
Sequence analysis

Joint detection of copy number variations in

parent-offspring trios

Yongzhuang Liu1, Jian Liu1, Jianguo Lu1, Jiajie Peng1, Liran Juan1,

Xiaolin Zhu2,3, Bingshan Li4,5,† and Yadong Wang1,*,†

1School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China, 2Institute for

Genomic Medicine, Columbia University, New York, NY 10032, 3University Program in Genetics and Genomics,

Duke University Medical School, Durham, NC 27708, 4Department of Molecular Physiology and Biophysics,

Vanderbilt University, Nashville, TN 37235 and 5Center for Quantitative Sciences, Vanderbilt University, Nashville,

TN 37235, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the last two authors should be regarded as joint Last Authors.

Associate Editor: Inanc Birol

Received on 19 April 2015; revised on 17 November 2015; accepted on 27 November 2015

Abstract

Motivation: Whole genome sequencing (WGS) of parent-offspring trios is a powerful approach for

identifying disease-associated genes via detecting copy number variations (CNVs). Existing

approaches, which detect CNVs for each individual in a trio independently, usually yield low-detection

accuracy. Joint modeling approaches leveraging Mendelian transmission within the parent-offspring

trio can be an efficient strategy to improve CNV detection accuracy.

Results: In this study, we developed TrioCNV, a novel approach for jointly detecting CNVs in par-

ent-offspring trios from WGS data. Using negative binomial regression, we modeled the read

depth signal while considering both GC content bias and mappability bias. Moreover, we incorpo-

rated the family relationship and used a hidden Markov model to jointly infer CNVs for three sam-

ples of a parent-offspring trio. Through application to both simulated data and a trio from 1000

Genomes Project, we showed that TrioCNV achieved superior performance than existing

approaches.

Availability and implementation: The software TrioCNV implemented using a combination of Java

and R is freely available from the website at https://github.com/yongzhuang/TrioCNV.

Contact: ydwang@hit.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Copy number variations (CNVs) are defined as changes in the copy

number (gain or loss) of large genomic segments, which can be

transmitted from parents or arise de novo. CNVs have been shown

to play an important role in human morbidities, including neuro-

psychiatric disorders (Cook and Scherer, 2008; Gilissen et al., 2014;

Levy et al., 2011) and cancers (Beroukhim et al., 2010).

CNVs have been traditionally detected using fluorescent in situ

hybridization, array comparative genomic hybridization and SNP

microarray (Alkan et al., 2011). Recently, next generation sequenc-

ing (NGS), especially whole genome sequencing (WGS), has become

extremely powerful in detecting CNVs comprehensively, being able

to identify CNVs that are often missed by array-based assays. On

the other hand, NGS-based approaches present substantial chal-

lenges for CNV calling. They usually work by mapping sequencing

reads to the reference genome and subsequently identifying discord-

ant mapping signatures putatively caused by CNVs. As summarized

in Alkan et al. (2011) and Medvedev et al. (2009), there have been
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four main categories of mapping signatures that can be leveraged to

detect CNVs from WGS data: (i) read depth (RD), (ii) paired-end

mapping (PEM), (iii) split read (SR) and (iv) a combination of the

above. In addition, CNVs can be detected by using the de novo as-

sembly approach, which first reconstructs contigs from short

sequencing reads and then compares the assembled contigs with the

reference genome sequence to identify the regions with discordant

copy numbers (Iqbal et al., 2012).

Most existing CNV detection approaches focus on one single sam-

ple (individually) or multiple samples without considering the inter-

sample relatedness (Handsaker et al., 2011; Hormozdiari et al., 2011).

Naturally, when genetic relatedness is known for multiple individuals,

effective utilization of this information could potentially improve CNV

detection accuracy. A common relevant study design with known in-

ter-individual relationships is sequencing parent-offspring trios. Indeed,

the parent-offspring trio design has been shown to be powerful in iden-

tifying disease-associated genetic variants for both common and rare

diseases (Samocha et al., 2014; Zhu et al., 2015). For trio-based NGS

data, a joint modeling approach leveraging the parent-offspring rela-

tionship can potentially improve detection accuracy for CNVs, as the

same principle has been successfully applied to improve detection ac-

curacy for inherited and de novo single nucleotide variants and

INDELs from NGS data (Chen et al., 2013; Li et al., 2012; Liu et al.,

2014; Peng et al., 2013; Ramu et al., 2013; Wei et al., 2014) as well as

that for CNVs from SNP array data (Chu et al., 2013; Wang et al.,

2008). Importantly, the joint modeling approach allows for an explicit

identification of de novo mutations that have been increasingly recog-

nized to play critical roles in many human diseases (Malhotra et al.,

2011; Sebat et al., 2007; Xu et al., 2008). To our knowledge,

there have been no approaches for calling CNVs from trio WGS data

in a trio-aware manner. Due to the popularity of trio sequencing in

both research and clinical settings, such a tool is urgently needed.

In this study, we presented TrioCNV to fulfill this purpose. First,

we modeled read depth signal with negative binomial regression to

accommodate over-dispersion and considered GC content and

mappability bias. Second, we leveraged parent-offspring relationship

to apply Mendelian inheritance constraint while allowing for the

rare incidence of de novo events. Third, we used a hidden Markov

model (HMM) by combining the two aforementioned models to

jointly perform CNV segmentation for the trio. We applied

TrioCNV to a simulated trio and a WGS trio from 1000 Genomes

Project (1000GP) to demonstrate its performance and strength over

existing approaches.

2 Methods

2.1 Workflow
The workflow of TrioCNV is illustrated in Figure 1. There are three

main steps. The preprocessing step extracts the information needed

for building the model from trio WGS data. The CNV segmentation

step performs raw CNV inference using an HMM. The postprocess-

ing step refines raw segmentation results and outputs final CNV

calls.

2.2 Data preprocessing
We split whole genome into non-overlapping, contiguous windows

with a predefined size (default 200 bp), and then obtained RD, GC

content and mappability score for each window for all three samples

of the trio. RD was computed by counting the number of mapped

reads (a minimum read mapping quality can be specified) that start

within the window. GC content was computed as the fraction of

GþC nucleotides within the window in the reference genome se-

quence. Mappability score was computed as the average of all pos-

itions’ mappability scores within the window. The mappability file

used in this study was obtained from http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncode

CrgMapabilityAlign100mer.bigWig. The k-mer length for the

mappability file is recommended to be approximately equal to the

length of the sequencing reads. Mappability files for different k-mer

lengths can be downloaded from UCSC Genome Browser or calcu-

lated by specific tools (Derrien et al., 2012; Koehler et al., 2011; Lee

and Schatz, 2012).

2.3 HMM for CNV segmentation
We used a HMM to simultaneously segment the three genomes of a

trio into regions of different copy number statuses. A triplet of RD,

GC content and mappability score for each window of the three sam-

ples was used as the input for this step. For each sample, we defined

five discrete copy number states for each window, representing two-

copy deletion, one-copy deletion, normal, one-copy duplication and

multiple-copy duplication, respectively. To jointly model the three

samples, each hidden Markov state was associated with a set of pos-

sible copy number states at the window, for all three samples, result-

ing in a total of 125 possible copy number state combinations as

hidden Markov states.

2.3.1 Emission probability

We interpreted RD as HMM’s emission. Theoretically, RD follows a

Poisson distribution with the mean proportional to the copy number

in the absence of systematic bias. However, the Poisson assumption

fails in real sequencing data due to various biases, among which GC

content and mappability are particularly important (Teo et al., 2012).

There is a nonlinear correlation between RD and GC content, and an

approximately linear correlation between RD and mappability score.

To accommodate over-dispersion and account for both the GC

Fig. 1. The workflow of TrioCNV. TrioCNV takes three BAM files of a trio (one

for each individual), a pedigree file, a reference genome file (FASTA format)

and a mappability file (BigWig format) as input, and generates a tab-delimited

file containing final CNV calls
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content and mappability biases, we used the more dispersed negative

binomial regression to model the emission probability distribution, in

a different way from existing negative binomial emission models

(Backenroth et al., 2014; Mccallum and Wang, 2013; Szatkiewicz

et al., 2013). We first grouped all windows into 101 bins (GC ¼ 0, 1,

. . . , 100%) by GC content, and then used the negative binomial re-

gression to model the relationship between RD and mappability score

in each bin (see Equations 1 and 2).

pðotjzt ¼ i; gt ¼ jÞ � NBðli;j; hi;jÞ; (1)

li;j ¼ expðai;j þ bi;jmtÞ; (2)

where ot denotes RD, zt copy number state, gt GC content, mt mapp-

ability score in tth window, mi,j RD’s mean, ai,j and bi,j the regression

coefficients and hi,j the over-dispersion parameter given copy number

i in the jth GC bin.

We estimated the parameters for each GC bin of a sample separ-

ately. Since presumably only a small portion of an individual human

genome harbors CNVs, most windows for a given sample should have

the normal state. After removing windows with outlier RDs, those win-

dows containing CNVs or strong noises were very likely to have been

excluded, and the remaining windows can be used to estimate all un-

known parameters at the normal state. In this step, GC bins with ex-

tremely low (i.e. <0.3) or high (i.e. >0.7) GC content were ignored,

because these GC bins having extremely variable RDs can affect accur-

acy of parameter estimation. In addition, we ignored those GC bins

with insufficient data, which similarly can have an adverse effect.

Finally, we used the maximum likelihood approach implemented in the

R package MASS to estimate the unknown parameters a2,j, b2,j, and

h2,j; then l2,j can be solved from a2,j, b2,j and mt.

After estimating the unknown parameters at normal state, the

unknown parameters for the other four copy number states can be

calculated according to the parameters of the normal state, as shown

in Equations (3) and (4), where e is a tuning parameter (e is set to

0.1 in this study).

hi;j ¼
i

2
h2;j if i 6¼ 0

eh2;j if i ¼ 0

8<
: (3)

li;j ¼
i

2
l2;j if i 6¼ 0

el2;j if i ¼ 0

8<
: (4)

Thus, given RD, GC content and mappability score at one win-

dow, the probability of observing a particular RD can be calculated

by Equation (5).

pðot jzt ¼ i; gt ¼ j;mt ¼ mÞ ¼ hi;j

hi;j þ li;j

 !hi;j Cðot þ hi;jÞ
Cðot þ 1ÞCðhi;jÞ

li;j

hi;j þ li;j

 !Ot

(5)

Overall, the HMM’s emission probability at one window can be

defined as Equation (6).

pðot;f ; ot;m;ot;ojzt;f ; zt;m; zt;o; gt;mtÞ ¼
Y

k2ff ;m;og
pðot;kjzt;k; gt;mtÞ (6)

2.3.2 Transition probability

For a trio, we assume that each parent’s copy number state transition

is independent of other two samples (assuming unrelated parents).

Intuitively, adjacent windows are likely to share the same copy num-

ber state. Therefore, for each parent, the copy number state transition

probability was chosen such that a lower probability was assigned to

the transition to a different state and a higher probability to the tran-

sition to itself (i.e. no change). Thus, the copy number state transition

matrix A ¼ (ai,j), A[R5� 5 from the t�1th window to the tth window

can be specified as Equation (7). The specification of p is very robust,

and a smaller value can be assigned to p for low-coverage data and a

larger value for high-coverage data.

ai;j ¼
p if i 6¼ j

1� 4p if i ¼ j

(
(7)

The offspring’s copy number state either follows Mendelian in-

heritance pattern or, more rarely, is consistent with a de novo event.

We considered four different combinations of inheritance patterns

at two consecutive windows separately (Fig. 2).

If the copy number states at two consecutive windows both follow

Mendelian inheritance pattern, then the offspring’s copy number state

transition depends on the parents’ copy number state transitions. To

model this relationship, we introduced two-marker copy number inher-

itance matrix B ¼ (bf,f 0 ,m,m0 ,o,o0), B[R5� 5�5� 5�5� 5 proposed in

Wang et al. (2008), representing the conditional probability of observ-

ing the offspring’ transition from o to o0 given the father’s transition

from f to f 0 and the mother’s transition from m to m0. Therefore, the

final transition probability of HMM at tth group of windows can be

calculated as Equation (8).

pðzt;f ¼ f 0;zt;m ¼ m0;zt;o ¼ o0jzt�1;f ¼ f ;zt�1;m ¼ m;zt�1;o ¼ oÞ
¼ af ;f 0am;m0bf ;f 0 ;m;m0;o;o0 (8)

If the copy number state at one window is consistent with de

novo event and the copy number state at the other window follows

Mendelian inheritance pattern, these two windows are treated inde-

pendently. To model this relationship, we introduced single-marker

inheritance probability matrix C ¼ (cf,m,o), C[R5� 5�5 proposed in

Chu et al. (2013) that extends the one in Wang et al. (2008) by

incorporating an additional parameter representing the probability

of a de novo mutation. This matrix gives conditional probabilities of

the total copy number of the offspring given the total copy numbers

of the father and the mother. Therefore, the final transition prob-

ability of HMM at tth group of windows can be calculated as

Equation (9).

pðzt;f ¼ f 0;zt;m ¼ m0;zt;o ¼ o0jzt�1;f ¼ f ;zt�1;m ¼ m;zt�1;o ¼ oÞ
¼ af ;f 0am;m0cf ;m;ocf 0;m0 ;o0 (9)

If the copy number states at two consecutive windows are both

consistent with de novo events or two consecutive windows both

Fig. 2. Schematic transition diagrams of the HMM used in TrioCNV.

(a) Represents the copy number state transitions between two consecutive

windows that follow Mendelian inheritance and the transitions are able to hap-

pen; (b) represents the copy number state transitions between one window

that follow Mendelian inheritance and one window that is de novo event; (c)

represents the copy number state transitions between two groups of windows

that are de novo events, or the copy number state transitions between two

groups of windows that follow Mendelian inheritance but the transitions are

impossible to happen
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follow Mendelian inheritance pattern, but not all copy number state

transitions are possible to happen between the two, the offspring’s

copy number state transition is independent of the parents’ copy

number state transitions, and the offspring’s transition probability

can be calculated as the parents’. The final transition probability of

HMM at tth group of windows can be calculated as Equation (10).

pðzt;f ¼ f 0;zt;m ¼ m0;zt;o ¼ o0jzt�1;f ¼ f ;zt�1;m ¼ m;zt�1;o ¼ oÞ
¼ af ;f 0am;m0ao;o0 (10)

2.3.3 CNV segmentation

The reference genome sequence has a lot of gaps (the long sequence

of “N” bases); sequencing reads cannot be mapped to these gapped

regions, generating non-contiguous contigs with mapped reads in

each chromosome. We considered each contig separately and used

HMM Viterbi algorithm to infer the most likely sequence of hidden

Markov sates. In this step, we ignored those windows in GC bins

with extremely low or high GC content and windows with insuffi-

cient data; hence, copy number states of these windows depend on

their adjacent windows. Finally, only windows with at least one

non-normal copy number state were retained and joined together as

output.

2.4 Data postprocessing
The variability of RD at a window arises not only from true CNVs,

GC content bias and mappability bias, but also from other sources

of noise, which can result in miscalls in the raw CNV segmentation

result. A strategy for merging adjacent CNVs with the same or am-

biguous copy number states is required to obtain accurate CNV

calls. We included CNV calls of the trio at one region as a group.

Our CNV merging strategy is illustrated in Figure 3. Before merging,

the two-copy deletion and one-copy deletion states were classified as

a unified deletion state; the one-copy duplication and multiple-copy

duplication states were classified as a unified duplication state. If

two consecutive groups of CNV calls share at least one same kind of

CNVs and the distance between them was less than or equal to a

specified threshold, then these two consecutive groups were merged

into one group. For the merged group, each sample’s copy number

state was determined by the copy number state with the maximum

sum of length in original groups. In addition, since sequencing reads

cannot be confidently mapped to the reference genome in regions

with extremely low mappability scores, CNVs cannot be confidently

detected in these regions. Therefore, removing CNV calls in these re-

gions can significantly reduce false positive rate with a slight sacri-

fice in sensitivity.

2.5 Software availability
We developed TrioCNV based on the approaches described above.

TrioCNV was implemented using a combination of Java and R and

available at https://github.com/yongzhuang/TrioCNV.

3 Results

3.1 Simulation data analysis
To evaluate TrioCNV’s performance and compare it with existing

approaches, we simulated WGS data for a hypothetical trio. We first

generated two haploid genome sequences of chromosome 1 for each

parent by randomly sampling non-overlapping CNVs (�200 bp in

size) from the Database of Genomic Variants (MacDonald et al.,

2014), and then used RSVSim (Bartenhagen and Dugas, 2013) to

introduce sampled CNVs into the reference genome sequence.

Duplications have at most three copies. Then two haploid sequences

were paired together to form each parent’s diploid sequence. Having

two parents’ diploid sequences, we generated the offspring’s diploid

sequence by randomly sampling one of the two haploid sequences

from each parent and pairing them together. The numbers of simu-

lated CNVs for father, mother and offspring were 196 (100 dele-

tions and 96 duplications), 190 (97 deletions and 93 duplications)

and 193 (100 deletions and 93 duplications), respectively. For each

individual, we used the ART Illumina read simulator (Huang et al.,

2012) to generate 100-bp paired-end sequencing reads at 40� cover-

age (20� coverage for each haploid sequence) with an insert size

from a Gaussian with mean of 400 bp and standard deviation of 40

bp. We used BWA-MEM (Li, 2013) with default parameters to map

all simulated reads to the 1000GP Phase II reference genome.

Since there are no CNV callers for NGS data considering familial

relatedness, we compared TrioCNV with CNVnator (version 0.3)

(Abyzov et al., 2011), an RD-based single-sample CNV caller and

also one of the most sensitive approaches (Mills et al., 2011). We

specified the same window size of 200 bp for both CNVnator and

TrioCNV. For each method, sensitivity was calculated as the num-

ber of true CNVs detected divided by the total number of true

CNVs, and false discovery rate (FDR) was calculated as the number

of false CNVs detected divided by the total number of CNVs de-

tected. We used a 1-bp reciprocal overlap to determine whether two

CNVs are the same or not.

The performance of TrioCNV and CNVnator on the simulated

trio is summarized in Table 1 (see raw results in Supplementary

Table S1). TrioCNV shows a better sensitivity than CNVnator while

maintaining a similar FDR. Figure 4 shows the size distributions of

simulated CNVs that are detected by TrioCNV and CNVnator. For

large CNVs (�1000 bp), both TrioCNV and CNVnator are very

sensitive, whereas for small CNVs (<1000 bp), TrioCNV is more

sensitive than CNVnator. Overall, both TrioCNV and CNVnator

have lower sensitivities for small CNVs than for large CNVs, in ac-

cordance with the observation that RD-based approaches are more

suitable for detecting large CNVs (Medvedev et al., 2009).

3.2 Real data analysis
To further evaluate the performance and make a comparison, we

ran TrioCNV and CNVnator on a real WGS trio.

In addition, we also ran three other representative CNV callers,

BreakDancer (version 1.4.4) (Chen et al., 2009), Pindel (version 0.2.5)

Fig. 3. Schematic illustration of CNV merging strategy used in TrioCNV. Each

group has at least one CNV (deletion, duplication or both). d is the specified

distance threshold to determine if two adjacent groups can be merged. In

addition to the distance constraint, if two adjacent groups are merged, they

must share at least one same type of CNV
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(Ye et al., 2009) and DELLY (Rausch et al., 2012). BreakDancer is a

PEM-based caller. Pindel is an SR-based caller. DELLY is an integrated

PEM and SR caller. For BreakDancer, we used BreakDancerMax de-

signed for detecting large structural variation. For DELLY, only CNVs

that passed the filter were kept in the output. All three callers were ran

with default parameters. The real dataset is the high coverage (>75�)

Illumina Hiseq WGS data of one CEU (Utah residents with ancestry

from northern and western Europe) trio (father NA12891, mother

NA12892 and the female offspring NA12878) from the 1000GP,

sequenced and preprocessed at the Broad Institute (the data can be

downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/

working/20120117_ceu_trio_b37_decoy/). The alignment (.bam) files

were generated as follows: all reads were aligned to 1000 Genomes

Phase II reference genome using BWA (Li and Durbin, 2009); PCR du-

plicates were marked using Picard (http://picard.sourceforge.net);

recalibration of base quality scores and local realignment around

INDELs were performed using GATK (DePristo et al., 2011). We used

the same reciprocal overlap criterion and the same definitions for sensi-

tivity and FDR as we used for simulation data analysis.

To evaluate sensitivity, we obtained the gold standard call set from

the 1000 Genome Structural Variant discovery study for the offspring

of this trio (NA12878) (Mills et al., 2011). There were 610 autosomal

deletions and 261 autosomal duplications successfully converted from

NCBI36 to NCBI37 using liftOver (https://genome.ucsc.edu/cgi-bin/

hgLiftOver). Furthermore, we examined Mendelian inconsistency for

CNVs detected. Because of the extremely low de novo mutation rate,

although true de novo CNVs can be present, most of the Mendelian in-

consistent CNV calls should be false positives. Therefore, Mendelian

inconsistency rate can indicate the overall performance of CNV detec-

tion for a trio, especially in the absence of true CNV call sets. In this

Table 1. CNV detection performance of TrioCNV and CNVnator for the simulated dataset

Program Sample Deletions Duplications

Count Sensitivity (%) FDR (%) Count Sensitivity (%) FDR (%)

TrioCNV Father 262 84.0 68.3 103 95.8 8.7

Mother 217 86.6 61.3 88 91.4 1.1

Offspring 279 85.0 69.9 96 96.8 5.2

CNVnator Father 241 82.0 66.0 97 89.6 9.3

Mother 233 87.6 63.5 86 89.2 1.2

Offspring 251 79.0 68.5 89 87.1 5.6

Fig. 4. Size distributions of simulated CNVs detected by TrioCNV and CNVnator. (a) Deletions in father; (b) deletions in mother; (c) deletions in offspring; (d) dupli-

cations in father; (e) duplications in mother sample; (f) duplications in offspring
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study, we required a Mendelian consistent call be detected in the off-

spring and overlap (1-bp reciprocal) with a CNV of the same copy

number in at least one parent, and all the remaining calls were treated

as Mendelian inconsistent.

The performance of TrioCNV, CNVnator, BreakDancer, Pindel

and DELLY on the 1000GP CEU trio is summarized in Table 2 (see

raw results in Supplementary Table S2). For both deletions and dupli-

cations, TrioCNV achieved the highest sensitivity and at the same time

the lowest Mendelian inconsistency rate. Figure 5a and b shows the

size distributions of CNVs in the gold standard call set that were de-

tected by the five methods. TrioCNV is more sensitive than all other

four methods for large (�200 bp) CNVs. For small (<200 bp) CNVs,

CNVnator is less sensitive than other four approaches, especially for

CNVs smaller than 200 bp. TrioCNV also showed lower sensitivity for

small CNVs than for large CNVs. This can be partially explained by

the default 200 bp window size we have specified for both TrioCNV

and CNVnator, so there would be no windows entirely covered

by CNVs smaller than 200 bp. In other words, under the 200-bp win-

dow size, the RD signal is insufficient for detecting CNVs smaller than

200 bp. Figure 5c and d shows the concordance among CNVs in the

gold standard call set that were detected by the above four approaches.

There is 61.0% (372/610) concordance among deletions detected by

TrioCNV, CNVnator, BreakDancer, Pindel and DELLY and there is

16.9% (44/261) concordance among duplication detected by TrioCNV

and CNVnator. Each approach reports some unique CNVs, and more-

over, 17 deletions cannot be detected by any of approaches and 177

duplications cannot be detected by either TrioCNV or CNVnator.

In addition, we compared the autosomal deletions called by the

above five methods to another two truth sets, one containing 3376 de-

letions and the other 4095 deletions, both used by Layer et al. (2014).

Since these two truth sets contain many small deletions, we specified a

smaller window size (100 bp) for RD-based CNVnator and TrioCNV

to capture small deletions. For the 1-bp reciprocal overlap criterion

used above, the results are summarized in Supplementary Table S4.

TrioCNV achieved the lowest Mendelian inconsistency rate among the

five methods and is consistently more sensitive than CNVnator and

DELLY. Since BreakDancer, Pindel and CNVnator were used to gener-

ate the two truth sets, these truth sets should be both biased toward

Table 2. CNV detection performance of TrioCNV, CNVnator, BreakDancer, Pindel, and DELLY on the 1000GP CEU trio

Program Deletions Duplications

Sensitivity (%) Mendelian inconsistency rate (%) Sensitivity (%) Mendelian inconsistency rate (%)

TrioCNV 90.3 0.6 25.7 1.5

CNVnator 82.8 65.6 23.4 13.1

BreakDancer 78.2 28.3 – –

Pindel 79.2 11.5 – –

DELLY 84.4 45.0 – –

Sensitivity was calculated according to the gold standard CNV call set from the sample NA12878. Since all gold standard CNVs are larger than 50 bp in size,

we only kept CNV calls larger than 50 bp for BreakDancer, Pindel and DELLY. BreakDancer cannot detect duplications, and Pindel and DELLY cannot detect

interspersed duplications, so these three methods were ignored when evaluating duplications

Fig. 5. CNVs in the gold standard call set that are detected by TrioCNV, CNVnator, BreakDancer and Pindel. (a, b) Show the size distributions of gold standard

CNVs detected by different approaches, (a) for deletions and (b) for duplications; (c, d) Show the concordance among gold standard CNVs detected by four

approaches, (c) for deletions and (d) for duplications
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these three methods (Layer et al., 2014). This might explain

TrioCNV’s lower sensitivity than BreakDancer and Pindel.

Furthermore, we calculated the sensitivity across different reciprocal

overlap (RO) criteria from 1-bp to 50% (see Supplementary Figs S1

and S2). TrioCNV is more sensitive than CNVnator and DELLY for

some ROs <50%, but less sensitive than BreakDancer and Pindel per-

haps due to the biased true sets. Theoretically, RD-based methods usu-

ally define fixed-sized window (from hundreds to thousands of base

pairs), so they can only provide window-sized resolution. In contrast,

SR-based, PEM-based and de novo assembly methods can provide sin-

gle-nucleotide resolution. Consequently, it is understandable that RD-

based methods are less sensitive when large ROs are used for evalu-

ation, especially for small CNVs. Similarly, we calculated the

Mendelian inconsistency rate across different RO criteria from 1-bp to

50% (see Supplementary Fig. S3). Since TrioCNV performs joint seg-

mentation and models the family relationship explicitly, it achieved an

extremely low Mendelian inconsistency rate, while the other four meth-

ods all showed higher error rates.

4 Discussion

In summary, we introduced TrioCNV, a novel approach to jointly

detecting CNVs from WGS data in parent-offspring trios. First, we

modeled read depth by the negative binomial regression to accom-

modate over-dispersion and account for GC content bias and mapp-

ability bias. Second, we incorporated parent-offspring relation-ship

into our model to leverage Mendelian inheritance constraint while

allowing the rare incidence of de novo mutations. Third, we used an

HMM to jointly make CNV segmentation of the parent-offspring

trio. To our knowledge, this is the first CNV detection method de-

veloped specifically to handle trio sequencing data. To evaluate the

performance of TrioCNV and compare it with existing approaches,

we applied TrioCNV to a simulated trio and a sequenced trio from

1000GP. Our results illustrate that TrioCNV achieves a better per-

formance compared with existing approaches in the trio setting.

Our approach may be further enhanced in several ways. For ex-

ample, we only modeled the RD signal for emission probability,

while not all CNVs are assessable by RD. Therefore, other types of

mapping signals such as read pairs and split reads can be incorpo-

rated to detect CNVs that are not easily assessable by RD. Similar to

other RD-based CNV detection methods, TrioCNV reports lower

(i.e. window-based) breakpoint resolution than SR-, PEM- and de

novo assembly-based methods, and these three kinds of signals can

help refine breakpoints. In addition, our approach is now limited to

WGS data, but it can be potentially adapted to support whole

exome sequencing data.
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