and epidemiological characteristics of the study
groupsa

Subject
identifier Sex

Age
(yr)

No. of
CD4
cells/mm3

VL (no. of
RNA
copies/ml)

No. of HIV
DNA
copies/106

PBMCs

Time with VL
of �400 RNA
copies/ml (yr)

5002 M 54 1,314 �50 11 13
18004 M 47 690 �50 12 14
19001 F 52 702 �50 �10 13
23001 F 53 803 �50 11 13
23002 F 52 649 �50 �10 14
30004 F 41 1,202 �50 10 11
34003 F 45 857 �50 16 12
34006 M 55 554 �40 NA 19
34009 M 40 676 �50 �10 10
34014 F 44 931 79 22 10
34015 M 59 NA �50 �10 2
34017 F 32 995 �50 �10 7.5
38002 F 42 1,060 �50 �10 11
41002 M 64 756 �50 �10 12
41003 M 55 776 �50 45 11
47003 F 26 620 �50 11 6
51001 F 44 520 �50 �10 12
54001 F 34 892 36 45 12.5
57002 M 48 1,150 42 �10 13
58001 F 56 465 �50 �10 11
58003 F 36 649 �50 17 11
60005 M 48 931 �50 �10 13.5
72002 F 45 1,154 �50 34 15
72003 M 42 495 �50 �10 9
78001 M 55 934 �50 �10 12.5
81003 F 38 882 �50 �10 11
81004 M 50 942 �50 25 11
85002 M 49 1,003 26 30 12
86001 M 72 575 72 �10 11
86003 F 34 1,144 �50 NA 8
86005 F 39 775 �50 11 12
86006 M 52 NA �50 3 8
86007 F 36 667 �50 NA 13
88001 F 64 752 �50 NA 8
114002 M 65 979 �50 11 10
134001 M 43 1,164 �50 187 13
146001 F 39 464 81 �10 13
171001 M 50 437 �50 �10 9
ART1 M 65 281 �50 NA 21
ART2 M 58 774 �50 NA 16
ART3 M 33 580 �50 NA 6
ART4 F 53 1,151 �50 NA 14
ART5 M 60 437 �50 317 6.5
ART6 M 57 564 �50 183 9.5
ART7 M 56 1,058 �50 �13 6.5
ART8 M 57 420 �50 1,010 9.5
ART9 M 56 385 �50 120 12
ART10 M 50 1,243 �50 233 4.5
ART11 M 55 1,419 �50 103 7.5
ART12 M 47 1,205 �50 167 5.5
a NA, data not available; M, male; F, female; VL, viral load.
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CA, USA). The purity of the quiescent CD4� CD25� CD69� HLADR�

cells thus isolated was �97%.
The cells were resuspended in RPMI medium with 10% fetal calf se-

rum (R10 medium) at 106 cells/ml, and 500,000 cells/well were cultured
under the following conditions: prostratin (2.5 �M; Enzo Life Sciences),
chaetocin (90 nM; Sigma-Aldrich), suberoylanilide hydroxamic acid (SAHA;
2.5 �M; Alexis Biochemicals), 5-aza-2´deoxicytidine (1 �M; Sigma-Aldrich),
10-[(3-hydroxy-4-methoxybenzylidene)]-9(10H)-anthracenone (HMBA; 5
mM; Sigma-Aldrich), and interleukin-7 (IL-7; 10 ng/ml; R&D Systems). As
positive controls, we stimulated resting CD4� T cells under two condi-
tions: with anti-CD2/anti-CD28 antibodies (monoclonal antibody
[MAb] 39C1.5 [rat IgG2a, anti-CD2] plus MAb 6F10.3 [mouse IgG1,
anti-CD2] and MAb 28.2 [mouse IgG1, anti-CD28]) (24) and with phy-
tohemagglutinin (PHA; 0.25 mg/ml) plus IL-2 (25 ng/ml). PHA-preacti-
vated allogeneic CD8-depleted T cells from healthy volunteers were used
for specific activation. On days 1, 3, and 6, 200 �l of supernatant was
collected and replenished with medium alone on day 1 and with medium
together with reactivating agents on days 3 and 6. At days 1, 3, 6, and 14,
supernatants were collected and stored at �80°C. Viral RNA was ex-
tracted from the culture supernatant, and HIV RNA quantification was
done in five PCR runs using the ANRS assay (HIV-1 Generic Charge
Virale; Biocentric, Bandol, France). The PCR targets a conserved con-
sensus region in the long terminal repeat (LTR) of the HIV-1 major
group and has proved suitable for quantification of HIV-1 isolates of
different clades (25). The sequences of the forward primer (primer
NEC005) and the reverse primer (primer NEC131) were 5=-GCCTCA
ATAAAGCTTGCC-3= and 5=-GGCGCCACTGCTAGAGATTTT-3=,
respectively. The internal HIV-1 TaqMan probe (MLC1) MGB LTR (5=-
AAGTRGTGTGTGCCC-3=) carried the 5= reporter 6-carboxyfluorescein
and the 3= quencher 6-carboxytetramethylrhodamine (Applied Biosys-
tems, Foster City, CA). Real-time PCR was performed on a CFX96 device
(Bio-Rad), and experimental values were derived from the kit standards as
described by the manufacturer.

HIV DNA quantification. Total cell-associated HIV DNA in PBMCs
from cART patients and in leukocytes or purified resting CD4� T cells
from HICs was quantified using an ultrasensitive ANRS real-time PCR
assay (generic HIV DNA cell kit) as previously described (26). The prim-
ers and the probe were the same as those used in the real-time PCR for
HIV-1 RNA quantitation. All runs were performed with a 50-ml volume
containing DNA extract (1 mg of total DNA), primers and probe (a 200
nM concentration of each), 1� PCR buffer (Platinum 1 quantitative
PCR SuperMix-UDG; Invitrogen, Cergy-Pontoise, France), and car-
boxy-X-rhodamine reference dye (500 nM; Invitrogen). Thermocy-
cling conditions were 2 min at 50°C and 10 min at 95°C, followed by 50
cycles at 95°C for 15 s and 60°C for 1 min. Each entire DNA extract was
tested in two to four PCR runs. The results are reported either as the actual
HIV DNA copy number per million cells or as 50% of the detection limit
for samples in which HIV DNA was undetectable. The detection limit
varied according to cell availability (27).

UCA. An ultrasensitive coculture assay (UCA) was applied to pu-
rified CD4� T cells isolated by negative selection from total cryopre-
served PBMCs from HICs and cART patients (Miltenyi, Spain). Puri-
fied CD4� T cells were stimulated with a pool of allogeneic irradiated
PBMCs at a ratio of 1:5 (20,000 CD4� cells and 100,000 allogeneic
PBMCs per well) in 96-well plates in the presence of PHA (1 �g/ml) and
IL-2 (100 U/ml) (Novartis, Spain) for 72 h. Simultaneously, PBMCs from
three HIV-seronegative donors were isolated and CD8� T cells were de-
pleted with RosetteSep human CD8� depletion cocktail (Stemcell Tech-
nologies, France). Pooled CD8-depleted PBMCs were then stimulated
under three different conditions (referred to here as 3�3 cells) as previ-
ously described (28, 29). After 72 h, the PHA was washed off and the 3�3
cells were cultured in R10 medium containing IL-2 (100 U/ml). On day 7,
the culture was scaled up to 48-well plates with the addition of 200 �l of
fresh medium. During the following 2 weeks, to maximize viral out-
growth, the cocultures were fed once a week with fresh medium and once

a week with 3�3 cells. After 21 days in culture, the supernatants were
tested for p24 by enzyme-linked immunosorbent assay (ELISA; PerkinEl-
mer, Spain). p24-negative wells were given a value of zero. Supernatants
and cells from positive wells were stored at �80°C.

HIV-1 spread, viral titration, and p24 input assay. PBMCs from
three HIV-1-seronegative donors were depleted of CD8� T cells and stim-
ulated as described above. After 72 h of activation, pellets of 1 � 106 cells
were spinoculated for 2 h at 2,000 � g and 22°C with UCA supernatants
containing �10 pg/ml p24 or with HIVNL43 as a positive control in the
presence of dextran (25 �g/ml). After spinoculation, the cells were resus-
pended and cultured in R10 medium with IL-2 (100 U/ml; Novartis,
Spain). Virus spread in the supernatants was monitored on days 0, 1, 7,
and 10 postchallenge. Supernatants containing at least 1 � 106 pg/ml p24
were stored at �80°C for further analysis.

The numbers of 50% tissue culture infective doses (TCID50s) per mil-
liliter of three primary viral isolates (two from cART patients and one
from an HIC) and the HIVNL43 laboratory reference strain were measured
in TZM-bl cells. In addition, 3�3 cells were spinoculated with 10-fold
serial dilutions of virus (105 to 1 pg/ml p24) in the presence of dextran (25
�g/ml). After spinoculation, the cells were extensively washed and cul-
tured in R10 medium with IL-2 (100 U/ml). Virus production in the
supernatants was monitored by a p24 ELISA on days 3, 7, and 10 post-
challenge.

Sequencing of HIV-1 nef. Total DNA was extracted from UCA-posi-
tive wells with over 20 pg/ml of p24 for samples from HICs and patients
receiving cART by using a QIAamp DNA minikit (Qiagen, Spain), and
721 bp of the nef gene was amplified with specific primers as previously
described (56). Taking into account that we estimated that less than one
cell per well carried proviral DNA in the UCA with CD4� T cells from
HICs and that we performed the PCRs in replicates (n � 8), we approxi-
mated that each viral sequence underwent a single genome amplification
event. In addition, total viral RNA was extracted from virus expanded in
the UCA by reverse transcription-PCR with the pairs of primers described
above. The sequences were obtained by Sanger reactions using the Mac-
rogen Service (Netherlands) and analyzed with the Sequencher program
(version V; Gene Codes). Evolutionary analyses were conducted in MEGA
(version 5) software. The number of APOBEC signatures for each patient
was calculated with the Highlighter tool from the Los Alamos National
Laboratory database, and the sequences were compared to HIV-1 consen-
sus clade B sequences.

Analysis of the HIV-specific CD8� T cell response. The capacity of
CD8� T cells to suppress infection of autologous CD4� T cells ex vivo
was measured as previously described (30). The capacity of CD8� T
cells to suppress HIV-1 replication was calculated as the log of the
decrease in the level of p24 production in the presence of CD8� T cells
relative to the level of p24 production in the presence of CD4� T cells
cultured alone.

The frequency of HIV-specific (gamma interferon [IFN-	]-secreting)
CD8� T cells was estimated with an enzyme-linked immunosorbent spot
assay after a brief stimulation with pools of optimal HIV peptides.

Statistical analysis. P values were calculated by the Mann-Whitney
test. Only significant values (P � 0.05) are shown in the figures. Spear-
man’s correlation coefficient (r) and the associated two-tailed P value
were also calculated.

RESULTS
A low frequency of viral reactivation correlates with a low num-
ber of latently infected resting CD4� cells. We first compared the
capacity of resting CD4� T cells from HICs and the capacity of
resting CD4� T cells from patients receiving antiretroviral treat-
ment to reactivate HIV-1 replication. Because of the complex reg-
ulation of HIV-1 latency, the reactivation of all fully competent
integrated provirus requires repeated stimulation of the cells (31)
or the use of different stimuli (14, 32, 33). Therefore, we evaluated
HIV-1 reactivation in isolated resting (HLADR� CD69� CD25�)
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CD4� T cells from 10 HICs and 4 cART patients cultured under
the following conditions: no stimulus (mock) or stimulus with
PHA plus IL-2 with or without allogeneic CD8-depleted PBMCs,
anti-CD2 plus anti-CD28, IL-7 (34), prostratin (24, 35), HMBA
(36), 5-azacytidine (37), chaetocin (38), and SAHA (24, 39). All
the stimuli were periodically replenished in the cultures. The effi-
ciency of viral reactivation, measured in terms of positive HIV-1
RNA levels in the culture supernatants, varied among individuals
and conditions. The total proportions of positive reactivations at
days 1, 3, 6, and 14 were 0.48, 0.73, 0.9, and 0.93, respectively, for
cART patients and 0.22, 0.23, 0.34, and 0.35, respectively, for
HICs. Among the positive reactivations, higher median HIV-1
RNA levels per patient were measured at day 14 for cART patients
(median number of HIV-1 RNA copies per milliliter at days 1, 3, 6,
and 14, 1,126.5 [IQR, 412.5 to 1,530.8], 1,875 [IQR, 857 to
5,323.8], 2,120 [IQR, 618.8 to 13,285], and 5,023.5 [IQR, 1,601.7
to 5,0678.5], respectively; P � 0.012) and at day 6 for HICs (me-
dian number of HIV-1 RNA copies per milliliter at days 1, 3, 6, and
14, 1,044 [IQR, 311 to 2,536], 2,963[IQR, 2,002.8 to 17,151.8],
5,514.5 [IQR, 697.3 to 41,643.8], and 2,225 [IQR, 1,093.5 to

8,061.5], respectively; P � 0.3), although the differences over time
were not statistically significantly different for HICs. These results
are in agreement with reports showing that repeated stimulation is
necessary to induce maximal reactivation (31). While HIV-1 RNA
production in cultures of CD4� T cells from cART patients was
usually sustained and HIV-1 RNA accumulated over time, in the
case of HICs, HIV-1 RNA was often detected at a single time point
or the level of HIV-1 RNA production did not increase over time
(Fig. 1A).

Viral reactivation was observed in cells from all the HICs (ex-
cept HIC 86007) under at least one condition tested (Fig. 1B). The
anti-CD2 plus anti-CD28 stimulus often resulted in viral reacti-
vation events in HICs (median proportion of positive reactiva-
tions per HIC, 0.5 [IQR, 0.19 to 0.81; n � 10]; at least one reacti-
vation event occurred in 8 of 10 HICs), but this difference was not
statistically significantly higher than that under the other condi-
tions tested. Viral reactivation occurred in resting CD4� T cells
from cART patients at least at one time point under all conditions
tested (Fig. 1B). Overall, the number of conditions activating virus
was much higher in cART patients than HICs (Fig. 1C, left) and

FIG 1 Viral reactivation in resting CD4� T cells from HICs and cART patients. (A) HIV RNA levels produced by CD4� T cells from 10 HIV controllers and 4
cART-treated patients over time under the different culture conditions tested. Thin lines, data for individual subjects; thick lines and colored areas, the median
and the IQR per group, respectively. (B) The heat map represents the frequency of positive HIV RNA determinations assessed in culture supernatants of CD4�

T cells from HICs and cART patients at different times of culture (days 1, 3, 6, and 14) in the presence of various stimuli. (C) Differences in the number of culture
conditions resulting in at least one positive HIV RNA determination at any given time (days 1, 3, 6, and 14) with cells from HICs and cART patients (left) and
correlation with the number of HIV DNA copies per million resting CD4� T cells (right). Each symbol represents one patient (open symbols, HICs; filled
symbols, cART patients). The results for HIC 34006 are not included in the correlation due to a technical problem during the quantification of the HIV DNA.
Allo, allogeneic cells; 5=AZA, 5-azacytidine.
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was directly related to HIV DNA levels in resting CD4� T cells for
all subjects (Spearman r � 0.88, P � 0.0001) (Fig. 1C, right) and in
the HIC subgroup (Spearman r � 0.783, P � 0.009).

HIV-1 outgrowth is reduced in HICs and limits viral spread.
Besides the difference in the frequency of infected cells, additional
factors might contribute to fewer reactivation events in HICs: (i)
the differential capacity to produce viral particles, (ii) the resis-
tance of HIC cells to HIV-1 infection (17, 40), or (iii) the lower
replicative capacity of the newly produced virions. Although be-
cause of sample limitations we could not perform a standard lim-
iting dilution assay, we used an ultrasensitive coculture assay
(UCA) to monitor ex vivo HIV-1 production by CD4� T cells
from 33 HICs and 8 cART patients. We estimated that less than
one cell per well in the UCA of CD4� T cells from HICs carried
HIV-1 DNA, based on the number of cells per well used (median,
0.8 CD4� T cells carrying HIV-1 DNA per culture [IQR, 0.8 to 1.2
CD4� T cells carrying HIV-1 DNA per culture], considering that
all the HIV-1 DNA measured in the PBMCs was in CD4� T cells,
which made up 
25% of the PBMCs, and that only one copy was
present per infected cell). We detected the p24 antigen in the cul-
ture supernatants of CD4� T cells from 22 HICs (66.6%) and 7

cART patients (87.6%) (Fig. 2A). Although fewer HIC CD4� T
cells than cART patient CD4� T cells were analyzed in total
(860,000 [IQR, 490,000 to 1,700,000) versus 1,880,000 [IQR,
1,700 000 to 2,240,000]), because of the limited availability of cells
from HICs, no difference in the frequency of p24-positive cultures
was found (medians, 4.8% [IQR, 0 to 9.1%] and 4.1% [IQR, 2.2 to
9.3%] for HIC and cART patients, respectively; P � 0.73). In
contrast, cells from HICs produced significantly less p24 antigen
than cells from cART patients (medians, 9.03 pg/ml p24 [IQR,
9.29 to 35.8 pg/ml p24] for HICs and 34.97 pg/ml p24 [IQR, 208.7
to 1,047 pg/ml p24] for cART patients; P � 0.041) (Fig. 2B). A
trend toward a lower level of p24 production by cells from HICs
was also observed when only p24-positive cultures were consid-
ered (medians, 18.6 pg/ml p24 [IQR, 8.7 to 37.7 pg/ml p24] and
36.2 pg/ml p24 [IQR, 18.1 to 1,158 pg/ml p24] for HICs [n � 22]
and cART patients [n � 7], respectively; P � 0.1). A direct corre-
lation between the PBMC HIV DNA load and the amount of p24
produced in culture was found (Spearman r � 0.46, P � 0.002)
(Fig. 2C). These data show that HIV-1 can be reactivated from
HIV-1 controllers’ cells in the presence of heterologous cells but
that virion production is often inefficient.

FIG 2 UCA. The UCA was performed with CD4� T cells isolated by negative selection from cryopreserved PBMCs from 33 HICs and 8 cART patients. (A) Each
bar corresponds to one subject and represents the median level of HIV-1 p24 in positive wells. (B) Comparison of levels of p24 production in the UCA with cells
from HICs (n � 33; orange) and cART patients (n � 8; blue). Each circle represents one subject, and the lines indicate mean values. The P value was calculated
using the Mann-Whitney test. (C) Correlation between the PBMC HIV DNA load and the level of p24 production by CD4� T cells. Light-colored symbols, cells
with HIV DNA levels below the limit of detection, corresponding to HICs; line, data fit to a linear regression. The frequency of p24 positivity was calculated as
follows: (number of p24-positive wells/total number of wells tested) � 100. Virus production in the UCA was calculated as the median level of p24 production
in positive wells.
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To further evaluate if differences in virus reactivation and pro-
duction in HICs and cART patients affect viral spread, we infected
preactivated primary allogeneic CD8 cell-depleted PBMCs with
supernatants from the UCA containing �10 pg/ml of p24. Viral
spread in cells that were in culture for a week was monitored by a
p24 ELISA. Our data showed a lower frequency of spread of infec-
tions in samples from HICs than samples from cART patients (3%
for HICs versus 21.4% for cART patients; P � 0.045) (Fig. 3A and
B). To evaluate if viral spread was associated with a threshold of
virus production from CD4� T cells, we performed a p24 limiting
dilution infectivity assay and tested the growth of virus from one
HIC (HIC 60005) and two cART patients (patients ART5 and
ART8) in cells in comparison with that of HIVNL43. We found a
direct correlation between viral input and viral outgrowth (Spear-
man r � 0.77, P � 0.0001) (Fig. 3C), where sustained viral out-
growth was observed only at p24 values of �103 pg/ml, confirm-
ing the existence of a p24 threshold for successful viral spread.
Additionally, by using a nonlinear fit of the data, we estimated that
380.18 pg/ml of p24 is the half-maximal effective concentration
(EC50) required to achieve viral spread in 50% of cultures (Fig.
3D). This amount is well above the median level of production
observed for CD4� T cells in HICs (9.03 pg/ml) and further sup-
ports the suggestion that low viral spread from HIC CD4� T cell
cultures is limited by low levels of particle release after reactiva-
tion.

To evaluate whether differences in viral spread in HICs and
cART patients could be due to the presence of defective virus, we
extracted DNA and RNA from UCA wells containing cells from
HIC 60005 and cART patients ART5 and ART8, whose viruses
were able to infect allogeneic cells. We also analyzed cells from
four additional subjects, three HICs (HICs 34009, 134001, and
57002) and one cART patient (patient ART8), whose virus did not
spread. To increase the chances of amplification, we focused on
the gene nef. As shown in Fig. 3E, we observed monophyletic
groups of viruses with a lower mean population diversity in HICs
than cART patients (0.022 for HICs versus 0.061 for cART pa-
tients). These results corroborate previous experimental data
that identified in HICs monoclonal populations with low levels
of diversity (41). Moreover, no defects in the nef reading frame
were found in any of the study groups. An exception was HIC
34009, where two large deletions in nef (19 and 16 amino acids)
were observed (Fig. 3E, right). No differences in APOBEC sig-
natures were found between viruses from HICs and cART pa-
tients (not shown), dismissing the potential role of hypermu-
tation in the differential spread potential of the viruses from
both groups. Taken together, our data show that the produc-
tion of fit viruses by CD4� T cells is stochastic and highly
dependent on the total frequency of infected cells. Viral reac-
tivation in cells from HICs was difficult and resulted in only the
transient release of viral particles that was not sufficient to
ensure sustained viral spread.

The amplitude of CD8� T cell responses is reduced in HIC
virus nonproducers. We then examined whether the different
amplitudes of HIV-specific CD8� T cell responses that we and
others have observed in HICs (8, 9, 42) were related to the capacity
of these patients’ CD4� T cells to produce viral particles ex vivo.
Viral producers were defined as those HICs with p24 values in the
supernatant over the limit of detection of the UCA. We found that
the HIV-specific CD8� T cell responses of HICs whose CD4� T
cells did not produce viral particles in the UCA did not differ from

those of cART patients (9, 43). In particular, CD8� T cells from
the latter HICs did not efficiently suppress HIV-1 infection of
autologous CD4� T cells (Fig. 4A), a property considered charac-
teristic of CD8� T cells from HICs (4, 30, 44). Similarly, the fre-
quency of circulating HIV-specific (IFN-	-producing) CD8� T
cells in the same HICs was low (Fig. 4B). In contrast, HICs whose
CD4� T cells efficiently produced viral particles ex vivo had potent
CD8� T cell responses (Fig. 4A and B). Positive correlations were
found between the capacity of CD8� T cells from HICs to sup-
press HIV-1 infection and the level of p24 produced by their
CD4� T cells in vitro (Fig. 4B) and between the HIV-suppressive
capacity or the frequency of HIV-specific CD8� T cells and the
frequency of p24-positive cultures (Spearman r � 0.48 [P �
0.006] and Spearman r � 0.46 [P � 0.007], respectively; not
shown).

DISCUSSION

The results reported in this study provide functional evidence of
the stochastic nature of HIV-1 reactivation and how it may con-
tribute to the maintenance of virological control in the absence of
antiretroviral treatment. In particular, we show that the lower that
the frequency of infected resting CD4� T cells in HICs is, the lower
that the probability of viral reactivation, viral production, and
viral spread in vitro compared to that in cART patients is.

Our results suggest that natural control of HIV-1 infection can
be maintained at least at two different levels. Strong but incom-
plete viral control would result in low-level virion release from
infected cells, sustaining the strong CD8� T cell responses ob-
served in many HICs. This response, in turn, readily controls the
infection, maintaining a steady state between infected cells and the
immune system (Fig. 5A), which may result in residual systemic
activation and mild progression in the absence of therapy (45–47).
The virtuous circle between the virus and the host response would
be interrupted when the frequency of latently infected CD4� T
cells falls to a very low level, hindering the stochastic reactivation
of fit viruses (18) and leading to fewer viral amplification events.
This would result in the contraction of CD8� T cell responses, at
least transiently, due to the absence of the antigenic boost (Fig.
5B), as has indeed been reported in some HICs after ART initia-
tion (48). This implies that a low frequency of latently infected
cells may be sufficient to transiently prevent viral outgrowth,
even in the absence of a major contribution of the immune
system, as recently reported in two patients in Boston, MA, and
a baby in Mississippi (23, 49). This phenomenon may be par-
ticularly relevant and efficient in the long term in HICs, whose
target cells are also strongly resistant to HIV-1 infection, par-
ticularly at low infectious doses (17, 40), providing an addi-
tional barrier to viral amplification. In addition, weakly re-
sponsive memory CD8� T cells in HICs are ready to react and
expand promptly in response to stochastic viral amplification
events (12, 50) (Fig. 5C), thereby ensuring natural control of
HIV-1 infection in the very long term.

The levels of cell-associated HIV-1 DNA have been shown to
predict progression to disease and the capacity to control infection
after treatment interruption (19, 22, 51–53). Although measure-
ment of total HIV-1 DNA levels may take into account many
copies of replication-deficient viruses, it is likely that under
conditions of very low levels of viral replication, as in HICs,
differences in the levels of HIV-1 DNA probably maintain pro-
portionality between replication-competent and noncompe-
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tent proviruses, as recently observed in treated patients (54).
This assumption is supported, despite limitations in the total
numbers of CD4� T cells tested, by the direct correlation between
the levels of cell-associated HIV-1 DNA and HIV-1 reactivation,
measured by determination of the levels of HIV-1 RNA or p24
production in culture supernatants, that was found when CD4� T
cells were split into parallel cultures and were subjected to differ-
ent repeated stimuli (with polyclonal or allogeneic stimuli or the
provision of latency-reversing agents).

We did not find significant differences in the hypermutation
rates or defective sequences between the viruses from HICs and
those from cART patients. However, the difference in the number
of infected cells between HICs and cART patients resulted in dif-

ferent levels of virion production after activation, which ulti-
mately would result in a lower probability of the spread of infec-
tions for HICs. The reduced cellular susceptibility to HIV-1
infection in HICs may contribute to the lower levels of infected
cells found in these patients (17). Moreover, the block of HIV-1
replication in HIC CD4� T cells has been shown to affect prein-
tegration steps of the replication cycle (17, 40, 55) but also mRNA
transcription from the integrated viruses (40), which could ex-
plain the reduced levels of viral particle production observed in
HICs. Further mechanistic studies on HIV-1 transcriptional steps
or particle production in HICs will contribute to a clarification of
these findings.

Our study has some limitations. First, our analysis focused on

FIG 3 HIV-1 spread from UCA wells and viral p24 limiting dilution input assay. (A and B) Viral spread in UCA wells containing �10 pg/ml of p24 from activated
CD8-depleted PBMCs was monitored on days 0, 1, 7, and 10 postinfection by p24 ELISA of the supernatants of cultures of cells from HICs (A) and cART patients (B).
(C) The outgrowth of HIV-1 from subjects 60005, ART5, and ART8 and the NL43 (X4) virus strain was measured in cells receiving 10-fold dilutions of input p24 ranging
from 105 to 1 pg/ml. The viral outgrowth represented in the graphs was calculated as follows: (amount of p24 at day 7 postinfection) – (amount of p24 at day 3
postinfection), where the amount of p24 is given in picograms per milliliter. (D) Nonlinear regression of p24 input and production. Line, fit of the data; dashed line;
half-maximal effective concentration (EC50). (E) (Left) Phylogenetic tree determined by the neighbor-joining method of nef sequences from HICs (HICs 34009, 134001,
57002, and 60005) and cART patients (cART patients ART5, ART6, and ART8). Sequences were obtained from proviral DNA (filled symbols) from UCA wells and viral
RNA in successfully spreading infections, indicated by arrows (empty symbols). Sequences were aligned to the consensus clade B sequence using the BioEdit package, and
the neighbor-joining tree was built with MEGA (version 5) software over 1,000 replicates. Mean evolutionary diversity analyses for the entire population were conducted
using the maximum composite likelihood model. The analysis involved 33 nucleotide sequences for HICs and 22 nucleotide sequences for cART patients. Codon
positions included were the 1st, 2nd, and 3rd positions and the noncoding sequence. All positions containing gaps and missing data were eliminated. There were a total
of 610 positions in the final data set. The tree is rooted to the consensus clade B sequence. Only bootstrap values over 70 are represented. (Right) Nef amino acid sequence
alignment of 34,009 clonal sequences shown at the top. Bold, deletions compared to the consensus sequence; colored regions, functional domains of the Nef protein
(blue, N-terminal and C-terminal regions; gray, globular core; green, flexible [F] loop).

FIG 4 HIC HIV-specific CD8� T cell responses according to the amount of p24 produced by their CD4� T cells in vitro. The responses of HIC CD8� T cells
tested in the UCA were analyzed ex vivo. HICs were classified as p24 producers or nonproducers depending on whether or not p24 was produced by their CD4�

T cells in the UCA. (A) (Left) CD8� T cell capacity to suppress infection of autologous CD4� T cells, as measured by the decrease in the level of p24 production
in the presence of unstimulated autologous CD8� T cells (n � 32; one value is missing, owing to unsuccessful CD4� T cell infection). (Right) Frequency of
IFN-	-producing cells after PBMC stimulation with optimal HIV-1 peptides. The box plots represent the medians; 10%, 25%, 75%, and 90% ranges; and outliers.
SFC, spot-forming cells. (B) Correlation between CD8� T cell capacity to suppress HIV-1 infection and p24 production by CD4� T cells. Each symbol represents
one HIC. The line indicates data fit to a linear regression.

HIV-1 Control and Frequency of Infected Cells

July 2016 Volume 90 Number 13 jvi.asm.org 6155Journal of Virology

http://jvi.asm.org


CD4� T cells not expressing activation markers ex vivo, which
excluded other cell types that may contribute to the reservoir size.
Second, our findings are limited to peripheral blood. The level/
frequency of reactivatable competent viruses in the tissues of some
HICs with low levels of viremia (i.e., HIC 146001) might be dif-
ferent from that in peripheral blood and might explain the ab-
sence of virus induction in vitro. Our analyses of viral sequences
were limited to a small number of sequences and capture the di-
versity associated only with the nef region after ex vivo culture.
Therefore, additional defects in other regions of the viral sequence
were missed and potential artifacts due to in vitro viral expansion
may have been introduced. However, other, deeper studies have
not detected, in general, major defects in the viruses from HICs
(15).

Overall, our results suggest that limiting the frequency of in-
fected cells could suffice to achieve temporary control of infection
in the absence of antiretroviral treatment. However, additional
intrinsic and/or immune mechanisms are needed to reinforce this
effect and ensure HIV-1 control in the long term.
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