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Abstract

Motivation: lllustrating how HIV-1 is transmitted and how it evolves in the following weeks is an im-
portant step for developing effective vaccination and prevention strategies. It is currently possible
through DNA sequencing to account for the diverse array of viral strains within an infected individ-
ual. This provides an unprecedented opportunity to pinpoint when each patient was infected and
which viruses were transmitted.

Results: Here we develop a mathematical tool for early HIV-1 evolution within a subject whose in-
fection originates either from a single or multiple viral variants. The shifted Poisson mixture model
(SPMM) provides a quantitative guideline for segregating viral lineages, which in turn enables us
to assess when a subject was infected. The infection duration estimated by SPMM showed a statis-
tically significant linear relationship with that by Fiebig laboratory staging (P = 0.00059) among 37
acutely infected subjects. Our tool provides a functional approach to understanding early genetic
diversity, one of the most important parameters for deciphering HIV-1 transmission and predicting
the rate of disease progression.

Availability and implementation: SPMM, webserver, is available at http://www.hayounlee.org/
web-tools.html.

Contact: hayoun@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A genetic bottleneck during HIV-1 transmission has been reported
in a number of studies comparing sequence variants among trans-
mission partners (Learn et al., 2002; Long et al., 2000; Wolinsky
et al., 1992). The HIV-1 transmission bottleneck has been recently
linked to a fitness bottleneck, preferentially transmitting high-fitness
viruses (Carlson ef al., 2014). Whereas a single-strain infection is
prevalent in heterosexuals, intravenous drug users (IDUs) show a
higher chance of being productively infected by more than one virus
(Abrahams et al., 2009; Bar et al., 2010; Keele et al., 2008; Li et al.,

2010). Even within the same risk category, additional clinical vari-
ables may create a significantly different transmission landscape,
which can in turn affect the frequency of multiple-founder infec-
tions. For example, the presence of a genital infection may lead to a
more permissive environment for multiple-founder infections
(Haaland et al., 2009).

Early genetic diversity, typically associated with the number of
transmitted strains, has been shown as a significant indicator of
HIV-1 disease progression. Greater diversity among the infecting
virus population was correlated with an increased risk of death, a
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higher steady-state level of HIV-1 viremia, and a faster CD4+ T cell
decline (James et al. 2011; Sagar et al., 2003). Multiplicity of infec-
tion has been linked to increased transmission risk (Abrahams et al.,
2009; Carlson et al., 2014). Therefore, addressing the diversity of
viral variants at transmission is an important task that may help
evaluate viral evolution and predict clinical outcomes.

Recent advances in sequencing technology provide an accurate
representation of the HIV-1 sequence population within an infected
individual (Palmer et al., 20053 Salazar-Gonzalez et al., 2008). Early
HIV-1 evolution has been quantitatively addressed, accomplishing
tasks such as identifying transmitted/founder viruses (Keele ez al.,
2008), estimating infection duration (Keele ez al., 2008; Lee et al.,
2009), and calculating the rate and timing of the viral escape from
the first T cell responses (Goonetilleke et al., 2009). However, suc-
cess has been limited because current tools have been specifically de-
signed for the analysis of infections originating from a single
transmitted virus (Keele et al., 2008; Lee et al., 2009). Early viral di-
versity arising from multiple founder lineages should be interpreted
with caution because viral diversity due to early, random evolution
is intertwined with sequence heterogeneity caused by distinct foun-
der viruses. Tree-based methods have been useful for segregating
viral sequences into multivariant founder lineages (Abrahams et al.,
2009; Bar et al., 2010; Keele et al., 2008). Here we develop an alter-
native framework to systematically estimate the duration of infec-
tion originating from multiple founders based on the characteristics
of HIV-1 transmission and early evolution. We use this tool, called
shifted Poisson mixture model (SPMM), to characterize early HIV-1
evolution within acutely infected subjects (Abrahams ez al., 2009;
Bar et al., 2010; Keele et al., 2008).

2 Materials and methods

2.1 Model of multiple variant transmissions and
evolution

We develop a model for early HIV-1 evolution to analyze infections
originating from multiple viruses. We formulate the SPMM by ex-
tending a previously developed acute sequence evolution model
(Keele et al., 2008; Lee et al., 2009) to the case of an HIV-1 infection
that starts with multiple founder viruses. Our primary goal is to de-
vise a tool for assessing the duration of infection by segregating dif-
ferent founder lineages. In the SPMM, we assume that each
descendant population evolves and replicates independently without
any recombination. Due to this assumption, putative recombinant
strains are removed prior to our model analysis. Assuming no pref-
erential selection of a particular founder lineage, which is a reason-
able assumption to make within the first weeks since infection due
to a delay in host immune response, the rate of viral diversification
of each lineage is governed by the same set of model parameters,
including the single cycle error rate of viral reverse transcriptase
(Mansky and Temin, 1995), the viral generation time (Markowitz
et al., 2003; Perelson et al., 1996), and the basic reproductive ratio
(Ribeiro et al., 2010; Stafford et al., 2000). Each founder lineage be-
haves like a single infection wherein the pairwise nucleotide base dif-
ferences, Hamming distances (HD), between HIV-1 gene sequences
conform to a Poisson distribution (Keele et al., 2008; Lee et al.,
2009).

Let (f1,...,fr) be the sequences of the k distinct founder
strains in a systemic HIV-1 infection with pairwise Hamming
distances among these k founder strains, d = (di, di3, ... ,
di_1x). Let N be the total number of sampled sequences and

v = (v(1),---v(Ns)) be a partition function that assigns each of the

N; sampled descendants to one of the k founder strains; for ex-
ample, if v(i) = 1 and v(j) = 2 then the i sequence and the ;™ se-
quence originated from two different founders, fi and f,. From the
partition v = (v(1),---v(Ns)), the number of sequences in each of
the k lineages is determined, 7 = (ny,---n,) with Zf; n; = Ns.
Two randomly-chosen sequences, s; and s;, which evolved independ-
ently from distinct ancestors f,; and f,;), are assumed to have a HD
at least as great as the distance between their founders, d, ;) ,(;). The
HD distribution between the sequences, s; and s;, is given by the sum
of the probability of each possible pair of mutations in s; and s;
away from their respective founders:

P(HDs;,sj] =YIHDIfy) fv(i)] = dviiyvii))

y=dyii)v(j)
= > P(HDIsi,fup)=1) P(HDIs;,fup) =y = dviy v =)
1=0
(1)

)—dy(i)v
b V() 2 2

= Poisson(l;=) Poisson(y —dyi v —1;5)
= 2 2

o

= Poisson(y —dyiv(j); 4) »

where 1/2 is the average number of mutations away from the foun-
der virus in the HIV-1 genome when sequences are sampled at time #
post infection. This describes a shifted-Poisson distribution with
mean 2 and shift d,;,(j. The Poisson parameter / has a linear rela-
tionship with the time since the beginning of the infection, #, which
is given by the following equation when the infection is assumed to
occur in discrete generations,

. 2eNp
L=
T

L, 2)

where ¢ is the rate of base substitution by HIV-1 reverse transcript-
ase, N is the number of bases of the sequence, and 7 is viral gener-
ation time (Lee et al., 2009).

By collecting the probability distributions of HDs within lineages
and those among lineages, we obtain the pairwise HD distribution
for the entire sample when an infection starts with k& founder
viruses,

1

Pr(HD=y) =
( y) G

k . kk
{Zl <z’) Poisson(y; L)+ Zl Zlnin, Poisson(y — dy(i).vi): MY —dyivg)
= =1j=i+
(3)

where I(y —dyi) ) =1 if y>dy), and 0 otherwise, denoting
that the founder distances must be at least as small as current dis-
tances (see Supplementary back-mutation correction section). When
k viruses are transmitted, the number of peaks of the HD distribu-
tion should be given by 1+, C,, consisting of one peak from within-
lineage pairs and ,C, peaks from pairs across different lineages
when the distances between each pair of founder lineages are not
equal. These distinct peaks of the HD distribution indicate early
stages of infection, as increased accumulation of mutations would
flatten the peaks at chronic stages (Park et al., 2011).

2.2 Parameter estimation: number of founder viruses
and duration of infection

Using the method of conditional maximization (Schervish, 1995),
we estimated the set of model parameters consisting of the Poisson
parameter, 4, the number of initial founder strains, k, the pairwise
Hamming distances (HDs) between all possible pairs of k& founder
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strains, d= (di2, ... ,dr_11), and the partition of sampled descend-
ants into each group, v = (v(1),---v(Ngs)). The approximate likeli-
hood is calculated as the product of the individual HD distributions
as in references (Giorgi et al., 2010; Lee et al., 2009). It is an ap-
proximation because the intersequence HDs are not independent.
When a sequence pair s; and s; belongs to the same group, we set
dy(i).v(j) = 0. Using a Poisson distribution for the number of accumu-
lated mutations, the approximate likelihood is

Ns  Ns e i —dy(i).(j)

A Iy — dyiy i) W
i=1 j=it+1 (vij = du(i)g/(/‘))! (i vi) ()

where y;; is the intersequence HD between strains i and j. The ap-
proximate log-likelihood function is given by the log of Equation (4)
and is simplified to be numerically maximized. For the shifted
Poisson mixture it is given by,

(k2,7 d) =, Cs 7
Ns N

YD (i duti)og (4) —log [(vij—duv)) 1 +1081(vij =iy )]

=1 j=it1

(5)

Given a set of intersequence HDs, the values of the parameters k, 4,
v, and d which maximize Equation (5) are the approximate max-
imum likelihood estimates of the parameters. The vector, d and the
permutation function, v depend on the value of k, and it is difficult
to estimate k at the same time as the other parameters. Therefore,
for a range of likely values of k, we fix the value of k and estimate 4,
v and d. In addition, the minimum intersequence distance between
any founder sequences is set as 6. We then compare the fit of the
model to the HD distribution for each value of k and choose the
best-fitting parameters.

We employ a one-dimensional, deterministic optimization
method to estimate the parameters that maximize the approximate
log-likelihood function, Equation (5). We start with a clustering al-
gorithm, Partitioning Around Medoids (PAM) to partition the N
sampled sequences into k groups (Kaufman and Rousseeuw, 2005;
Theodoridis and Koutroumbas, 2008). For each parameter in the
model, the approximate maximum likelihood value is calculated,
conditional on the current values of the other parameters in the
model. This method is guaranteed to find one of the local maxima in
the approximate likelihood. One way to increase the odds of finding
the global maximum is by starting the algorithm at a likely point,
close to the global maximum, which is why we start with the PAM
partition. For a full discussion of the convergence of generalized
maximization algorithms, see references (Boyles, 1983; Dempster
et al., 1977). With the high-dimensional, discrete nature of the par-
ameter space, our method is one of the most computationally feas-
ible ones. The parameter space of this model contains the set of
partitions of Ns objects in k groups, which grows exponentially
with Njs. For a limited number of examples, we implement a com-
plete search of the approximate likelihood space. For three example
subjects with 15, 28, and 49 sampled sequences, conditional maxi-
mization yields the same estimates as does exhaustive maximization.

The estimated number of founder virus strains is the smallest &
such that the model has the smallest sum of squared errors (SSE) or
Akaike Information Criteria (AIC) among the values of k fit to the
data. Here we measure the SSE with the normalized HD distribu-
tion. The AIC is a

AIC =2 % {144Cy + NsI(k — 2)} — 2 x I(k, 1, 7, d),  (6)

measure of the fit of the data to the likelihood penalized by the

number of parameters (Akaike, 1974). The AIC for the SPMM is
given by where the degrees of freedom come from the number of
estimated parameters, one 4, ,C, founder distances, and N indica-
tors of the partition.

The estimated / is evaluated by the goodness of fit 3* test to
examine whether the data significantly diverges from the fitted
SPMM (Chernoff and Lehmann, 1954; Giorgi ef al., 2010; Lee
et al., 2009). This test requires that the observations be independent,
which is not the case for intersequence Hamming distances.
Therefore, instead of fitting the inter-sequence HDs, we calculate
the within-lineage distances from each lineage’s consensus sequence
and define the y* statistic as follows: z> = 3, (O; — E;)*/E; where
O, is the observed pooled frequency of the distance 7 from the lin-
eage consensus sequences and E; is the expected frequency if the dis-
tribution were to follow a Poisson with mean 1/2, where 2 is the
parameter estimated through the SPMM model. The factor 1/2
comes from the fact that we are testing the consensus distances in-
stead of the inter-sequence distances.

2.3 Sequence data sources

The sequence clones were collected from the published data set in
references (Abrahams et al., 2009; Bar et al., 2010; Keele et al.,
2008). Geographic locations of the cohorts were US, Trinidad,
South Africa, Malawi, and Canada. A total of 182 subjects with
acute, very early HIV-1 subtype B and C infections were re-grouped
according to the routes of exposure: 92 heterosexual transmissions,
16 MSM subjects, 12 IDU subjects, and 62 patients of unknown risk

group.

2.4 Sequence preparation: recombination and
hypermutation

Prior to fitting the SPMM model, all samples were aligned and
checked for instances of recombination and hypermutation.
Retroviral recombinant DNA sequences are synthesized by HIV-1
reverse transcriptase which switches between distinct RNA tem-
plates when a single target cell is infected by virions with heterozy-
gous RNAs (Hu and Temin, 1990; Robertson et al., 1995a, 1995b).
The SPMM will generally designate recombinant strains as separate
lineages because of large sequence differences from each of their par-
ent lineages. Recombinant sequences may therefore result in in-
accurate estimates of the number of founder viruses. Thus, the
proper usage of the SPMM requires pre-screening for recombinant
sequences. All alignments were checked for recombination using a
combination of the Recombination Detection Program version 3
(RDP3) (Martin et al. 2010; Martin et al., 2005) and the beta ver-
sion of our in house Recombination Analysis Program (RAP, http:/
www.hiv.lanl.gov) in tandem with manual inspections. All recom-
binants were removed prior to our model analysis, as in
Supplementary Table S1 and Figures S1 and S2.

Similarly, APOBEC3G/F-mediated hypermutation (Simon et al.,
2005) affects the outcome of our model because mutations with
APOBEC3G/F signatures occur at a higher rate than the background
mutation rate. Therefore, hypermutated sequences and general en-
richment for hypermutation were checked in all alignments using
the LANL tool Hypermut (http://www.hiv.lanl.gov/content/se
quence/HYPERMUT/hypermut.html) and either hypermutated se-
quences (when found significantly enriched with a P-value < 0.1) or
hypermutated positions (when the whole sample was found to be en-
riched with a P-value < 0.1) were removed, as in Supplementary
Table S2 and Figure S3.
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2.5 Analysis of maximum likelihood trees

Sequences were converted into the PHYLIP format. Maximum
likelihood trees were then generated using the PHYML program
(http://www.atgc-montpellier.fr/download/papers/phyml_2003.pdf).
The program was set up to read the DNA sequences in a sequential
format. A single dataset was analyzed at a time, without bootstrap
analysis. The general time-reversible model was used, with the ‘ML’
option selected for base frequency estimates. Invariable sites were esti-
mated, with twelve substitution rate categories. The gamma distribu-
tion parameter was estimated, the tree was generated by the BION]
option, and tree topology was optimized. We produced images of
these trees using FigTree (http://tree.bio.ed.ac.uk/software/figtree/).

3 Results
3.1 Approximate likelihood-based inference of SPMM

We use our model to assess the number of founder viruses and the
duration of infection for 182 acutely infected subjects whose HIV-1
full envelope gene sequences were previously published (Abrahams
etal.,2009; Bar et al., 2010; Keele et al., 2008). Figure 1 shows four
representative examples of the model’s fit to the pairwise HD distri-
bution of envelope gene sequences obtained from each acutely in-
fected subject. Here the best fitting model parameters are obtained
using the conditional maximization method (Schervish, 1995).
When an infection is estimated to originate from a single viral gen-
ome, we observe a single peak of the HD distribution (Fig. 1A).
Multiple founder transmissions are marked by multiple peaks in the

A
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30
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10
o A4 - T o 4 b
0 20 4 6 80 0 20 4 6 80
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Fig 1. Best fits of the shifted Poisson mixture model to the intersequence HD
distributions. (A) The pairwise HD distribution of HIV-1 envelope sequences
sampled from patient 705010026 in reference (Abrahams et al., 2009) (gray
bars). The shifted Poisson mixture model estimates the number of founder
variants as 1 and the duration of infection as 38.3 [27.5-49.1] (goodness of fit
P = 0.54). The best fit of the model is presented by the red curve (B) The pair-
wise HD distribution from patient 9076-08 in reference (Keele et al., 2008).
The model estimates the number of founder strains as 2 and the duration of
infection as 13.5 (8.1, 18.9) days (P = 0.74). The number of nucleotide base dif-
ferences between the two founders is estimated as 28. (C) The pairwise HD
distribution from subject 62615-13 in reference (Keele et al., 2008) with the
best fit of the shifted Poisson mixture model (red line). The estimated number
of founder sequences is 3, the time since infection is 9.3 (4.6, 14.0) days (P =
0.36), and the number of base substitutions among pairs of the three founder
stains are 17, 72, and 77. (D) The pairwise HD distribution from subject
CAP222 in reference (Abrahams et al., 2009) with the best fit of the SPMM.
The estimated number of founder variants is 4 and the estimated time post in-
fection is 14.0 (7.2, 20.8) days (P = 0.071). The pairwise estimated HDs among
the founders are 53, 45, 42, 67, 27, and 59

HD distribution (Fig. 1B-D). The two peaks of subject 9076-08’s
HD distribution, shown in Figure 1B, indicate an infection originat-
ing from two founder variants; the first peak near HD = 0 represents
sequence pairs within each of two founder lineages and the second
peak near HD = 28 denotes sequence pairs between the two founder
lineages. The SPMM estimated the duration of infection in subject
9076-08 as 13.5 days with a 95% C.I. of (8.1, 18.9) (goodness-of-fit
P —0.74).

The SPMM can complement tree-based lineage classification
methods. Here we provide a side-to-side comparison between
the SPMM analysis and a phylogenetic tree method. As shown in
Figure 2A, the SPMM estimates two founder lineages from the se-
quence sample of subject CAP8 in reference (Abrahams et al.,
2009); the two peaks of the HD distribution conform to the fit of
the SPMM with two founder variants. Indeed, the fit of two founder
variants shows both a smaller sum of squared errors (SSE) and
Akaike Information Criteria (AIC) than the single founder fit (0.031
versus 0.0032 (SSE) and 803.2 versus 612.6 (AIC)). On the other
hand, the analysis of the maximum likelihood tree does not conclu-
sively determine whether the infection originated from a single lin-
eage or multiple lineages; the three strains colored in red in
Figure 2B can be grouped with the other 15 strains (colored in
black) or considered as a separate lineage. As presented in the high-
lighter plot in Figure 2C, the three sequences of the second lineage
show aligned mutations from the consensus sequence of the first lin-
eage, resulting in the second peak in the HD distribution (Fig. 2A).
By taking into account that the sequences of subject CAP8 were
sampled in Fiebig stage V, we may consider the second lineage as an
escape mutant lineage rather than a transmitted/founder lineage.
Supplementary Figures S4 and S5 show additional side-to-side
comparisons between the SPMM and phylogenetic analyses. This
side-to-side comparison highlights that the SPMM provides a quan-
titative guideline for lineage classification based on the fine signa-
tures of the sequence difference distribution of an HIV-1 infected
individual.

HD Ditribution

-
¥

il.l EEEEEEEEEEERER

¢ 0 1000 2000 3000
. ' Base number

Fig. 2. Comparison of SPMM and a maximum likelihood tree model. (A) The
pairwise HD distribution of the envelope sequences sampled from subject
CAPS8 in reference (Abrahams et al., 2009) is represented by gray boxes. The
fit of the SPMM with one founder variant (blue line) is compared with that of
two founder variants (red line). (B) The maximum likelihood tree for subject
CAP8. Two lineages classified by the SPMM are separately marked by black
and red squares. (C) The highlighter plot of the envelope sequences of sub-
ject CAP8. The three HIV envelope sequences marked in red are classified as
a separate lineage by the SPMM from the 15 sequences marked in black
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3.2 Risk group and multiple variant transmissions

Viral diversity at transmission has been known to be associated with
the exposure route and the risk behavior of infected individuals
(Powers et al., 2008). Heterosexual transmission involves a signifi-
cant genetic bottleneck, as around 80% of these transmissions ori-
ginate from just one founder variant (Haaland et al., 2009; Keele
et al., 2008). The rate of multivariant transmission is approximately
doubled among HIV-1-infected men who have sex with men (MSM)
(Li et al., 2010). Infections originating from multiple founder viruses
are more common than those from a single founder within injection
drug users (IDUs) (Bar et al., 2010). Here we systematically address
the differences in the number of founder viruses among different ex-
posure routes of infection using the published data in references
(Abrahams et al., 2009; Bar et al. 2010; Keele et al., 2008).

The SPMM identifies a total of 20 cases of multivariant trans-
missions out of 92 heterosexual transmissions. Subject SC42 is
excluded from our analysis to avoid small sample size artifacts be-
cause the number of sequences of the subject” most prevalent lineage
is less than 5. Table 1 lists the SPMM fit results of the remaining 19
subjects with multivariant heterosexual transmissions; the number
of founder viruses is estimated to range from 2 to 7, with a mean of
2.8 (1.2, standard deviation). We find 44% of the MSM group (7
out of 16 subjects) to have multivariant infections. Excluding subject
710, for the same reason as for subject SC42, the number of founder
variants of 6 multivariant MSM subjects ranges from 2 to 5 with a
mean of 3.2 (+1.3) (Table 1). About three-quarters of the IDU
group (9 out of 12) are estimated to be infected by multiple viral
variants. The IDU group shows a much higher multiplicity of foun-
der variants; on average, multivariant transmissions in IDUs involve
5.5 (£2.6) distinct strains and the maximum number of founder
viruses estimated is 9. Subject ACTDM580208 of the IDU group
and Subject Z29 of the unknown risk group are excluded from the
SPMM analysis for the same reason as for the other two exclusions.
Table 1 shows the SPMM estimates with full envelope gene se-
quences (HXB2 6225-8795) of the 41 multiple founder cases.
Supplementary Table S3 examines the sequence length parameter by
applying the SPMM to 2000, 1000 and 500 base long HIV-1 enve-
lope gene segments (HXB 6596-8596, HXB2 6596-7596 and HXB2
6596-7096) from each of the 41 subjects. The estimates for k and in-
fection duration are not significantly different for 2000 or 1000 base
long segments. However, 500 base long gene segments averaged
1.10 lower k (P = 0.034) and 44.30 longer infection duration (P =
0.009).

3.3 SPMM estimates of infection duration

and Fiebig staging

The SPMM analysis is cross-checked by an independent Fiebig la-
boratory staging of infection duration (Fiebig et al., 2003, 2005).
Figure 3 shows the times since infection for a group of 37 heteroge-
neous subjects out of the 41 presented in Table 1 for whom Fiebig
staging was available (Abrahams et al., 2009; Bar et al., 2010; Keele
et al., 2008). While Fiebig staging provides a rough approximation
of the time since infection, the SPMM and Fiebig estimates are none-
theless significantly correlated (Spearman’s » = 0.54, P = 0.00059).
In a linear regression model, the slope of the linear fit is 0.55 (P <
0.0001), indicating that the infection duration estimated by the
SPMM is on average lower than the laboratory staging estimate.
When we exclude patients’ samples at the late acute stage of
approximately 101 days following infection (Fiebig V), the two
estimates show a weaker correlation among 24 subjects (Spearman
r = 0.27, P = 0.20). However, the SPMM estimates become more

Table 1. SPMM estimates

Subject ID K Days post P# SSE

infection

with 95% CI
Heterosexual
SC33 2 22.4[14.8-30.1] 0.040  0.0049 (1053.2)
TT27P 3 10.8[6.4-15.2] 0.33 0.0020 (1538.3)
CAP8* 2(1) 49.1[35.4-62.9] 0.18 0.0032 (612.6)
CAP224 2 20.2[11.7-28.8] 0.57 0.0091 (510.7)
703010228 2 21.3[13.9-28.7] 0.89 0.0010 (1040.4)
SC31* 2(1) 24.2[17.4-31.1] 0.095 0.019 (2104.2)
CAP222° 4(3) 14.0[7.2-20.8] 0.071 0.0063 (564.9)
0478° 2(3) 54.2[40.3-68.2] 0.021 0.011 (721.7)
703010010 3 11.9[5.8-18.0] <0.0001  0.039 (631.0)
CAP136 2 36.7[23.2-50.2] 0.33 0.0085 (327.1)
CAP260 2 28.3[14.9-41.7] 0.45 0.018 (186.1)
730 2 64.0[50.2-77.9] 0.15 0.0062 (1040.1)
CAP37 3 46.1[33.3-58.9] 0.55 0.024 (839.6)
0114 3 32.3[22.5-42.0] 0.82 0.0012 (861.7)
7030102007 4(3) 42.0[28.6-54.6] 0.89 0.013 (497.5)
1335 3 28.4[18.4-38.4] 0.32 0.012 (617.8)
706010151° 3(2) 49.2[31.8-66.6] 0.044  0.023 (257.5)
CAP69* 7(5) 4.8[0.095-9.41] 0.85 0.0074 (205.4)
1196 3 49.5[36.9-62.1] 0.40 0.017 (884.2)
MSM
735 2 19.3[11.1-27.5] 0.20 0.050 (571.9)
CAANS342° 2(>2) 30.2[22.0-38.5] 0.49 0.017 (1547.5)
Z16° 4(5) 65.7[49.4-82.0] 0.97 0.0038 (575.9)
BORI0637 5 17.2[10.1-24.3] 0.84 0.0055 (698.3)
718 4(3) 33.2[24.2-42.2] 0.039 0.024 (1425.1)
703" 2(3) 102.3[83.1-121.6] 0.39 0.034 (859.9)
IDU
HDNDRPIO29* 2 (1) 56.0 [44.5-67.6] <0.0001  0.012(1820.7)
HDNDRPI032 3 53.4[39.6-67.2] 0.87 0.0098 (682.2)
HTM319* 8(3) 50.1[36.4-63.9] 0.00019 0.0047 (662.7)
PSL024 4 50.5[33.5-67.5] <0.0001  0.029 (303.5)
HDNDRPIOO1* 4 (5) 67.3[49.6-84.9] 0.0047  0.0090 (480.4)
1034-3 8 123.2[113.6-132.7] <0.0001 0.014 (28068.0)
700010019* 6(>3) 15.0[7.3-22.7] 0.62 0.018 (417.5)
HDNDRPIO34" 9 (16) 30.0[23.6-36.3] 0.08 0.0064 (4163.5)
Risk group unknown
9076-08 2 13.5[8.1-18.9] 0.74 0.0040 (1153.4)
62615-03 3 9.3 [4.6-14.0] 0.36 0.0042 (809.7)
9026-07 2 14.0[6.0-22.0] 0.97 0.011 (275.1)
12008-09 2 8.0[3.5-12.5] 0.61 0.0079 (751.7)
PRB957-06" 3(4) 52.5[42.0-63.0] <0.0001  0.047(2355.0)
63068-05 2 13.3[6.3-20.2] 0.34 0.030 (441.8)
701010016 2 49.4[35.6-63.2] 0.14 0.0095 (622.2)
1051-127 3(4) 29.9[23.5-36.4] <0.0001  0.015 (4530.4)

2Subjects who were estimated to have a different number of founder strains
using phylogenetic methods (Previously-published, phylogenetic tree-based es-
timates for the number of founder viruses are presented in parenthesis).

#Less than 0.05 implies statistically significant deviation from the SPMM.

comparable to the Fiebig estimates, with a linear regression slope of
1.02 (P < 0.0001). Therefore, the SPMM shows consistency in as-
sessing infection duration with Fiebig staging, in particular, during
early acute infection up to Fiebig stage IV.

3.4 Recombinant analysis

Recombination strains are detected within a considerable portion of
subjects whose infection originated from multiple variants, as shown
in Supplementary Table S1 and Figure S1 and S2. In the 41 multiple
transmission cases listed in Table 1, 26 subjects show a recombin-
ation signature. On average, 17.4% of strains obtained from each of
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these subjects are designated as recombinants, ranging from 2.0% to
42.4%. Without each patient’s inferred recombinant strains, the
duration of infection is decreased by a median of 19.3% in 15 sub-
jects and increased by a median of 5.6% in 11 subjects. The number
of founder viruses is decreased by a median of 3 in 22 subjects, rang-
ing from 1 to 14. Our sensitivity analysis shows that the addition of
up to 20 artificial recombinant sequences to subject 9076-08’s 32
sequences does not change the original estimate by more than one
day, though the SPMM groups those as a separate lineage
(Supplementary Fig. S6). The proper usage of the SPMM requires
pre-screening for recombinant sequences.

3.5 Validity of model assumptions

The SPMM assumes that each founder population evolves at the
same rate. We examine this aspect by comparing the times to the
most recent common ancestor (MRCA) of the lineages within an in-
fected individual. Figure 3 inset shows representative examples of
comparing the time to the MRCA of a whole sequence sample with
that of each mutant lineage. Two founder lineages are identified in
subject 701010016 in reference (Keele et al., 2008) and the two lin-
eages’ evolution time is estimated to be comparable to each other
while also matching the evolution time of the whole sample, corrob-
orating our model assumption. The difference in the time to the
MRCA among the three lineages of subject 0114 in reference

100
160 - whole sample em—
T 0 each lineage T
) o
3 T
g " "{ l
|
120 1 : J an
H
= 0 l
0
701010016 o4 0478
80 Subject

Estimated days since infection by SPMM

40 /}[/P/

0 20 40 60 80 100
Estimated days since infection by Fiebig staging

Fig. 3. Comparison between SPMM estimates of infection duration and Fiebig
staging and comparison of time to MRCA among different lineages. Our esti-
mates of the duration of infections by the SPMM are compared with esti-
mated times post infection by Fiebig staging for 37 acutely infected
individuals whose infections originated from multiple founder viruses. The
Fiebig stages I/ll, lll, IV, and V were colored as red, blue, gray, and sky blue, re-
spectively. Here Fiebig stages | and Il are grouped together because subjects
in reference (Abrahams et al., 2009) were staged as | or Il. The average esti-
mated time post infection for each Fiebig stage was taken from references
(Fiebig et al., 2003; Keele et al., 2008; Lee et al., 2009) and the stage I/ll value is
presented by averaging over the two stages. The 95% confidence interval for
days post infection for each Fiebig stage is presented by the black box. The
orange solid line with the slope of 0.55 shows a linear relationship between
the Fiebig staging and SPMM estimate and the correlation is statistically sig-
nificant (Spearman’s r = 0.54, P = 0.00059). The 95% confidence intervals of
the fit are presented by orange dotted lines. Excluding patients’ samples at
Fiebig stage V, the two estimates show a weaker correlation (Spearman r =
0.27, P = 0.20) but the SPMM estimates become more comparable to the
Fiebig staging, with a linear regression slope of 1.02 (purple lines). Inset Time
to the MRCA of a whole sequence sample (black bar) is compared with that of
each mutant lineage (gray bar) from three HIV-1 infected subjects. The 95%
Cls are presented as black line

(Abrahams et al., 2009) is also negligible. On the other hand, there
is a marked difference in time to the MRCA between the two lin-
eages in subject 0478 in reference (Abrahams ez al., 2009), violating
the model assumption.

We systematically quantify the difference in the time to the
MRCA across lineages within 10 cases from a total of 41 identified
multivariant transmissions in Table 1. Samples are excluded from
this analysis when the prevalence of a minor lineage is less than
17% to avoid small sample size artifacts. The absolute difference in
the time to the MRCA across lineages ranges from 1.3 to 43.7 days,
with a median of 11.8 days. Times to the MRCA significantly differ
among lineages in one subject, 0478; the 95% confidence intervals
of the subject’s two lineages’ times to the MRCA do not overlap
each other (Fig. 3). The SPMM estimates of time since infection
should be interpreted with caution when an individual’s within-lin-
eage times to the MRCA differ considerably from each other. In
addition, the supplementary back-mutation correction section dis-
cusses the SPMM’s assumption that mutations always increase the
distances between sequence pairs of different founder lineages.

4 Discussion

We have formulated the SPMM to assess the infection duration
along with the number of founder strains initiating a productive
HIV-1 infection. The SPMM enables us to assess the time since in-
fection even for multiple variant transmission cases by objectively
classifying the transmitted lineages in the host. One of the advan-
tages of our approach is the rigorous quantitative criteria it provides
for the classification of lineages. Our method focuses on the fine
structure of the pairwise sequence differences and quantitatively
evaluates the models with different numbers of lineages to find the
one with the best fit to the available data.

Proper segregation of viral clones into distinct multivariant foun-
der lineages leads to a rational assessment of the duration of early
infection. For the 37 subjects at Fiebig stages -V who were classified
as multiple-variant transmissions, our estimates of the time since in-
fection were 34.5 (+21.4) days on average, which lies within the
range of the Fiebig estimates. Furthermore, there existed a signifi-
cant linear relationship (P = 0.00059) between the Fiebig staging
and the SPMM estimates. However, the remaining discrepancies be-
tween our model estimates and Fiebig staging can be attributed to
the following factors. First, the Fiebig estimate itself is subject to un-
certainty, mainly due to variability in antibody dynamics across in-
dividuals. Second, one or more of the SPMM’s assumptions could
be violated. Indeed, we observed variations in the time to MRCA
among different lineages within an individual, which might contrib-
ute to the inaccuracy of SPMM estimates. As shown in Table 1, lin-
eage prevalence differs considerably in some individuals, suggesting
the potential for preferential selection of a particular founder lin-
eage. The SPMM assumes that viral populations evolve in the ab-
sence of selection. While this is true early after infection, the HIV-1
gene population eventually evolves under heavy immune pressure
(Liao et al., 2013; McMichael et al., 2010; Richman et al., 2003)
and depending upon when the sequence samples were taken this
may affect the precision of SPMM estimates. For instance, when we
treated subject PRB957-06’s putative escape lineage from immune
selection as a separate lineage, the fit of the SPMM with 4 founder
variants better conformed to the subject’s HD distribution (goodness
of fit P = 0.18) than the original fit with 3 founders (goodness of fit
P < 0.0001, Supplementary Fig. S7). Third, model parameters may
differ among individuals, resulting in inaccurate infection duration
estimates. For example, the viral generation time t was estimated to
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range from 1.76 days to 4.2 days among 22 subjects who were ad-
ministered the same antiretroviral regimen (Kilby ez al., 2008)
though the precision of the viral generation time estimates is compli-
cated by our lack of knowledge of in vivo drug efficacy.

When a lineage’s evolution time is considerably different from
that of another lineage, this might be indicative of an HIV-1 super-
infection in which an individual with an established infection ac-
quires a second virus. The incidence rate of HIV-1 superinfection
has been reported to range from 0% to 7.7% per year (Redd et al.,
2013), with some vulnerable populations reporting a rate as high as
57% of the primary HIV-1 incidence rate (Piantadosi et al., 2007;
Redd et al., 2012). Subject 0478 in reference (Abrahams et al.,
2009) shows a considerable difference between the subject’s two lin-
eages’ time to the MRCA, 65.2 [46.6-83.8] days versus 21.5 [5.8-
37.2] days. Thus, this subject’s sequence sample might be inter-
preted as the outcome of a superinfection. However, other scenarios
such as varying evolutionary rates among different lineages cannot
be ruled out as possible explanations for the inconsistency between
the lineages’ times to the MRCA. This example suggests our model
could be used for detecting HIV-1 superinfection and determining
the timing of primary infection and superinfection, although further
testing is needed.

The enumeration of the number of founder variants using the
SPMM can be influenced by many factors such as selection signa-
tures, hypermutation signatures, the presence of closely related
founder sequences and recombinant strain designation. The SPMM
requires removal of recombinants; however, if recombinants were
generated in the donor, the SPMM could underestimate the number
of founder lineages as these excluded recombinants would indeed be
additional founders. In addition, when the number of sampled se-
quences from an individual is small, the fit of SPMM can consider-
ably deviate from a patient’s intersequence HD distribution,
particularly when the number of sequences for each lineage is very
small and the number of lineages is as large as that in most IDU sam-
ples. Therefore the SPMM’s estimates on the number of founder
variants should be interpreted with caution in the context of these
complications.

A mathematical description of early HIV-1 infections provides a
quantitative guideline for systematically estimating the number of
founder viruses and the duration of infection. The ability to molecu-
larly date HIV-1 infections from multiple founder viruses widens the
scope and applicability of HIV genomic incidence assays (Park ez al.,
2011, 2014). Our study offers novel insights into interpreting early
genetic diversity, which is a key parameter not only for deciphering
HIV-1 transmission events but also for predicting the rate of disease
progression.
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