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Abstract

Motivation: Recent advances in single molecule real-time (SMRT) and nanopore sequencing tech-

nologies have enabled high-quality assemblies from long and inaccurate reads. However, these

approaches require high coverage by long reads and remain expensive. On the other hand, the in-

expensive short reads technologies produce accurate but fragmented assemblies. Thus, a hybrid

approach that assembles long reads (with low coverage) and short reads has a potential to gener-

ate high-quality assemblies at reduced cost.

Results: We describe HYBRIDSPADES algorithm for assembling short and long reads and benchmark

it on a variety of bacterial assembly projects. Our results demonstrate that HYBRIDSPADES generates

accurate assemblies (even in projects with relatively low coverage by long reads) thus reducing the

overall cost of genome sequencing. We further present the first complete assembly of a genome

from single cells using SMRT reads.

Availability and implementation: HYBRIDSPADES is implemented in Cþþ as a part of SPAdes genome

assembler and is publicly available at http://bioinf.spbau.ru/en/spades

Contact: d.antipov@spbu.ru

Supplementary information: supplementary data are available at Bioinformatics online.

1 Introduction

While de novo sequencing from long and inaccurate SMRT reads re-

sults in accurate assemblies (Berlin et al., 2015; Chin et al., 2013),

these projects require high coverage of a genome by reads and thus

remain expensive. Moreover, for Oxford Nanopore technology

(with even higher error rates than in SMRT reads), accurate de novo

assemblies remain challenging even in high coverage sequencing pro-

jects (Goodwin et al., 2015; Loman et al., 2015). For example, the

highest reported accuracy of assemblies from Oxford Nanopore

reads (99.5%) is significantly below the acceptable standards for fin-

ished genomes.

On the other hand, recently developed hybrid approaches for

assembling long (and inaccurate) and short (and accurate) reads

proved to be useful in generating high-quality assemblies at a rela-

tively low cost (Deshpande et al., 2013; Koren et al., 2012; Ribeiro

et al., 2012). In some complex applications (e.g. metagenomics and

single cell genomics), the hybrid approaches may represent an at-

tractive alternative to de novo assembly for long reads.

We describe HYBRIDSPADES—a hybrid assembly approach that

benefits from synergy between accurate short and error-prone long

reads. HYBRIDSPADES uses the same algorithms for both Pacific

Biosciences reads (about � 14% error rate) and Oxford Nanopore

reads (an even higher error rate), e.g. recently, HYBRIDSPADES was

applied to studies of bacterial plankton using assembly of Illumina

and Pacific Biosciences reads (Labonté et al., 2015) and for analyz-

ing antibiotics resistance using assembly of Illumina and Oxford

Nanopore reads (Ashton et al., 2015).
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We benchmark HYBRIDSPADES against other hybrid assembly tools

(Deshpande et al., 2013; Koren et al., 2012) and demonstrate that it en-

ables accurate assemblies even in the case when the number of long

reads is relatively small. We further show that HYBRIDSPADES works well

even in the difficult case of single cell genome assembly resulting in the

complete circular chromosome assembly of the elusive Candidate

Phylum TM6 (McLean et al., 2013) that remains uncultivated.

2 Approach

While the de Bruijn graph approach currently dominates the short

reads sequencing projects, its applications to assembling long reads

faces various challenges. Indeed, high error rate in long reads makes it

difficult to construct the de Bruijn graph from long reads for any rea-

sonable choice of the k-mer size. As a result, the existing de novo long

read assemblers use the overlap-layout-consensus approach instead of

the de Bruijn graph approach (Berlin et al., 2015; Chin et al., 2013).

Thus, one has to choose between the de Bruijn graph and the

overlap-layout-consensus approaches while assembling short and

long reads. SPADES constructs the de Bruijn graph from short reads

and transforms it into an assembly graph (Bankevich et al., 2012;

Nurk et al., 2013). The assembly graph is defined as the condensed

and simplified de Bruijn graph (Pevzner et al., 2001) of k-mers in

reads after removal of bulges, tips and chimeric edges. After SPADES

constructs the assembly graph, HYBRIDSPADES uses long reads for gap

closure and repeat resolution in this graph.

EXSPANDER (Prjibelski et al., 2014; Vasilinetc et al., 2015) is a

module of SPADES that utilizes various sources of data (e.g. multiple

paired-end or mate-pair libraries) for resolving repeats and closing

gaps in assembly. EXSPANDER is a modular and easily extendable al-

gorithm based on the path extension framework (Boisvert et al.,

2010; Bresler et al., 2012; Zhu et al., 2014). Given a path in the as-

sembly graph, EXSPANDER iteratively attempts to grow it by choosing

one of its extension edges (all the edges that start at the terminal ver-

tex of this path). The choice of the extension edge is controlled by the

EXSPANDER decision rule (Prjibelski et al., 2014) that evaluates how

well this extension edge is supported by data (e.g. paired reads).

Thus, in order to incorporate the repeat resolution by long reads in

the EXSPANDER framework, one has to represent each long read as a

read-path, the path in the assembly graph that spells out the error-

free version of the long read. HYBRIDSPADES uses a new decision rule

in EXSPANDER that is based on the analysis of these read-paths.

In addition to resolving repeats in the assembly graph constructed

from short reads, long reads can also contribute to closing the cover-

age gaps in this graph. In the case when a coverage gap is spanned by

multiple long reads, one can fill in the gap by constructing the con-

sensus of long reads within the gap’s span (Chin et al., 2013).

Overall, HYBRIDSPADES includes the following steps:

1. Constructing the assembly graph from short reads using SPAdes;

2. Mapping long reads to the assembly graph and generating read-

paths;

3. Closing gaps in the assembly graph using the consensus of long

reads that span the gaps;

4. Resolving repeats in the assembly graph by incorporating long

read-paths into the decision rule of EXSPANDER.

3 Methods

3.1 Mapping long reads to the assembly graph
Given a set of short reads SHORTREADS, DBkðShortReads; kÞ is the de

Bruijn graph constructed on all k-mers from this set. SPAdes uses

various graph simplification procedures (Bankevich et al., 2012;

Nurk et al., 2013) to transform the de Bruijn graph DBkð
ShortReads;kÞ into the assembly graph DB�k ¼ DB�k ðShortReads; kÞ.
In this section we describe an algorithm for analyzing how each long

read Read traverses the graph DB�k resulting in a read-path

Path(Read).

Similarly to BLASR tool for SMRT reads alignment (Chaisson

and Tesler, 2012), HYBRIDSPADES selects a seed length t (the default

value t ¼ 13) and maps t-mers in long reads to edges in the assembly

graphs that contain these t-mers. This information is used to find

out how each long read traverses DB�k. To answer this question, we

first find out how a long read traverses edges in the assembly graph.

3.1.1 Mapping t-mers from reads to the assembly graph

HYBRIDSPADES transforms each long read into a set of t-mers and

finds positions of these t-mers on the edges of the assembly graph.

Note that t-mers starting at the first positions or ending at the last

positions of an edge map to a vertex in the assembly graph. Thus,

since such t-mers may be assigned to multiple edges incident to these

vertices, we exclude them from further consideration.

Given a t-mer shared by a read and an edge in the assembly graph,

we define its t-mer mapping as a triple (e, i, j) where e is an edge in

the assembly graph where the t-mer is mapped, and i and j are the

positions of the t-mer on this edge and in the read, respectively.

Since there are many spurious t-mer mappings, the fact that a t-

mer in a read Read maps to an edge in the assembly graph does not

necessarily mean that the read-path Path(Read) traverses this edge.

However, our analysis revealed that for nearly all reads, if more

than MinSeedNumber t-mers in a read map to an edge in the assem-

bly graph then the read-path traverses this edge (the default value

MinSeedNumber¼8). We therefore say that an edge in the assembly

graph is supported by a read if at least MinSeedNumber t-mers in

this read map to this edge.

3.1.2 Mapping long reads to edges of the assembly graph

Consider mappings ðe1; i1; j1Þ and ðe2; i2; j2Þ of two t-mers from a

given read. Define dread ¼ jj2 � j1j and dgraph as the distances be-

tween these t-mers in the read and in the assembly graph, respect-

ively. dgraph is defined as follows: if the mappings share the same

edge and i1< i2, the distance is i2 � i1, otherwise it is the length of

the shortest path in the assembly graph from the position i1 on edge

e1 to position i2 on edge e2.

A mapping ðe1; i1; j1Þ is a predecessor of mapping ðe2; i2; j2Þ if

• j1 < j2;
• c1�dread=dgraph, i.e. the distance along the read is not too small

as compared to the distance in the assembly graph;
• dread=dgraph� c2 if these t-mers map to the same edge in the assem-

bly graph, i.e. the distance along the read is not too large as com-

pared to the distance along a single edge in the assembly graph.

This condition is not enforced if two t-mers map to different edges

in the assembly graph since the read-path between these edges is

not necessarily the shortest path in the assembly graph;
• both dread and dgraph are smaller than c3.

The default values of parameters c1, c2 and c3 are 0.7, 1.3 and 500,

respectively.

We further construct a directed graph GraphðDB�;ReadÞ using

the set of all t-mer mappings from the read Read as the vertex-set.

We connect vertices (t-mer mappings) in this graph by a directed

edge if the first one is a predecessor of the second. Since the resulting

graph is acyclic (every edge connects a mapping with a smaller read
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coordinate to a vertex with a larger read coordinate), we can find a

longest path in this graph using a fast dynamic programming

algorithm.

Next, we determine how the found path through t-mer mappings

in the graph GraphðDB�;ReadÞ traverses long edges of the assembly

graph. Since there are many spurious t-mer mappings, we limit at-

tention to the sequence of edges EdgeSequence(Read) in this

path that are supported by the given read Read. Note that

EdgeSequence(Read) may have some missing edges as compared to

the correct read-path Path(Read). Our goal now is to reconstruct

these missing edges that often aggregate into complex subgraphs in

the assembly graph.

3.1.3 Mapping long reads to complex subgraphs

of the assembly graph

Consider two consecutive edges in the sequence

EdgeSequence(Read) that are not consecutive in the assembly graph.

Our goal is to figure out how the correct read-path Path(Read) tra-

verses the assembly graph between these edges.

Figure 1 depicts two consecutive edges from EdgeSequence(Read)

(shown in red) that are separated by a complex subgraph in the assem-

bly graph. We need to determine which of the alternative paths be-

tween these edges in the assembly graph in Figure 1 are traversed by

Path(Read).

Given a path Path in a directed graph with edges labeled by char-

acters from a given alphabet, we define String(Path) as the concaten-

ation of labels of the edges from Path. We define the edit distance

dðString1; String2Þ between strings String1 and String2 as the min-

imum total cost of substitutions and indels needed to transform one

string into another (we assume that every substitution has cost l and

every indel has cost r). Our goal is to solve the following problem:

Graph Alignment Problem: Find a path between two given vertices

of the labeled directed graph that spells out the string with

minimal edit distance to the given string (among all possible paths

between these vertices).

Input: A string String and a labeled directed graph Graph with verti-

ces source and sink.

Output: A path Path in Graph minimizing dðString; StringðPathÞÞ
over all possible paths in Graph from source to sink.

A brute-force solution of this problem (in the context of hybrid

assembly) is to enumerate all possible paths between two long edges

(within a certain range of lengths) and to find a path with the min-

imum edit distance to the long read. While this approach works for

bacterial genomes and is used in the current HYBRIDSPADES imple-

mentation, the number of paths may be exponential in the number

of vertices of the assembly graph. Below we describe a polynomial

algorithm for solving the Graph Alignment Problem.

Given a labeled directed graph Graph and a string String, we de-

fine a graph Graph(String) with the vertex-set corresponding to the

pairs hv; ii where v is a vertex in Graph and i 2 ½0; jStringj�. In order

to define the edge-set of Graph(String), we specify the incoming

edges to the vertex hv; ii as follows:

• edge hw; ii ! hv; ii of length r for each edge (w, v) in Graph;
• edge hv; i� 1i ! hv; ii of length r for each vertex v in Graph;
• edge hv; i� 1i ! ðw; iÞ for each edge (v, w) in Graph. The length

of this edge is defined as zero if the label of the edge (v, w) in

Graph is equal to the ith symbol of String, and l otherwise.

It is easy to see that each series of edit operations with total cost

score between String and a string spelled by a path from source

to sink in Graph corresponds to a path of length score between

hsource;0i and hsink; jStringji in Graph(String).

Therefore, in order to solve the Graph Alignment Problem, we

need to find a shortest path between hsource; 0i and hsink; jStringji
in Graph(String). Since this graph may have directed cycles, we use

the Dijkstra algorithm (Cormen et al., 2001) with the worst case

Fig. 1. Three pairs of long edges in the assembly graph (corresponding to unique regions in the genome and shown as colored edges) separated by short edges

that represent repeats in the genome (shown in black). The genome path traverses edges of the same color in the consecutive fashion. Two dotted paths repre-

sent two different options for a long read (with fixed length and alignment to long edges) to traverse this repetitive region. The goal is to figure which of these dot-

ted paths is correct
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running time OðjE0j þ jV 0jlogjV 0jÞ, where V 0 and E0 are the vertex-

set and edge-sets of the graph Graph(String), respectively.

In the case of the hybrid assembly, since there are at most 4

outgoing edges for each vertex in the assembly graph, there are at

most 4þ 1þ 4 ¼ 9 outgoing edges for each vertex in the graph

Graph(String). Thus, since the total number of edges in

Graph(String) is OðjVj � jStringjÞ, the running time of the algorithm

is OðjVj � jStringj � logðjVj � jStringjÞÞ, where V is the vertex-set of

the assembly graph.

In the context of a typical assembly graph, jVj is much larger

than jStringj. Also, for the majority of reads, there exists a path of

length approximately jStringj between source and sink in the assem-

bly graph. Therefore, we can ignore all the vertices of DB�k that are

farther than jStringj from both source and sink while searching for a

path with the minimum edit distance.

3.2 Closing coverage gaps in the assembly graph
Although the coverage by short reads is rather uniform in most as-

sembly projects, there are sometimes significant drops in k-mer

coverage (Bankevich et al., 2012) and even regions where the k-mer

coverage drops to zero. However, these drops in the k-mer coverage

rarely affect repetitive edges in the assembly graph since it is unlikely

that they occur in all copies of a repeat. Below we focus on gaps in

the k-mer coverage that occur within a unique (non-repetitive) re-

gion of a genome corresponding a single edge in the assembly graph.

A coverage gap breaks this edge into two edges that we refer to

as a sink edge (ending in a vertex without outgoing edges) and a

source edge (starting in a vertex without incoming edges). If a long

read maps to both a sink and a source edge, then this read can po-

tentially close a gap in the assembly graph. However, a single error-

prone long read spanning the gap does not allow one to accurately

close a gap, i.e. to reconstruct the nucleotide sequence of the gap.

We thus collect the set of all long reads spanning the same pair of

sink and source edges (forming the set of reads SpanningReads) and

close the coverage gap using the consensus sequence of all these

reads.

For each read from SpanningReads, we align this read against

the sink edge (ending at position p of the read) and the source edge

(starting at position q of the read). The segment of the read from

position pþ1 to q – 1 represents an error-prone sequence of the

gap. HYBRIDSPADES fills in the gap by solving the Multiple String

Consensus Problem (Sim and Park, 2003) for all such segments

derived from SpanningReads. To solve this problem, we apply the

Partial Order Graph approach (Lee et al., 2002) and use its

ConsensusCore library implementation from Pacific Biosciences that

proved to work well for SMRT reads (Chin et al., 2013).

3.3 Repeat resolution in the assembly graph
The read-against-graph alignment algorithm described above allows

one to map each long read to a read-path in the assembly graph.

During the repeat resolution stage of HYBRIDSPADES, we limit atten-

tion to paths traversing at least two long edges in the assembly

graph. Our goal is to transform this set of paths into contigs that

represent the genome assembly. Below we explain how to achieve

this goal using the EXSPANDER repeat resolution framework

(Prjibelski et al., 2014; Vasilinetc et al., 2015). EXSPANDER itera-

tively constructs a set of paths Paths that represent contiguous seg-

ments of the genome. In the beginning, Paths is formed by paths

consisting of single long edges in the assembly graph. EXSPANDER at-

tempts to iteratively extend each path in Paths using its decision rule

(see Section 2). If multiple extension edges pass the decision rule for

a given path (which usually implies that this path ends in a difficult-

to-resolve repeat), EXSPANDER stops the extension process for this

path.

Given a path P and its extension edge e, EXSPANDER defines the

scoring function scorePðeÞ and bases its decision rule on analyzing

all values scorePðeÞ for all extension edges. Below we describe how

HYBRIDSPADES defines scorePðeÞ.
Read-paths P0 and P00 overlap if a suffix of P0 (i.e. the path

formed by the last i edges of P0) coincides with a prefix of P00 (i.e. the

path formed by the first i edges of P00). We define overlapðP0;P00Þ as

the longest suffix of P0 that coincides with a prefix of P00.

A read-path is called trivial if it consists of a single edge and non-

trivial otherwise. Since trivial read-paths do not contribute to the re-

peat resolution, we exclude them from further consideration. Note

that there are typically multiple reads with the same read-path, at

least in projects with high coverage by SMRT reads. We define

multiplicity of a read-path as the number of long reads resulting in

this read-path and classify a read-path as reliable if its multiplicity

exceeds 1 (SMRT datasets have many chimeric reads that typically

have multiplicity 1).

Let ReadPaths be the set of all non-trivial reliable read-paths and

ReadPaths(e) be its subset formed by all read-paths containing an

edge e. An edge e in DB�k is called non-repetitive if

• all pairs of read-paths in ReadPaths(e) overlap and their overlap

contains e.
• edge e appears at most once in each read-path from ReadPaths;

For the datasets with relatively even coverage by Illumina reads

(e.g. reads generated from cultured cells but not single cells ampli-

fied with MDA) we impose an additional condition—an edge is

called non-repetitive if it is sufficiently long (exceeds 500 bp in the

default setting) and its coverage does not significantly exceeds the

median coverage of the entire dataset (does not exceed the median

coverage by more than 20% in the default setting).

A read-path ReadPath follows a path P in the assembly graph

if there exists a path P ¼ e1 . . . ei . . . ej . . . en such that its prefix e1

. . . ei . . . ej coincides with P, its suffix ei . . . ej . . . en coincides with

ReadPath, and at least one of edges from ei . . . ej is non-repetitive.

Given a path P and a set of read-paths ReadPaths, we define

ReadPathsP as the set of all read-paths from ReadPaths that follow

P. Given an extension edge e of a path P, we define scorePðeÞ as the

total multiplicity of read-paths in the set ReadPathsP�e, where P� e

is the path P extended by the edge e.

If a path P has an extension edge e whose score dominates scores

of all other extension edges (i.e. exceeds them by a factor of at least

c), HYBRIDSPADES extends P by e (the default value c¼2). Otherwise,

the extension procedure stops. If the highest scoring extension edge

does not dominate the scores of all other extension edges,

exSPAnder applies the standard extension rules based on read-pairs

(Prjibelski et al., 2014; Vasilinetc et al., 2015).

4 Results

4.1 Datasets
We analyzed datasets combining short and long reads from E.coli

str. K12 (datasets ECOLI100, ECOLI200 and ECOLI-NANO),

M.ruber (dataset MRUBER), Streptomyces sp. PAMC26508 (data-

set STREPTO) and candidate division TM6 bacterium TM6SC1

(dataset TM6). The reads in the latter dataset were generated from

single cells amplified with the Multiple Displacement Amplification

(MDA) technology (Lasken, 2007). Prior to this study, the genome
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of TM6SC1 was only partially assembled (see McLean et al., 2013

for details).

ECOLI200 dataset contains SMRT reads with 200	 coverage

and P6/C4 enzyme/chemistry (average read length 5280 bp).

ECOLI100 dataset contains SMRT reads with 100	 coverage and

older P4/C2 enzyme/chemistry (average read length 10 598 bp).

ECOLI-NANO dataset contains Oxford Nanopore reads (average

read length 6060 bp). All three E.coli str. K12 datasets contain

Illumina reads of length 100 bp, mean insert length 215 bp and

coverage 230	obtained with Illumina Genome Analyzer IIx.

Mapping of Illumina reads to E.coli str. K12 genome revealed

that the strain used for generating these datasets differs from the ref-

erence sequence of E.coli str. K12 (three insertions of mobile elem-

ents about 1 kbp in length). These differences result in six

breakpoints that are reported as six assembly errors by the assembly

evaluation tool QUAST (Gurevich et al., 2013). We thus ignored

these six (pseudo) errors while benchmarking various assemblers.

MRUBER dataset contains SMRT reads with 120	 coverage

(average read length 2430 bp). Illumina reads for this dataset were

generated using Illumina Nextera Mate Pair technology (there were

no paired-end reads in this dataset) with read length 150 bp, mean

insert length 3500 bp and low 20	 coverage.

STREPTO dataset contains SMRT reads with 25	 coverage

(average read length 1410 bp). Illumina reads were generated with

Illumina HiSeq 2000 with read length 150 bp, mean insert length

280 bp and coverage 95	. Streptomyces sp. PAMC26508 genome

has high (71%) GC content.

TM6 dataset contains both SMRT reads (45	 coverage) and

Illumina reads (265	 coverage) generated from MDA-amplified sin-

gle cells. The Illumina reads were generated with Genome Analyzer

IIx (read length 100 bp, mean insert length 270 bp). Note that

MDA-based single cell approaches result in highly uneven genome

coverage by reads (Bankevich et al., 2012).

The links to all the datasets and reference genomes are available

in supplementary materials.

4.2 Software tools
We benchmarked HYBRIDSPADES (as a part of SPADES 3.6 release),

Cerulean (Deshpande et al., 2013) and PBcR (Koren et al., 2012)

(version wgs-8.3rc1). In the hybrid mode (that we refer to as

hybridPBcR), PBcR uses short Illumina reads to error-correct the

long (SMRT or Nanopore) reads. In the self-correction mode (that

we refer to as selfPBcR) PBcR only uses long reads for assembly. We

used the QUAST assembly evaluation tool (Gurevich et al., 2013)

for benchmarking. While QUAST reports many assembly metrics,

the benchmarking tables below are limited to NG50, NG75, LG50,

the length of the longest contig, and the number of misassemblies

(MA), where NG50 is the length for which the collection of all con-

tigs of that length or longer covers at least half of the reference gen-

ome, NG75 is defined similarly to NG50 with 75% of reference

genome instead of 50%. LG50 is the number of contigs longer or

equal than NG50.

Although AllPaths-LG (Ribeiro et al., 2012) has a hybrid mode

for assembling short and long reads, we did not have an opportunity

to benchmark it since none of the datasets described above satisfy

the strict constraints on the insert sizes imposed by AllPaths-LG.

The field of hybrid assembly has been rapidly developing in the

last year when the Oxford Nanopore assembly pipeline Nanocorrect

(Loman et al., 2015), hybrid Nanopore & Illumina assembly pipe-

line NanoCorr (Goodwin et al., 2015) and hybrid scaffolder LINKS

(Warren et al., 2015) were added to the arsenal of tools for

assembling Oxford Nanopore reads. However, Nanocorrect and

NanoCorr focused on Oxford Nanopore reads rather than Pacific

Biosciences reads. We and others (Ashton et al., 2015; Liao et al.,

2015; Utturkar et al., 2014) demonstrated that HYBRIDSPADES works

well for hybrid assembly with both Pacific Biosciences and Oxford

Nanopore reads.

4.3 Benchmarking
HYBRIDSPADES and selfPBcR assembled both ECOLI100 and

ECOLI200 datasets in a single contig (Table 1). As expected, both

HYBRIDSPADES and selfPBcR resulted in six (pseudo) assembly errors

caused by the known differences between the analyzed and the refer-

ence strains (three insertions of mobile elements). selfPBcR produced

two additional (real) misassemblies and HYBRIDSPADES produced

one. Cerulean and hybridPBcR generated more fragmented assembly

and, in case of Cerulean, more misassemblies for ECOLI100 data-

set. For ECOLI200 dataset, both Cerulean and hybridPBcR gener-

ated inferior assemblies.

In addition to hybrid assembly of Illumina and SMRT reads,

HYBRIDSPADES also assembled ECOLI-NANO dataset into a single

contig. All other tested assemblers failed to assemble this dataset.

We have also investigated how the performance of HYBRIDSPADES

and PBcR deteriorates when the coverage by long reads is reduced.

To perform this analysis, we retained a fixed fraction of randomly

chosen SMRT reads resulting in coverage varying from 200	 to

6.25	. As Table 2 illustrates, even with low 12.5	 coverage by

SMRT reads, HYBRIDSPADES generates a high-quality assembly (bet-

ter than PBcR with 50	 coverage). The quality of PBcR assemblies

deteriorates when the coverage falls below 50	.

selfPBcR assembled MRUBER dataset into a single contig with a

single misassembly, while HYBRIDSPADES assembled this dataset into

three error-free contigs with zero misassemblies (Table 3).

HYBRIDSPADES failed to assemble this dataset into a single contig be-

cause long reads in this dataset do not span over a long 7 Kbp re-

peat. hybridPBCR produced an assembly with quite similar stats.

Cerulean produced lower quality assembly, HYBRIDSPADES generated

a high-quality assembly of STREPTO dataset with NG50 �
883 Kbp (2 misassemblies), while Cerulean generated an assembly

Table 1. Benchmarking of HYBRIDSPADES, PBcR and Cerulean on

E.coli datasets

LG50 NG50 NG75 longest MA

ECOLI200

HYBRIDSPADES

(Illuminaþ SMRT) 1 4652737 4652737 4652737 7

hybridPBcR – – – 34501 1

selfPBcR 1 4680888 4680888 4680888 8

Cerulean 16 108914 61790 225438 87

ECOLI100

HYBRIDSPADES

(Illuminaþ SMRT) 1 4652737 4652737 4652737 7

hybridPBcR 14 109938 38778 311375 4

selfPBcR 1 4661789 4661789 4661789 8

Cerulean 2 1238378 1215680 1258795 10

ECOLI-NANO

HYBRIDSPADES

(IlluminaþNanopore) 1 4477336 4477336 4477336 7

For each parameter we boldfaced the best results. Longest contig, NG50

and NG75 were compared with reference (4639675 bp). We did not run vari-

ous genome polishing tools like Quiver (Chin et al., 2013) since our bench-

marking focused on assembly errors rather than basecalling errors.
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with NG50 � 645 Kbp and 10 misassemblies (Table 4). hybridPBcR

failed on this dataset while selfPBcR produced a low-quality assem-

bly due to the low coverage by SMRT reads.

In contrast to the previous assemblies of SMRT reads in single

cell genomics (Labonté et al., 2015; Swan et al., 2014) that came

short of closing the assemblies, application of HYBRIDSPADES to TM6

dataset resulted in a single circular contig of length 1089 Kbp (which

contains all previously sequenced seven long contigs with total

length 1075 Kbp (McLean et al., 2013)). To the best of our know-

ledge, it is the first assembly of SMRT reads in single cell genomics

that resulted in a complete genome.

Since prior to this study, TM6 genome was incomplete, we used

the genome assembled by HYBRIDSPADES to evaluate performance of

other assemblers on this dataset.

Cerulean generated an assembly with the largest contig of length

774 Kbp and 1 misassembly (Table 5). hybridPBCR failed on this

dataset while selfPBcR produced a low-quality assembly.

Our benchmarking demonstrated that HYBRIDSPADES improves

on the state-of-the-art hybrid assemblers on all datasets we have

analyzed (on two of these datasets with a high SMRT read coverage,

selfPBcR showed similar results).

5 Conclusions

Early tools for hybrid assembly combined Illumina and Sanger reads

or Illumina and 454 reads (Boisvert et al., 2010; Chevreux et al.,

1999; Zimin et al., 2013). However, hybrid assembly of Illumina

and SMRT reads presents new algorithmic challenges since SMRT

reads have higher error rates than Sanger reads or 454 reads.

Our benchmarking demonstrated that HYBRIDSPADES assembles

short accurate and long error-prone reads into long and accurate

contigs. The resulting low-cost high-quality assemblies are import-

ant for accurate genome annotations and comparative genomics.

Moreover, HYBRIDSPADES opens a possibility to complete genomes

assembled from single cells. Although 1000 s of bacterial genomes

have been assembled from single cells in the last 3 years using speci-

alized single cell assemblers SPAdes (Bankevich et al., 2012) and

IDBA-UD (Peng et al., 2012), finishing genomes amplified from sin-

gle cells is often viewed as an impossible task (Lasken and McLean,

2014). Moreover, sequencing single cell genomes from SMRT reads

is likely to be excessively expensive due to highly non-uniform

coverage characteristic of the MDA-amplified datasets. Hybrid as-

sembly of short and long reads, on the other hand, turns complete

genome assembly from single cells into reality.

While the detailed analysis of the relative market costs and

trade-offs of various sequencing technologies remained beyond the

scope of this article, we anticipate that many future sequencing pro-

jects will use hybrid assembly of reads generated by various

technologies.
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Table 2. Benchmarking of HYBRIDSPADES and selfPBcR on down-

sampled ECOLI200 datasets with reduced coverage by long reads

ECOLI200

LG50 NG50 NG75 longest MA

HYBRIDSPADES 200	 1 4652737 4652737 4652737 7

selfPBcR 200	 1 4680888 4680888 4680888 8

HYBRIDSPADES 100	 1 4652556 4652556 4652556 7

selfPBcR 100	 1 4677843 4677843 4677843 8

HYBRIDSPADES 50	 1 4652375 4652375 4652375 7

selfPBcR 50	 3 758477 494886 876582 9

HYBRIDSPADES 25	 1 2643623 1817256 2643623 7

selfPBcR 25	 – – – 82951 6

HYBRIDSPADES 12.5	
(Illuminaþ PacBio) 1 3398297 746845 3398297 9

selfPBcR 12.5	 – – – 15884 0

HYBRIDSPADES 6.25	 5 356505 210465 692018 9

selfPBcR 6.25	 – – – – –

The coverage was downsampled from 200	 to 6.25	. NG50, LG50 and

NG75 are not defined for PBcR assembly with coverage 25	 and lower be-

cause the total assembly length is less than half of the genome length. For

coverage 6.25	, PBcR failed to generate an assembly.

Table 3. Benchmarking of HYBRIDSPADES, PBcR and Cerulean on

M.ruber dataset

MRUBER

LG50 NG50 NG75 longest MA

HYBRIDSPADES 1 1709645 1387667 1709645 0

Cerulean 3 305771 262734 1117272 4

hybridPBcR 1 1753481 766814 1753481 0

selfPBcR 1 3100304 3100304 3100304 1

Table 4. Benchmarking of HYBRIDSPADES, PBcR and Cerulean on

Streptomyces dataset

STREPTO

LG50 NG50 NG75 longest MA

HYBRIDSPADES 4 903095 679085 1366650 1

Cerulean 4 645600 388134 1240002 10

hybridPBcR 12 225991 124032 452318 1

Table 5. Benchmarking of HYBRIDSPADES, PBcR and Cerulean on

TM6 dataset

TM6

LG50 NG50 NG75 longest MA

HYBRIDSPADES 1 1088795 1088795 1088795 –

Cerulean 1 773677 221583 773677 1

selfPBcR 7 41009 18600 146018 26

The initial TM6 assembly by SPAdes had total size exceeding 4 Mb that

greatly exceeds the genome length reported in McLean, 2013 (McLean et al.,

2013). This is caused by contaminants since TM6 dataset represents a mini-

metagenome. See (McLean et al., 2013) for details.
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