
An atlas of the human kinome reveals the mutational landscape 
underlying dysregulated phosphorylation cascades in cancer

Aleksandra Olow1,3, Zhongzhong Chen2,3, R. Hannes Niedner1, Denise M. Wolf1, Christina 
Yau1, Aleksandr Pankov1, Evelyn Pei Rong Lee1, Lamorna Brown-Swigart1, Laura J. van’t 
Veer1, and Jean-Philippe Coppé1

1Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, 
University of California San Francisco, CA94115, U.S.A

2The State Key Laboratory of Genetic Engineering, Ministry of Education (MOE) Key Laboratory 
of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, 
School of Life Sciences, Fudan University, Shanghai 200438, China

Abstract

Kinase inhibitors are used widely to treat various cancers, but adaptive reprogramming of kinase 

cascades and activation of feedback loop mechanisms often contribute to therapeutic resistance. 

Determining comprehensive, accurate maps of kinase circuits may therefore help elucidate 

mechanisms of response and resistance to kinase inhibitor therapies. In this study, we identified 

and validated phosphorylatable target sites across human cell and tissue types to generate 

PhosphoAtlas, a map of 1,733 functionally interconnected proteins comprising the human 

phospho-reactome. A systematic curation approach was used to distill protein phosphorylation 

data cross-referenced from 38 public resources. We demonstrated how a catalog of 2,617 

stringently verified heptameric peptide regions at the catalytic interface of kinases and substrates 

could expose mutations that recurrently perturb specific phospho-hubs. In silico mapping of 2,896 

nonsynonymous tumor variants identified from thousands of tumor tissues, also revealed that 

normal and aberrant catalytic interactions co-occur frequently, showing how tumors systematically 

hijack, as well as spare, particular sub-networks. Overall, our work provides an important new 

resource for interrogating the human tumor kinome to strategically identify therapeutically 

actionable kinase networks which drive tumorigenesis.
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Introduction

Biological processes are largely mediated by fine-tuned cascades of Protein-Protein 

Interactions (PPIs). Many PPIs are transient and enzymatic in nature, resulting in highly 

dynamic and plastic signaling networks capable of propagating information within and 

between cells. Protein kinases are phosphorylating enzymes that regulate the function of 

specific protein substrates by interacting with and chemically modifying them (1). 

Phosphorylation circuits govern most cellular processes essential to tissue homeostasis. 

Disruption of the activity of kinases or their substrates by mutations or aberrant signaling is 

associated with cancer and other diseases. As a pivotal cause of disease, disrupted 

phosphorylation circuits are frequent targets for therapeutic interventions. Kinase inhibitors 

have proved successful in a number of clinical scenarios, including targeting HER2 in breast 

cancer, BCR-ABL in chronic myeloid leukemia, and BRAFV600E in melanoma. However, 

adaptive reprogramming of kinase cascades and feedback loop mechanisms contribute to the 

development of treatment resistance, the primary obstacle in achieving sustained responses 

to targeted therapies (2). Therefore, it is imperative to understand not only individual kinase-

substrate protein relationships but to acquire in depth knowledge of the inter-connectivity of 

these networks and the biochemical specificity of phospho-catalytic events in both healthy 

and diseased states. Such comprehensive kinome resource would greatly facilitate the 

elucidation of disease mechanisms and help identify the network components responsible for 

therapeutic responses.

Decades of research and recent powerful advances in biotechnology and systems biology are 

producing an ever-increasing accumulation of biological information about proteins, 

phospho-proteins, and proteomic-level regulation of cell processes and diseases (3–10). 

There are over 500 databases devoted to protein sequence, structure, molecular and chemical 

interactions, and signaling pathways (11–14). PPI databases such as STRING (15), PINA 

(16), MINT and IntACT (17), BioGRID (18), HPRD (19), IMEx (13) and numerous others 

collect and curate, to varying degrees, genetic and protein interaction data from numerous 

organisms. One limitation of these resources is that they merge known and predicted protein 

interactions, combine physical with indirect genomic interactions, and include data inferred 

from evolutionary conservation analysis. Moreover, PPI databases can contain several 

million interactions, but only about fifty thousand of these are found in human and even 

fewer relate to phosphorylation events.

Several major efforts integrate publicly available kinase-substrate phosphorylation data. A 

majority of these resources, such as KSD (20), KinBase (21), KinG (22), and Kinweb (23), 

provide valuable information about kinases, such as sequence alignment, phylogeny, or 

regulatory domains. These databases, however, often lack verified information on target 

residue sites within substrate proteins phosphorylated by kinases. Novel resources have 
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begun to map the relationship between kinases and substrates. For example, 

PhosphoSitePlus (24), PhosphoPOINT (25), RegPhos 2.0 (26), or Phospho.ELM (27) 

provide information on phosphorylation events garnered from literature and derived from 

substrate motif scans and high throughput Mass Spectrometry (MS) approaches. Although 

such resources are comprehensive, individual results may be compromised by integration 

systems that rely on highly automated computational pipelines. It often remains difficult for 

non-expert users to distinguish experimentally validated knowledge from potentially less 

reliable high-dimensional screens or prediction-based datasets. Finding information about 

the precise connectivity between a human kinase and its cognate substrates and specific 

target sites, or the reverse, can be cumbersome. Access to a well-characterized and 

experimentally validated, albeit smaller data set describing established phosphorylation 

circuits would enable efficient and reliable exploration of the molecular mechanisms of 

human diseases, and generate new hypotheses.

Here, we present PhosphoAtlas, a highly curated map of the human phospho-reactome and 

its mutated, tumor kinome counterpart. We define the phospho-reactome as a complete 

catalog of verified phosphorylation reactions involving an effector/kinase and a receiver/

substrate protein, and their network-level connectivity including details of phosphorylatable 

residue sites and heptameric target sequences when known. This dataset was developed via a 

series of computational steps designed to extract protein information from multiple data 

sources, and identify validated kinase-substrate interactions. We then utilized PhosphoAtlas 

database to explore the mutational variability of phospho-protein networks in tumors. We 

identify non-synonymous mutations that most directly and systematically impact the 

catalytic circuits of human kinase-substrate networks, potentially revealing which somatic 

mutations in cancer may have functional consequences and thus be therapeutically 

actionable.

Methods

Computational strategy to build PhosphoAtlas relational database

The Extended Method section describes the computational approach for building a database 

where human protein kinases are associated with their downstream protein targets and exact 

HPS’s they phosphorylate.

Identification and analysis of variants in peptide target sequences

PhosphoAtlas’ compendium of HPR’s was analyzed using the Catalogue of Somatic 

Mutations (COSMIC) database (28). First, to establish the presence of reported variants 

within HPRs, their genomic locations were calculated using the GENCODE GRCh37/HG19 

assembly (29) for all known substrate protein isoforms. Next, the variants within these 

locations were found by overlapping the variant GRCh37 genomic locations acquired from a 

complete COSMIC database with the genomic locations of our HPRs. The COSMIC 

database also provided additional information on type of the mutation, its consequence, and 

the histology associated with the particular alteration. The tools used for the database build 

and analysis included Bedtools, R programming language (Vienna, Austria, http://www.R-

project.org/), and R packages GenomicFeatures, Biostrings, and RWebLogo.
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PhosphoAtlas database access

The PhosphoAtlas dataset is a resource readily available to the public at http://

cancer.ucsf.edu/phosphoatlas upon registration. Users may download a ZIP archive that 

includes CSV and XLS files of the database, and a pre-build Cytoscape CYS session file 

(Cytoscape version 3). Cytoscape (30) is a very well adapted tool to visualize and explore 

the networks of kinase-substrate-residue target sites and their tumor variants. Cytoscape 

provides sophisticated means to search and filter the PhosphoAtlas dataset and access all 

nodes and edge attributes, and respective relationships for either the entire network or user-

selected sub-networks. Once the CSV / XLS / CYS data files are respectively loaded in 

Excel or Cytoscape, data can be filtered and exported in a variety of additional formats that 

support further processing in other network analysis and statistics packages. All files can be 

used to study or query either normal phospho-circuits, or tumor-associated networks.

Results

Strategy to establish a comprehensive map of the validated human phospho-reactome

We created a resource for the exploration of human phosphorylation circuits and its aberrant, 

cancer variations. The flow diagram presented in Figure 1a depicts the key steps of the 

processing pipeline we employed to acquire, integrate, filter, curate, and analyze pre-existing 

molecular data from publicly accessible resources (see Extended Methods, and Figure S1). 

This strategy enabled identifying experimentally verified kinase proteins, protein substrates, 

phospho-residue sites, and heptameric peptide sequences (HPS).

Integration of multiple data sources into one harmonized protein repository

First, we generated a ‘Protein Reference Index’ from HGNC and NCBI/Entrez to create a 

non-redundant inventory of human proteins defined by their standardized symbols, names, 

RefSeq protein and nucleotide IDs, which established a reliable ‘Primary Identifier’ record 

for each protein. Next, the Protein Reference Index served as a blueprint to systematically 

integrate and cross-reference the protein records extracted from other ‘external’ data sources 

using a curation method analogous to the PPI integration pipeline from (16) (Figure 1a, left). 

Directly matching external records were imported and structured by their common, unique 

Primary Identifier. If no matching primary identifier was available in the record, identifiers 

from external sources were cross-referenced in Curation 1 with the UniProtKB database (31) 

(Extended Methods). Once an external identifier was successfully cross-referenced, the 

related record was updated. Unmatched data were excluded. At each step of the assembly of 

the data, all additional available functional data, annotations and references were compiled 

as complementary content linked to their Primary Identifier.

To harmonize the heterogeneous content across the various sources of this initial human 

proteome resource, collected records were curated (Curation 2). Pattern matching computer-

implemented methods and sequence alignment algorithms was used to check, remove, or 

merge any redundant or ambiguous records, and flag discrepancies, as described in detail in 

Extended Methods. This resulted in a highly curated, non-redundant, comprehensive dataset 

of known human proteins, referred to as the ‘Harmonized Proteome Index’.
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Building a relational database connecting kinases to substrates and phospho-residue 
sites

Next, we attempted to identify the most complete and rigorously verified phospho-reactome 

portion of the human proteome. We applied data-mining methods to extract protein records 

related to phosphorylation events to identify kinase–substrate catalytic interactions, and 

phosphorylatable amino acids from substrates’ phospho-residue sites. Records from the 

Harmonized Proteome Index were queried using natural language processing algorithms to 

identify proteins that function as kinases or phosphorylatable substrates, as described in 

detail in Extended Methods using a curation method analogous to that in (24) (Figure 1a, 

Functional triage, and Figure S1, bottom-left section).

Qualified records generated a preliminary repository of functionally interconnected kinase 

and substrate proteins that was then mined for phosphorylation modification information 

(Figures 1a and S1, Curation 3). Each qualified substrate with an available phosphorylation 

(abbreviated as ‘phospho’) -site or -peptide sequence was compared to the latest 

corresponding curated protein substrate sequence (RefSeq/NCBI) using string- and pattern 

matching methods, as described in detail in Extended Methods. Once the location of a 

phosphorylated residue was confirmed, or if the sequence alignment or peptide composition 

was conclusive, the amino acid sequence surrounding the validated phospho-site was 

extracted from the protein RefSeq. We collected heptameric peptide sequences around 

phospho-residue target sites based on previous biochemical observations (32, 33) and our 

data (Figure S3d). Both residue site location and heptameric peptide were indexed and 

assigned to their substrate (and kinase(s) when reported) (Figures 1b). Since the repository 

of phospho-catalytic sites represents the critical cornerstone of all kinase–substrate 

functional connections, we rigorously ensured its accuracy by excluding all primary records 

providing candidate targets from data solely based on confidence-based approaches or not 

cross-referenced or not confirmed using complementary molecular techniques. We further 

distinguished validated phospho-residue sites with or without an identified upstream kinase, 

and sub-classified them separately (Figures 1b, two right groups).

The resulting database exclusively contains validated human kinases and substrates and their 

respective phosphorylation sites. These interactions were integrated into a network of 

kinase–substrate phospho-catalytic circuits that constitute ‘PhosphoAtlas’ (Figure 1b–c). 

Flat database files and a Cytoscape session are publicly available via the web portal http://

cancer.ucsf.edu/phosphoatlas to facilitate exploration and visualization of molecular 

networks (see Methods).

Overview of the human phospho-reactome

Analysis of PhosphoAtlas suggests that ~11% of all PPIs (16) (Figures S2) represent 

potentially actionable phospho-catalytic circuits of human cells. A total of 4,758 unique 

edges connect kinases to a target. PhosphoAtlas catalogues this network as 3,641 kinases 

with known substrates and residue target sites, and 1,117 with known substrates only. 292 

kinases are reported as exclusively or redundantly phosphorylating 1,276 distinct substrate 

proteins via 2,617 unique heptameric peptide regions (HPR’s) that correspond to 2,492 
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distinct heptameric peptide sequences (HPS’s), indicating that some HPS’s are ‘shared’ 

across multiple HPR’s (Figure 2a).

The connectivity between kinases, substrates and HPS’s (Figure 1b,c) can be categorized 

based on the number of cognate partners. For example, 300 kinases phosphorylate at least 2 

substrates, and 220 kinases phosphorylate at least 2 HPS’s (Figures 2b left panel, and S3). 

Most highly connected kinases and substrates are shown in Figure S4. Of the 1,276 

substrates with identified kinase partners, 53% (n=671) interact with a single unique kinase, 

while the remaining 47% (n=605) interact with at least two kinases. 913 of these 1,276 

substrates contain either one (29%, n=363) or at least two (43%, n=364) unique HPS’s. 

39.9% of all substrates in PhosphoAtlas contain only one unique HPS. Of the verified 2,492 

HPS’s, 74% (n=1,835) connect with a single unique kinase, and 26% (n=667) are shared by 

at least two kinases. In contrast, 98% (n=2,440) of the HPS’s are associated with a single 

substrate, while the remaining 2% are found across multiple substrates. We also found that 

58.9% of all kinase-substrate phosphorylation events are achieved via a unique peptide 

sequence. 24.7% of all kinases in PhosphoAtlas target one unique HPS. 41.8% of all kinases 

in PhosphoAtlas target one unique substrate. Taken together, these data portray the human 

phospho-reactome as almost evenly divided between highly specific kinase–substrate pairs 

and more highly connected nodes. Combinatorial logic of signaling, whereby multiple 

kinases can phosphorylate a single substrate, is mainly achieved through multiple distinct 

HSP’s on a single substrate (60.1%), while as few as 26.4% HSP’s are recognized by 

multiple kinases. Only six kinase-specific HSP’s are found on multiple substrates.

Grouping kinases by gene families (21) shows that 84% of validated substrates and 73% of 

validated peptides associate with either the AGC (e.g., PKA, PKC; 34.1% of substrates, 

26.8% of peptides), CMGC (e.g., MAPK, CDK; 27.4% substrates, 24.3% peptides) or TK 

(e.g., EGFR, SRC; 22.3% substrates, 22.1% peptides) kinase families (Figures 2c, and S5). 

The kinase interaction edges for each kinase family can be categorized as fully validated 

(known kinase, substrate and target site) or partially known (known kinase and substrate 

only) (Figure 2c, grey bars).

Our curation process also revealed valuable knowledge gaps (Figure 1b, four right groups). 

The database includes 275 kinase enzymes known to be upstream of 363 substrates, but for 

which no phospho-residue site was found or definitively established, and 277 identified 

kinases with no validated substrate. Reciprocally, 632 substrate proteins with 706 confirmed 

HPS’s have no conclusively established effector kinase, and 74 substrate proteins have no 

identified or verifiable upstream kinase or phospho-residue sites. These gaps suggest the 

need to broaden experimental investigation of phosphorylation cascades or circuits.

Target peptides provide insight into the diverse modes of kinase–substrate interactions

Representing kinase–substrate interactions solely as 1,276 pairs masks the inherent 

complexity of phospho-catalytic circuits. We further resolved their connectivity using the 

available 3,641 phospho-residue site-specific distinct interactions, which yielded 4,758 

unique kinase–substrate phospho-catalytic connections. Accordingly, Figure 3 shows how 

incorporating phospho-residue sites increases the resolution of kinase–substrate catalytic 

interaction networks. Figure 3a,b displays kinases according to the number of identified 
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substrates for each kinase and its number of HPS’s per substrate. There is a continuum from 

highly substrate-specific kinases with multiple HPS targets, such as MET (9 HPS on 1 

substrate) (Figure 3a, top left; 3b, bottom), to broad-spectrum kinases that phosphorylate 

10’s to >100 individual substrates at an average of 1–2 HPS targets, such as PRKCA (210 

HPS on 109 substrates, averaging 1.9 HSP per substrate) (Figure 3a, right; 3b, top). Most 

interaction networks are simpler; 91.4% kinases phosphorylate between one and twenty 

substrates, with a median of 2 unique HPS targets per substrate (mean = 2.804 HPS, st. dev. 

= 2.813). Figure 3c,d represent a similar spectrum for protein substrates and their 

connections to kinases and identified HPS targets. At the extreme ends are substrates 

phosphorylated by multiple kinases at mostly unique phospho-sites on these substrates (e.g. 

IRS1 (phosphorylated by 13 kinases on 28 HPS, average 2.1 HPS per kinase), MAPT (34 

HPS/14 kinases)), and substrates known to be targeted by few kinases, yet phosphorylation 

occurs at many target sites (e.g. RET (12 HPS/1 kinase). Similarly, when examining modes 

of action on HPS targets, there emerge sequences that are found in many substrates, but 

phosphorylated by single kinase, and those that are recognized by multiple kinases, yet are 

found only in few substrate proteins (Figure 3e,f). Ultimately, this increased resolution 

facilitates a more detailed understanding of regulatory signaling mechanisms, especially 

considering that many substrates have more than one phospho-residue site that are 

specifically and differentially phosphorylated by many kinases.

Exploring AKT cancer phospho-circuits using PhosphoAtlas

PhosphoAtlas supports the exploration of the human kinome at a global phospho-proteomic 

level, but also at the level of individual kinase proteins and their sub-networks, interactive 

partners, enzymatic modalities, and conservation patterns. For example, Figure 4a represents 

the network of kinases and substrates directly upstream and downstream of the AKT1, 

AKT2 and AKT3 proteins. This sub-network includes 102 kinase and substrate proteins (red 

and blue nodes, respectively) that interact via 184 unique kinase–substrate edges (all lines), 

of which 113 have known phospho-residue site information (green lines) (Figure 4a). 

Phospho-signaling cascades that funnel through AKTs can further propagate via downstream 

kinases (Figure 4a, bottom left red) or affect non-kinase substrate proteins (Figure 4a, 

bottom right blue) that regulate normal and tumor-associated cell processes such as growth, 

motility, transcription or inflammation. The broad range of disease ontology terms 

associated with these 102 proteins and mainly associated with cancer, demonstrates the 

diverse functional impact of AKT-related signals (Figure 4a, pie chart; Figure S6; data 

mined using Ensembl (Biomart)).

Considering the number of additional upstream kinases (uk) and distinct residue sites (rs) 

that exist per protein composing AKT circuits (numbers specified within green and red 

squares above and below each protein, Figures 4a), reinforces the complexity of AKT 

circuitry in particular and phospho-circuitry in general, and illustrates the utility of 

PhosphoAtlas for visualization and exploration.

Differences among the three AKT family members in their number of kinase–substrate 

edges with or without known phosphorylation sites are apparent (Figures 4a, S7). This in 

part reflects that, while AKT1 has been thoroughly studied, much less is known about 
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AKT2, AKT3, and their targets. Such differences are repeatedly found across kinase 

subfamilies (e.g. CDKs or SRCs).

PhosphoAtlas also enables the identification of consensus peptide target sequences that 

could be used to scan the human proteome to predict new substrate phosphorylatable sites, 

or design probes for kinase activity assays. For instance, by comparing all HPS’s targets of 

AKT1, we identified the most conserved amino acid residues within heptameric peptides 

(Figures 4b, S8), which is supported by other studies. Beyond the required presence of a 

phosphorylatable Serine (S) or Threonine (T) at the center of all HPS’s, the Arginine (R) at 

position −3 was highly conserved with a frequency of 83.2%. This result highlights the 

biochemical importance of Arginine’s presence at this site for AKT1 to phosphorylate its 

substrates.

Given that much of the human kinome is considered druggable, it is of interest to identify 

known (pathogenic and/or somatic) variants within target sequences (see below for 

methodology). Figure 4a shows which substrate target sites of AKT1 contain non-

synonymous variations found in tumors. Remarkably, analysis of the cancer-associated 

variants within AKT1 targets shows that loss of Arginine (−3) accounts for 20.6% of all non-

silent mutations reported by COSMIC within these HPS’s (Figures 4c, S8d–e). It is therefore 

conceivable that this HSP mutation in AKT1 downsteam substrates such as BRCA1, 

CASP9, PTEN or MDM2, is a causal molecular mechanism resulting in tumorigenic 

pathway dysregulation in breast, colorectal, brain and other cancers.

Global analysis of oncogenic mutations affecting phospho-target sites reveals the 
disrupted phospho-circuits of cancer

The collection of phospho-target sites mapped in PhosphoAtlas represents a unique 

opportunity to identify genetic mutations with functional consequences on kinase circuits. 

PPI-perturbing mutations are significantly more likely to be deleterious than non-PPI-

perturbing mutations (10, 34). To identify cancer mutations that directly impact kinase-

substrate catalytic interactions, we designed a reverse-mining process that maps genetic 

variations onto phosphorylatable substrate regions (Figure 5a; see Methods for details). We 

analyzed our compendium of HPR’s using the Catalogue of Somatic Mutations In Cancer 

(COSMIC) database (28), which includes curated information from The Cancer Genome 

Atlas project (TCGA), the International Cancer Genome Consortium (ICGC), and 

systematic screens of 1000’s of tumor genomes. We mapped the mutational landscape of 

cancer phospho-circuits in a tissue- or disease- agnostic fashion.

Protein variants identified through this process were classified based on the consequence of 

genetic alterations (Figure 5b). Of the original 2,617 distinct substrates’ HPR’s, 39.4% 

(n=1,031) were not affected by any known mutation, 8.3% (n=217) contained only silent 

variants (synonymous), and 52.3% (n=1,369) contained at least one non-synonymous variant 

that altered amino acid composition (‘nsHPRv’). The distinct variants generated a new group 

of 2,896 mutated sequences (Figure 5c), which perturb 1,963 kinase-substrate interactions 

(i.e. 46.7% of all kinase circuits) with potential detrimental effects on phospho-catalytic 

circuits (10).
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Among all HPR’s affected by 3,703 synonymous and non-synonymous variations, missense 

substitutions account for the majority (69.1%) of all variants, followed by 17.8% of coding 

but silent substitutions (Figure 5d). The differential levels and pattern of co-occurrence of 

non-synonymous versus synonymous mutations of HPR’s (Figures 5e, S9a–c) imply that 

phospho-target sites are mutated in a selective fashion in tumors. Only 5% of all HPR 

variants originate from mutations qualified as germline single nucleotide polymorphisms 

(Figure S10). Adenocarcinomas are the most prevalent pathology (20%) associated with all 

variants (Figure 5f), while the highest number (14.4%) of phosphorylation-site-variants 

originates from tumors of the large intestine (Figure S11).

We next proceeded to identify which substrates are most affected by cancer-associated 

mutations that alter their phospho-targetability. To do so, each protein was plotted based on 

its individual ratio of mean number of variants per HPR (Figure 5g, y-axis), against its total 

number of HPR (x-axis). Each, dot, representing a protein, was subsequently color-coded as 

the mean percentage of nsHPRv’s per HPR, and averaged per substrate, to indicate whether 

genomic mutations mainly caused synonymous variants or non-synonymous sequence 

alterations (non-synonymous high%-red and low%-blue) (Figures 5g, S9d–e). For instance, 

FLT3 contains few phosphorylatable HPR’s associated with many cancer mutations that 

mostly result in alternative peptide sequences (high% non-synonymous variants). 

Conversely, IRS1 display numerous HPR’s that are overall subject to few variants, of which 

~50% cause amino acid changes. In this spectrum, TP53 emerges as a substrate with a very 

high mean ratio of variants per HPR, associated with a large number of known target sites 

and a high proportion of variants being reported as non-synonymous (80.7%).

This analysis also identified proteins for which the COSMIC database does not report any 

variant in their phosphorylatable regions (Figure 5g, separated bottom panel; Figure S9d–e). 

Out of these 214 proteins, IKBKB, CREB1 and STAT1 were especially interesting examples 

due to their known critical role in regulating phosphorylation cascades involved in cancer 

development.

When using HPR’s as a way to report which kinases would be most affected by downstream 

nsHPRv’s in substrates, the spectrum of kinases with most-to-least variable networks 

emerged (Figure S12). This highlighted kinases that are potentially more frequently affected 

by non-synonymous mutations in their target sites (e.g. CHUK, GSK3A, or PRKDC), and 

kinases with genomically stable networks of downstream targets (e.g. MAP3K14, EEF2K).

Next, we investigated the 50 HPR’s with the highest number of reported unique non-

synonymous variants. These most diversely altered sequences identified 29 substrate 

proteins only (Figure 5h). For example, TAPSLSG is a region from CTNNB1 that has the 

highest number of total variants per HPR, out of which 84.6% are amino acid coding, non-

synonymous alterations. Looking at individual proteins, we find that not all target sites show 

the same mutational susceptibility. Many of the listed proteins are known tumor suppressors 

or oncogenes, while some are recognized enzymes, including kinases or phosphatases, 

showing how mutations in their phospho-target sites could globally afflict signaling 

cascades. For instance, target sites characterized by very high proportion of nsHPRv’s were 

found in BRAF, EGFR or FLT3, all of which contain activating kinase domain mutations 
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that result in malignancies such as BRAFV600E in melanoma, or EGFRL858R in lung 

adenocarcinoma.

Subsets of distinct mutations may concentrate in pathways implementing cancer hallmark 

phenotypes (35). As mutations and resulting perturbations in kinase networks are key to 

cancer biology, we generated a network representation overlaying non-synonymous 

heptameric peptide region variants (nsHPRv’s), onto the phospho-reactome interaction map 

using Cytoscape (30) (Figures 6 and S13–S17; purple lines; data file available at http://

cancer.ucsf.edu/phosphoatlas upon registration). This network represents all distinct 

phospho variants in COSMIC associated with tumors of every type. As illustrated, kinase 

circuits most selectively disrupted (defined by width of purple lines and node margins) 

across tumor types emerge out of the background of predominantly invariable phospho-

circuits (green lines). This mosaic of normal and aberrant catalytic interactions shows how 

tumors systematically hijack – and spare – particular sub-networks.

Discussion

Phosphorylation cascades intimately regulate cell behavior. Availability of a highly curated 

compendium of phosphorylation data accurately recapitulating the molecular wiring of cells 

could support elucidation of disease mechanisms and vulnerabilities to therapeutic 

intervention in cancer. We built PhosphoAtlas, a novel data resource to study human 

phosphorylation networks, which includes a map of the differential impact of tumor 

mutations on phospho-target sites and reveals the most variable phospho-signaling hubs of 

cancer. PhosphoAtlas can support the exploration of a wide range of research questions 

related to human phospho-circuitry, and is meant to serve as a research hypothesis-

generating platform.

To develop PhosphoAtlas, we systematically mined the profusion of available data existing 

in various formats and stages of verification or completion, found in a large number of state-

of-the-art databases. We applied a stringent condensation-like process to filter, select, 

eliminate, cross-reference, qualify and validate information related to protein 

phosphorylation in human cells. We did not use prediction algorithms, conditional selection 

or inferred relationships, but rather relied on mining published data generated and validated 

by diverse experimental and computational techniques (16–18, 24). Although this approach 

restricted the number of kinase–substrate interactions represented in PhosphoAtlas, due to 

the exclusion of unvalidated phospho-catalytic interactions, it is meant to provide 

researchers with a still-large catalogue of protein kinases, substrates, phosphorylatable sites, 

and their connectivities from only the most reliable, validated sources. The result of this 

effort is both a data resource and a coherent map of functionally interconnected proteins 

comprising the human phospho-reactome (http://cancer.ucsf.edu/phosphoatlas).

The content of PhosphoAtlas can be exploited for at least three broad purposes: integrative 

in silico analysis and visualization; experimental data analysis; and bioassay development. 

For all these purposes, a major contribution of PhosphoAtlas is its inclusion of information 

on the specific phospho-residue sites of substrates, which enables investigation of kinase-

substrate interaction networks at a higher level of resolution. As visualized and catalogued 
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using PhosphoAtlas, the human phospho-reactome network appears to be roughly evenly 

divided between highly specific kinase-substrate pairs (33.2% proteins with single kinase-

substrate connection, 19.1% proteins with two kinase-substrate connections), and more 

highly connected protein nodes (47.7% proteins with three or more kinase-substrate 

connections).

We identified kinases with preference to target many substrates via unique peptide target 

sequence versus those that target fewer substrates but can recognize a larger number of 

peptide target sequences. Such findings suggest, by the sheer number of alternative ways a 

kinase can phosphorylate a substrate, the essentiality of certain kinase-substrate interactions; 

in the event of a disruptive mutation in one region, a protein is likely to remain functional 

due to compensatory rerouting mechanisms. For example, the phosphorylation of GAB1 by 

MET kinase on 9 different target sites suggests this process may be essential for cell 

homeostasis. Moreover, kinases with the ability to phosphorylate many substrates on 

different target peptide sites may be active in multiple networks that regulate functionally 

similar cellular processes. If such a kinase’s first intended peptide target becomes disabled 

due to a mutation, a wider range of feedback mechanisms may be expected. Among such 

proteins, PRKACA can recognize and phosphorylate as many as 194 unique peptide 

sequences on 121 different substrates with prominent important functions in both the 

cytoplasm and the nucleus of cells. The diversity of connectedness of peptide targets at the 

regulatory interface of kinases and substrates emphasizes how the wide spectrum of network 

topologies of each substrate or kinase relates to their distinctive roles and functional impact 

on phospho-circuits.

More generally, knowledge of phosphorylation targets’ mutational landscape coupled with a 

wealth of information on the topology of human kinase networks could advance our 

understanding of signaling pathways in healthy and diseased states. PhosphoSite Plus (24) 

contributed to this effort by providing a proteome-wide snapshot of disease-related missense 

mutations across different post-translational modifications (PTMVar). Investigating the 

prevalence of these mutations and integrating them into comprehensive signaling networks is 

still needed to reveal the strategic, therapeutically actionable kinase circuits of tumors. 

Identifying which cancer mutations functionally impair biological networks remains a 

challenge, even when using large-scale differential mapping approaches (10, 36–40). 

Conceptually, the sparse and relatively non-recurrent mutation profiles within and across 

tumor types may be more comprehensible at the pathway level than at the level of individual 

genes (35, 41–47). Mutations that directly perturb protein phosphorylation circuits may be 

especially pathologically relevant to cancer development and eventually guide targeted 

therapy.

Thus motivated, we used the heptameric peptide library created from our curated kinase-

substrate repository as a functional blueprint to filter 100,000’s of candidate somatic 

mutations found across 1,000’s of different human tumors. We found that over half (54.9%) 

of the distinct target peptides (2,617) contain at least one non-synonymous variant with 

altered amino acid composition. We identified which proteins are most affected by non-

synonymous variants in phosphorylatable peptide regions (Figure 5g). We depicted the 

reported variant load for 29 proteins that are most affected by non-synonymous alterations in 
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the target peptide regions (Figure 5h). Cancer phospho-circuits revealed widespread 

perturbations across the phospho-reactome, but also recurrent aberrations that selectively 

affect specific phospho-hubs, including both proto-oncogenes and tumor suppressor 

proteins. The diversity of sub-networks connectivity combined with the differential 

mutational status of target regions catalogued in PhosphoAtlas is a roadmap to explore the 

strategic kinase-hot spots of cancer.

Since PhosphoAtlas is meant to be a hypothesis-generating platform, users may –for 

example– investigate the potential relationship between the impact of oncogenic mutations 

on kinases and their local signaling topology. For instance, upon examining the number of 

distinct variants of phosphorylation sites per kinase, users may notice that some of the 

kinases with a very high endogenous nsHPRv mutational load phosphorylate a relatively low 

number of substrates, and thus seem to have a low level of signaling pleiotropy (e.g. FLT3, 

KIT, KDR, PDGFRB, BRAF/RAF1; Figure S15). It is tempting to speculate that such 

kinases may be especially suitable targets for tumorigenesis, possibly not just because they 

achieve a particular advantageous hallmark of cancer but also because they minimize 

“collateral damage” which may otherwise lower the fitness of an emerging cancer cell. This 

speculation seems consistent with observations of the other end of the spectrum, whereby 

many kinases with very large number of downstream substrates seem to show relatively few 

or no non-synonymous variants in their phospho-sites (e.g. PRKCA/G/Z, PRKACA, 

MAPK1/3/14, CDK1/2/5, GSK3A/B, ATM/ATR, SRC/FYN/LYN; Figure S16). Systematic 

exploration of such hypothetical relationships could be valuable for understanding 

tumorigenic mechanisms, and brainstorming new therapeutic strategies. More globally, 

modeling the cancer kinome by weighing in 2nd degree connectivity of upstream / 

downstream proteins, and the differential susceptibility of specific tumor tissues to particular 

nsHPRv mutations, may help identify likely driver mutations and/or functional dependencies 

of cancer. As such, PhosphoAtlas displays the distinctive cancerous perturbations on normal 

phospho-catalytic networks with the resolution necessary to begin understanding the 

differential functional impact and integrative consequences of relevant tumor mutations on 

signaling networks.

Despite the many tumor genomes reported in COSMIC, we found that for a majority of 

kinase-substrate catalytic interactions no variants were reported (2,238 versus 1,963; Figure 

5b). Furthermore, there are significantly fewer mutational variants per amino acid in HPR’s 

(mean=0.20) than in the entire protein sequence of their substrate of origin and across all 

protein substrates catalogued in PhosphoAtlas database and recorded in COSMIC 

(mean=0.36) (mean-difference [95%CI]= −0.16 variants/amino acid [−0.20–0.11]; t-test p-

value = 1.62e–13). Although it is possible that mutations in such phosphorylation sites could 

be fatal to most cells, these observations inspire the question: are not-mutated target sites not 

altered because they do not provide any selective advantage to tumors, or because their 

mutation would be so detrimental that cancer cells could not survive? If the latter, and if the 

node is not essential to normal cells, these observations could point to potential sources of 

synthetic lethality that may be exploited to design new, safe combinatorial targeted 

therapies. More generally, it will be important to investigate whether the spectrum of hyper-

mutable-to-never-altered phospho-hubs can predict which oncogenic aberrations are most 

likely to be actionable in tumors.
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The other two broad purposes of PhosphoAtlas, which we do not demonstrate in this study, 

are to assist proteomic data analysis and to support bioassay development and optimization. 

Projecting data obtained from RPMA/RPPA assays (3, 8) or MS approaches (5–7, 48–53) 

onto the curated map of kinase-substrate networks may improve assessment of which 

phospho-circuits are active in biological samples to identify adaptive reprogramming 

networks associated with cancer response to therapeutic interventions. Information in 

PhosphoAtlas, especially that from the phospho-residue site data, may also be leveraged for 

developing and optimizing epitope mapping for (phospho) antibody development, protein 

engineering, targeted mutagenic and genetic screens, synthetic phage display/yeast-two-

hybrid systems, enzymatic assays to test inhibitor libraries, or utilize HPRs as barcodes of 

kinase-substrate pairs to infer levels of activity of relevant kinases in MS studies. We are 

currently in the process of implementing a high throughput kinase activity-mapping platform 

that utilizes biological peptide sequences as experimental sensors to profile the activity of 

phosphorylation circuits in biological extracts.

In conclusion, PhosphoAtlas database provides a rich resource for the exploration of the 

human kinome and its tumor variant, and supports a range of applications from the 

functional mapping of modular networks for systems biology, to assisting in the 

development of physical or virtual interfaces for oncology and other diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Phospho-reactome curation workflow: creation of a comprehensive and unified 
relational database that indexes human kinases and their cognate phosphorylation targets
a. Resources, logical workflow, computational curation processes, and indexation steps are 

summarized. First, a Harmonized Proteome Index is created as a structured non-redundant 

repository of all known human proteins through curation steps 1 and 2, enabling the 

systematic extraction, harmonization and classification of public protein records. HGNC, 

NCBI and UniProtKB are used as critical databases that serve as blueprints to cross-

reference and filter data and annotations extracted across 35 public databases. Second, 

PhosphoAtlas is build as a relational database of phosphorylation events. Curation 

‘functional triage’ and step 3 identify which proteins are kinase enzymes or substrate 

proteins, how these proteins functionally interact with each other, and whether verifiable 

phosphorylatable residue sites and surrounding sequences can be defined. This establishes a 

comprehensive, curated dataset that maps human catalytic phospho-circuits, PhosphoAtlas.

b. Schematic representation of PhosphoAtlas entries. Five groups of complete or partial 

knowledge of phospho-catalytic interactions are shown. A majority of heptameric peptide 

regions (HPR’s) is centered on a phospho-residue site and stretch over 3 amino acids up and 

down, but for phospho-residues located at the N- or C-terminal of a protein, phospho-

residues are displaced down or up the heptameric end portion of the protein.

c. PhosphoAtlas networks of kinase–substrate interactions can be explored (visual 

representation powered by Cytoscape (30)). Searchable CSV and XLS data files, and 

Cytoscape sessions, are downloadable upon registration at http://cancer.ucsf.edu/

phosphoatlas.
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Figure 2. PhosphoAtlas database overview
a. Table summary of PhosphoAtlas entries.

b. Representation of connections between kinases, substrates and heptameric peptide 

sequences (HPS’s.). Connecting substrates and HPS’s are depicted for all kinases within 

PhosphoAtlas depending on the known number of connections for the kinase (left panel), 

and similarly shown for substrates (center) and HPS’s (right). Data presented for substrates 

and HPS’s exclude substrates and HPS’s that have yet to be conclusively mapped to kinases.

c. Breakdown of most represented kinase families in PhosphoAtlas by the number of unique 

kinases per family (red), respective interacting substrates (blue) and their known target 

peptides (green). Bars in gray shade represent kinase families by status of entries: kinase 

nodes with known both substrates and peptides, with known substrates only, or without 

known substrates or target peptides. Kinase enzyme families groups are based on (21).
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Figure 3. Biological peptide sequences collected in PhosphoAtlas provide a new depth and 
unique dimension into kinase–substrate catalytic interactions
a. Individual kinases (red discs) are plotted based on the number of unique connecting 

substrates (x-axis) and related HPS target per substrate ratio (y-axis). Some kinases are 

annotated by name along with number of unique HPS per number of unique substrates in 

parenthesis.

b. Circos plots visualize the number of kinase-substrate (left) and kinase-HPS-substrate 

(right) connections for selected kinases.

c. Protein substrates (blue discs) are plotted based on the number of unique connecting 

kinases and peptide per kinase ratio. Annotated substrates are identified by name followed 

by the number of known HPS targets within it per number of kinases it is phosphorylated by.

d. Circos plots visualize the number of kinase–substrate (left) and kinase–peptide–substrate 

(left) connections for selected examples of substrates.

e. HPS’s (green discs) are plotted based on the number of unique interacting kinases (x-axis) 

and substrate per kinase ratio (y-axis). Every peptide in the plot is an N-term to C-term 

amino acid sequence annotated in parenthesis with the number of substrates it is found 

within per number of kinases that it is targeted by.

f. Circos plots visualize the number of kinase–substrate and kinase–peptide–substrate 

connections for different entries.
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Figure 4. AKT phosphorylation network: a custom query into PhosphoAtlas
a. Connectivity of AKT family proteins. Proteins that phosphorylate AKT1/2/3, and proteins 

that are phosphorylated by AKT1/2/3, are respectively listed above and below AKTs. Each 

connecting line is a directional vector that symbolizes the top-down flow of phosphorylation 

from a kinase enzyme to a specific substrate. Color and continuity of connectors depict 

knowledge of phosphorylatable sites within protein targets. All proteins that can function as 

kinase enzymes are associated with a red bar containing a number that corresponds to the 

number of different substrate proteins they phosphorylate. The pie chart insert is an example 

of how the ensemble of AKT-affiliated proteins ramifies into biological processes with 

human disease implications. Numbers within color-coded boxes include all residue sites, 

variants, and upstream kinases per protein, beyond the exclusively AKT-related molecular 

hub.
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b. WebLogo alignment of 85 heptameric biological peptide targets of the AKT1 kinase 

unravels the most conserved residues surrounding the phosphorylation site.

c. Breakdown of amino acid alterations and affected substrate targets resulting from the 

occurrence of 91 non-synonymous variants found in the genomic locations overlapping with 

the HPR’s of AKT1.
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Figure 5. Impact of non-synonymous variants identified as genetic mutations found in tumors
a. Reverse mapping approach to reveal the cancer-associated variants embedded within the 

phospho-reactome. The identification of cancer-associated genetic mutations as reported by 

COSMIC that exert specific effects on kinase-substrate catalytic interaction sites exposes an 

additional layer of disturbances caused by mutations found in patients’ tumors.

b. Bar graph depicting the number of heptameric peptide regions (HPR’s) in PhosphoAtlas 

that contain COSMIC-defined synonymous and non-synonymous variants, or no mutation at 

all. The number of unique (kinase–HPR–substrate) entries affected by cancer mutations is 

shown on top.
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c. Total number of cancer-associated, non-synonymous heptameric peptide region variants 

(nsHPRv) derived from COSMIC-mining analysis. The number of potential additional 

cancer-related predicted PPI entries is indicated on top.

d. Distribution of the protein-coding consequences of genetic mutations on phosphorylatable 

HPR’s.

e. Distribution of co-occurrence of non-synonymous versus synonymous variants across all 

amino acid found across all HPRs.

f. Spectrum of malignancies most prone to include mutations affecting phosphorylation 

circuits.

g. Spectrum of proteins affected by mutations that alter their phosphorylatable target regions. 

All substrate proteins from PhosphoAtlas are distributed by the mean number of total 

variants per HPR versus the number of known HPR per given substrate. Each protein is 

color-coded by the mean percentage of non-synonymous variants per total number of 

variants in a given substrate (reference color scale 0–100%). The bottom panel contains 

substrates for which no variants in their HPR’s have been reported.

h. Proteins with the most recurrently mutable peptide sites across all human tumors. The top 

50 HPR’s with the highest proportion of non-synonymous variants to total number of 

variants per HPR were first identified, then the corresponding proteins were selected, and 

finally all HPR’s from each of these substrates were plotted. Proteins are sorted 

alphabetically on the x-axis. Each HPR is shown as a triangle and color-coded by the mean 

percentage of non-synonymous variants out of total reported non-synonymous and 

synonymous variants per HPR (color scale in (g)).
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Figure 6. The tumor kinome: differential impact of cancer-associated mutations on kinase-
substrate phospho-catalytic networks
Data generated from cross-referencing PhosphoAtlas and COSMIC databases were used to 

render the differential impact –and potential convergence– of non-synonymous peptide 

target variants onto substrates of kinases. The complex heterogeneity of mutations across 

tumor genomes was resolved via the unbiased aggregation of mutations that only and 

selectively alter substrates’ HPRs. Purple connectors represent nsHPRv’s at the catalytic 

interface of kinases and substrates that are collapsed into more or less thick edge 

representing the prevalence of mutations occurring within one heptameric sequence. By 

overlaying both interconnectedness and mutational impact of tumors on the human phospho-

reactome, the most variable nodes visually emerge from the otherwise rarely altered or not 

mutated network. The absence of any reported mutation for a number of prevalent nodes 

with high number of interactions is noticeable, such as CDK1, PRKACA, MAPK3, 

MAPK14, GSK3B, AKT3 or CSNK2A2. The phosphorylation networks were produced 
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using the Cytoscape network analysis platform (30) and is available at http://cancer.ucsf.edu/

phosphoatlas.

Olow et al. Page 24

Cancer Res. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cancer.ucsf.edu/phosphoatlas
http://cancer.ucsf.edu/phosphoatlas

	Abstract
	Introduction
	Methods
	Computational strategy to build PhosphoAtlas relational database
	Identification and analysis of variants in peptide target sequences
	PhosphoAtlas database access

	Results
	Strategy to establish a comprehensive map of the validated human phospho-reactome
	Integration of multiple data sources into one harmonized protein repository
	Building a relational database connecting kinases to substrates and phospho-residue sites
	Overview of the human phospho-reactome
	Target peptides provide insight into the diverse modes of kinase–substrate interactions
	Exploring AKT cancer phospho-circuits using PhosphoAtlas
	Global analysis of oncogenic mutations affecting phospho-target sites reveals the disrupted phospho-circuits of cancer

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

