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Abstract

During April, 2004, 40 sick and dead southern sea otters (Enhydira lutris nereis) were recovered
over 18 km of coastline near Morro Bay, California. This event represented the single largest
monthly spike in mortality ever recorded during 30 years of southern sea otter stranding data
collection. Because of the point-source nature of the event and clinical signs consistent with
severe, acute neurological disease, exposure to a chemical or marine toxin was initially considered.
However, detailed postmortem examinations revealed lesions consistent with an infectious
etiology, and further investigation confirmed the protozoan parasite Sarcocystis neurona as the
underlying cause. Tissues from 94% of examined otters were PCR-positive for S. neurona, based
on DNA amplification and sequencing at the /75-1 locus, and 100% of tested animals (n = 14) had
elevated IgM and 1gG titers to S. neurona. Evidence to support the point-source character of this
event include the striking spatial and temporal clustering of cases and detection of high
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concentrations of anti-S. neurona lgM in serum of stranded animals. Concurrent exposure to the
marine biotoxin domoic acid may have enhanced susceptibility of affected otters to S. neuronaand
exacerbated the neurological signs exhibited by stranded animals. Other factors that may have
contributed to the severity of this epizootic include a large rainstorm that preceded the event and
an abundance of razor clams near local beaches, attracting numerous otters close to shore within
the affected area. This is the first report of a localized epizootic in marine wildlife caused by
apicomplexan protozoa.

Index Keywords
sea otter; Enhyadra lutris, Sarcocystis neu rona, 18S rDNA; 1TS-1; epizootic

Introduction

In April, 2004, biologists and veterinarians responded to an epizootic involving southern sea
otters (Enhyadra lutris nereis), a federally listed threatened marine mammal. Numerous sick
and dead otters were collected over a small geographical area during the first days of the
event, suggestive of point-source exposure to a significant and possibly novel toxicant or
pathogen. Most live-stranded otters exhibited severe neurological disease and died or were
euthanized within 2 days of stranding. Because of the localized case distribution and
expression of severe neurological disease in live-stranded animals, mass poisoning resulting
from exposure to a chemical pollutant or marine biotoxin was strongly considered.
Numerous sea otters had died the year before in the same region and the marine biotoxin
domoic acid (DA) was ultimately identified as the cause (Jessup et al., 2004). Other
differentials included introduction of a novel virus or point-source exposure to pathogenic
parasites or bacteria through plumes of freshwater runoff or sewage.

Results from detailed investigation revealed that nearly all of the stranded sea otters died due
to infection by the apicomplexan protozoan parasite Sarcocystis neurona, the causative agent
of equine protozoal myeloencephalitis (EPM) (Dubey et al., 2001a). Infectious S. neurona
sporocysts are shed only in the feces of Virginia opossums ( Didelphis virginiana), an
introduced terrestrial omnivore that is now widespread throughout California (Dubey et al.,
2001a; 2001b; Grinnell, 1915). Our findings illustrate that introduced terrestrial animals and
their indigenous parasite flora can cause substantial mortality of protected marine species.
Climactic, biological and environmental factors that may have contributed to the severity of
this epizootic are also discussed.

Materials and Methods

2.1 Postmortem examinations and histopathology

Numerous carcasses were recovered within a short time period, so detailed evaluations were
completed on the 16 freshest animals available for necropsy. All major tissues were fixed in
10% neutral buffered formalin, trimmed, paraffin-embedded and 5um-thick, hematoxylin
and eosin (H&E)-stained sections prepared. Tissues were examined microscopically and
scored for the presence and severity of lesions by a pathologist (MM) who was blinded to
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results of other diagnostic tests. Then primary and contributing cause(s) of death were
determined based on gross and microscopic lesions and results of additional assays, outlined
below.

2.2 Sample testing: Bacteria, fungi, viruses and biotoxins

Bacterial and fungal culture was performed at the University of California, Davis (UCD).
Tissues and serum were screened for exposure to canine and phocine morbilliviruses (CDV
and PMV, respectively), phocine herpesvirus (PHV) I and Il, canine parvovirus (CPV), West
Nile virus (WNV) and encephalomyocarditis virus (EMCV) using standard procedures at
various commercial laboratories. Urine, serum and gastrointestinal contents were submitted
to UCD or the California Department of Public Health (CDPH) to screen for the biotoxin
domoic acid (DA) using previously published methods (Quilliam et al., 1995; Torr et al.,
2003). Test sensitivity, specificity and minimum detection li mits (MDL) were determined
using samples spiked with purified DA.

Marine invertebrates consumed by southern sea otters, including razor clams ( Siligua
patula), mussels (Mytilus californianus) and Pismo clams ( 7ivela stultorum) were collected
from the affected area, pooled by species and location and submitted to CDPH for DA
testing. CDPH provided data on the occurrence of potentially toxic algae in the region and
local precipitation. Observations regarding local sea otter abundance, foraging ecology and
prey selection were collected by state and federal biologists.

2.3 Sample testing: Protozoa

Cerebrum and cerebellum were processed for parasite isolation in cell culture, as described
(Miller et al., 2001). Serological testing for Toxoplasma gondii, S. neurona and Neospora
caninum-reactive 1gG was performed using indirect immunofluorescent antibody tests
(IFAT), as previously described (Miller et al., 2002a). Serum was also tested for the presence
and concentration of S. neurona-specific IgM by substituting a 1:100 dilution of goat anti-
ferret IgM (Rockland Immunochemicals, Gilbertsville, PA) for anti-1gG antiserum in the
IFAT procedure. Formalin-fixed brain was processed for immunohistochemistry for 7.
gondiiand S. neurona, as described (Miller et al., 2002a).

DNA was extracted from sea otter brain and skeletal muscle using the DNeasy Tissue Kit
(Qiagen) and genomic DNA preparations were screened for the presence of 7. gondii, S.
neurona, and/or N. caninum using 18S rDNA pan-specific primers (Miller et al., 2004) and
B1 Toxoplasma gondii-specific primers (Grigg and Boothroyd, 2001), followed by
sequencing. We also used /751 primers that amplify a 500 nucleotide fragment from S.
neuronaand S. falcatula, but not other Sarcocystis spp, as described (Miller et al., in press)
DNA sequencing of the /751 amplicons will differentiate between S. neuronaand S.
falcatula. Positive controls consisted of genomic DNA preparations from well characterized
T. gondiiisolates RH (Type 1), 76K (Type II) and CEP (Type Ill), S. neuronaisolates SN1
and SN3 (Marsh et al., 1996; 1999) and N. caninum isolate NC-1 (ATCC No. 50843).
Negative controls consisted of deionised water and genomic DNA from non-infected otters.
Amplification products were visualized using ethidium bromide staining in 1% agarose gels.
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Sequencing was carried out by the Rocky Mountain Lab Genomics Unit DNA Sequencing
Center, Division of Intramural Research, Hamilton, Montana.

Results

3.1 Mortality event timing and clinical presentation

Sea otter strandings typically peak in the spring each year in California, with the highest
shoreline deposition of live and dead otters occurring during April (Figure 1A). Between
1994 and 2003, the mean number of otters recovered during April was 24 animals. However,
during April, 2004, 63 sick and dead sea otters were found, or >2.6 times the average over
the preceding decade. This was the highest monthly deposition of live and dead otters ever
recorded during 30 years of stranding data collection in California (Figure 1B). Over half
(52.4 %) of the stranded animals were recovered within a small section (1/25t) of the 490
km southern sea otter range, suggestive of point-source exposure to a toxin or pathogen.

The mortality spike was centered along 18 km of coastline within Estero Bay, near the town
of Morro Bay (Figure 1C). Morro Bay is a suburban coastal community that is situated
adjacent to a small, enclosed embayment of the same name. The number of sea otters
utilizing this region varies by season. During winter, otters (mostly males) migrate through
Estero Bay toward the southern range periphery (Jameson, 1989). In spring, this pattern
reverses, with otters traveling northward through Estero Bay to the range center. Animals are
observed within Estero Bay year-round, reflecting both local and transient sea otter
populations. Much of Estero Bay is characterized by sandy beaches and an enclosed, mud
bottom harbor. North and south of Estero Bay, the shoreline is comprised of rocky cliffs and
poorly accessible beaches where stranded otters are less likely to be recovered.

The epizootic began around April 4th, and 20 live and dead otters recovered over the first 9
days. Live-stranded animals exhibited severe seizures, fine muscle tremors, paresis,
somnolence and coma. Less common clinical signs included ptyalism, dyspnea and
tachycardia. Throughout April, animals continued to strand over a progressively broader
geographical area and by the end of the month, 40 otters had been collected, including 10
sick animals and 30 that were found dead. Of the 30 dead otters, 11 were fresh and 19 were
significantly autolyzed. Detailed postmortem examinations were performed for 7 otters that
died post-stranding and 9 that were recovered soon after death; summaries were compiled
from those 16 cases.

3.2 Postmortem examinations

Of 16 otters examined gr ossly and microscopically, one died due to a disseminated fungal
infection; the dimorphic fungus Coccidiodes immitis was identified on impression smears,
histopathology and fungal culture. This animal was excluded from subsequent analyses as an
example of “background” mortality and serology, PCR and parasite isolation were not
performed due to human health concerns. Of the remaining 15 animals, 80% exhibited
systemic lymphadenopathy, mottled and discolored ventricular myocardium (Figure 2),
multi-organ congestion (Figure 3) and emaciation. Less common were pericardial effusion
(71.4%), hepatomegaly (66.7%), enlarged, urine-distended bladders (51.1%), splenomegaly
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with hyperplasia of splenic white pulp (46.7%) and meningeal vascular congestion (42.9%).
Pale tan discoloration and swelling of the neuropil was noted in a few cases. Less common
were chemosis and subcutaneous petechiation (13.3% for each) (Figure 3). Some of these
lesions have been described for individual S. neurona-infected animals in prior reports
(Dubey et al., 2001b; Lapointe et al., 1998; Lindsay et al., 2000; Krueder et al., 2003; 2005;
Miller et al., 2001a; 2001b; 2008; 2009; Rosonke et al., 1999; Thomas et al., 2007), but this
is the first report to summarize gross lesions across a large cohort of otters with PCR-
confirmed, S. neurona-associated meningoencephalitis.

3.3 Sample testing: Bacteria, fungi, viruses and biotoxins

A few opportunistic bacterial pathogens were isolated from blood, tissues or feces of 13
otters sampled during necropsy, including hemolytic £. coli, Campylobacter, Actinobacillus
spp., B-hemolytic Streptococciand Streptococcus phocae. Bacteria contributed to illness and
deaths of some otters, but no bacterial or fungal pathogens were shared by a majority of
stranded otters. No gross or microscopic lesions consistent with morbilliviral infection were
apparent. Although some otters had low antibody titers for CDV, CPV and EMCYV, lesions
consistent with death due to these pathogens were not observed microscopically and
submitted tissues were PCR-negative (Table 1).

Analysis of wild marine invertebrates and urine or stomach contents from stranded otters
established that DA was present locally during the mortality event (Table 2). Of 21 otters
tested, 9 (42.9%) had urine DA concentrations above the minimum detection limit (= 0.005
ppm), ranging from 0.009 to 2.06 ppm. Minimally digested marine invertebrates were
recovered from the stomachs of 2 otters: sand and spiny mole crabs (Emerita analoga and
Blepharipoda occidentalis respectively) recovered from the stomach of 1 otter tested
negative for DA. However, postmortem urine and razor clams from the stomach of a second
otter tested strongly positive for DA. Local wild razor clams tested PSP-negative, but DA-
positive, and some mussels also contained DA (Table 2), while locally collected Pismo
clams were DA-negative. Based on prior testing of necropsied southern sea otters and their
prey, DA detection at levels near or just above the MDL is a common incidental finding due
to the pervasiveness of this biotoxin in the marine environment. However, detection of high
levels of DA (=10 ppm) in urine, serum or digesta of acutely dead animals is suggestive of
death due to DA intoxication (M. Miller, unpub. data). Possible indirect effects of DA
exposure may occur at lower levels of exposure.

3.4 Sample testing: Protozoal culture and serology

Results for 1gG serology and pa rasite isolation for S. neurona, T. gondiiand N. caninum are
summarized in Table 3. Sera and/or tissues were evaluated from 2 live and 15 necropsied
otters; most (n= 14) had high IFAT titers against S. neurona (= 10,240 serum dilution).
Twelve otters were also seropositive for 7. gondlii (= 320). IFAT testing for N. caninum
identified 4 otters with titers = 320, but no otters had positive titers to N. caninum in the
absence of higher titers to 7. gondii.

Parasite isolation was attempted from the brains of 14 otters and an S. neurona-like parasite
was isolated from 8 animals (57.1%)(Table 3). Parasites exhibiting morphology consistent
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with S. neuronawere observed transiently after cell culture inoculation with brain from a
ninth otter, but then disappeared. 7oxoplasma gondiiwas isolated from 6 otters (42.9%),
consistent with prior reports of the prevalence of 7. gondiiinfection in the central nervous
system of sea otters (Miller et al., 2002b; 2004). Comparison of IgM and IgG antibody titers
directed against S. neurona are summarized in Table 4. Nearly all of the otters stranding
during the epizootic had elevated IgM and 1gG, supportive of subacute S. neurona infection.
For comparison, archived sera from 2 otters with acute, fatal S. neurona-associated
interstitial pneumonia, but no brain lesions exhibited high IgM, but low IgG titers; 3 otters
with PCR-confirmed, S. neurona-associated meningoencephalitis had elevations of both IgM
and IgG, supportive of subacute infection; and 2 otters with chronic, incidental S. neurona
infection, characterized by the presence of PCR-positive, mature S. neurona sarcocysts in
muscle and PCR-negative, lesion-negative brains had low IgM and IgG titers (Table 4). Sera
from 2 otters that were negative for S. neurona on parasite isolation, DNA PCR,
histopathology and immunohistochemistry served as negative controls. Serological data may
have been impacted to some extent by gender and age bias that is inherent to sea otter
populations from the Estero Bay region, where males and older age class animals are more
prevalent.

3.5 Histopathology, immunohistochemistry and PCR

Findings from necropsy, histopathological examination and PCR analysis of brain and
skeletal muscle are summarized in Table 5. Sarcocysts with microscopic features consistent
with immature (Figure 4A) or mature (Figure 4B) S. neuronatissue cysts were observed
within skeletal and/ or cardiac muscle fibers of most animals, along with patchy
lymphoplasmacytic myositis and myocarditis. Nearly all otters had moderate to severe
lymphoplasmacytic, histiocytic and mildly neutrophilic meningoencephalitis, often
associated with significant tissue necrosis and white matter rarefaction (Figure 5A).
Protozoal schizonts and merozoites ranged from rare to numerous on brain histopathology
and immunohistochemistry (Figures 4C and 5B), (Table 5). DNA sequences consistent with
S. neurona were identified from /75-1590amplicons from brain and/or muscle of all 15
otters (Table 5). Based on overall assessment of lesions and diagnostic data, S. neuronawas
considered a primary or major contributing factor in the death or euthanasia for 15 of the 16
otters that received full necropsies.

Discussion and Conclusions

Here we summarize findings from investigation of an epizootic affecting southern sea otters
in 2004. The point-source character of this event, the striking consistency of lesions and
detection of high concentrations of anti-S. neurona IgM in affected animals is unprecedented
and suggests point-source exposure to S. neurona, most likely as infective sporocysts from
feces of the terrestrial definitive hosts; opossums (Dubey et al., 2001a; 2001b). Outbreaks of
gastrointestinal illness in humans and animals resulting from infection by enteric protozoa
such as Cryptosporidium and Giardia have strong associations with fecally polluted water
(Fayer et al., 2004; Craun et al., 2005). Reports of mass-exposure to apicomplexan protozoa
such as 7. gondiiare also numerous and the importance of aqueous dissemination of these
systemic pathogens is increasingly recognized (Benenson et al., 1982; Bowie et al., 1997;
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Aramini et al., 1999; Eng et al., 1999; Arkush et al., 2003; Bahia-Olivera et al., 2003; Fayer
et al., 2004; Craun et al., 2005; de Moura et al., 2006). These events are often first identified
as localized outbreaks that are ultimately traced back to a shared food or water resource. No
prior reports of marine epizootics caused by S. neurona exist in the scientific literature and
epizootics caused by tissue cyst-forming protozoa have not been reported previously for any
wildlife species. Documentation of the deaths of numerous adult animals during this
epizootic is also novel and emphasizes the significant pathogenicity of S. neurona for sea
otters. Based on carcass collection, necropsy, histopathology and PCR of tissues from this
same region during the preceding decade, the maximum number of S. neurona-related sea
otter strandings during the month of April would be = 4 otters (M. Miller, unpub. data).

Conversely, some sea otters infected with S. neurona strains not associated with the
epizootic survived and became chronically infected, based on comparison of IgM and 1gG
titers with results from DNA PCR and histopathology (Table 4). These comparison otters
that were not associated with the epizootic had numerous mature sarcocysts in skeletal
muscle on histopathology and minimal lesions associated with protozoal infection in the
brain or other tissues. Similar to 7. gondii infections of marine species (Miller et al, 2004),
strain-specific variations in parasite prevalence, infectivity and pathogenicity may prove to
be important in the ecology of S. neurona infections of marine mammals.

One important distinction in this epizootic is the means of exposure: unlike other pathogens
such as viruses that cause epizootics in marine species, S. neurona and related protozoa are
unlikely to be transmitted horizontally. Instead, the primary means of exposure is probably
through direct contact with infective sporocysts or oocysts, or by ingestion of filter-feeding
invertebrates that concentrate these pathogens from fecally-polluted water (Lindsay et al,
2001; Arkush et al., 2003; Miller et al., 2008).

Prior studies on the environmental dissemination of bacterial and parasitic pollutants along
the central California coast demonstrate enhanced pathogen detection in marine
invertebrates after storm events (Miller et al., 2005a; 2005b; 2006). A wild mussel (M.
californianus) collected in central California during the rainy season was PCR-positive for 7.
gondii, and the genotype detected was the same as the dominant 7. gondii genotype
observed in sea otters and coastal-dwelling terrestrial felids from the same region (Miller et
al., 2008). The ability of marine bivalves to remove and concentrate 7. gondii oocysts during
filter-feeding has been demonstrated experimentally (Lindsay et al., 2001; Arkush et al.,
2003). Sarcocystis neurona sporocysts are comparable in size to 7. gondii oocysts (10-12
um), are passed in high numbers in the feces of definitive hosts and are environmentally
persistent (Dubey et al., 2001a).

Mortality of marine wildlife due to S. neurona often peaks during spring (Kreuder et al.,
2003), but large-scale, localized epizootics have not previously been recognized. Factors that
may have contributed to the scope of the epizootic include a large rainstorm that occurred
prior to the onset of sea otter deaths and concentration of numerous otters along the
shoreline, exploiting invertebrate prey (razor clams) that may be capable of concentrating
protozoal sporocysts (Figure 6). Although opossums are common in California, the
terrestrial-to-marine flow of fecal waste from these animals is probably patchy and episodic,
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entering the ocean through multiple point-source discharges from rivers and stormwater
drainages interspersed along the shore. Rivers that enter the ocean at sandy beaches are often
blocked intermittently by sand berms produced by wave action. Freshwater becomes
impounded, forming large, shallow coastal lagoons that provide habitat for fish, birds,
insects and carnivores and omnivores (like opossums) that prey upon them. Over time, this
impounded water may become enriched with nutrients and pathogens that are hazardous to
marine wildlife when rapidly discharged. The mouths of several streams at the site of this
epizootic are intermittently blocked by sand. If the late rain event in February, 2004 caused
local berm disruption, it could have triggered a rapid release of sporocyst-laden water to the
ocean.

Post-discharge concentration of sporocysts by marine bivalves could also favor S. neurona
exposure. Pathogens and toxins present in wastewater plumes can be concentrated by filter-
feeding invertebrates (Goldberg, 2003; Fayer et al., 2004; O’Connor and Lauenstine, 2006)
and concurrent exposure to anthropogenic pollutants, biotoxins, or viruses may enhance
marine mammal susceptibility to infectious agents like S. neurona (Ross, 2002; Kanaan et
al., 2006; 2007).

During the 2004 epizootic, concurrent sea otter exposure to domoic acid (DA) and S.
neuronawas confirmed through diagnostic testing. Uptake and slow depuration of DA by
razor clams has been demonstrated (Wekell et al., 2002) and these nearshore-dwelling
bivalves could serve as an efficient source for both DA and S. neurona exposure. Although
DA concentrations in local bivalves were below regulatory levels for human consumption (=
20 ppm, http://www.cfsan.fda.gov/~comm/haccp4f.html), sea otters consume far greater
masses of food per kg body weight than do humans (Reidman and Estes, 1990) and could
ingest cumulative levels of DA sufficient to cause clinical or subclinical disease, even when
concentrations in shellfish are below levels considered safe for humans.

Developing a concise and precise case definition for DA intoxication has proven to be
challenging in sea otters, when compared to marine pinnipeds. This is due in part to the
short half life of DA in the body, instability of DA in cryoarchived samples and concurrent
presence of multiple diseases with potential to cause neurological disease in sea otters
(including protozoal disease, domoic acid, other biotoxins, hyperthermia, and
hypoglycemia). Also, many otters are found dead with no clinical history and significant
postmortem autolysis, which can obscure lesions subscribed to DA intoxication. DA-
associated brain lesions are present in some sea otters and there is no doubt that DA
intoxication kills otters (Kreuder et al, 2003; 2005), but the true population impact has been
difficult to ascertain, given that up to 70% of necropsied otters test DA-positive, often at
levels just above minimum detection limits (M. Miller, unpublished data). An
epidemiological study is in progress to determine associations between DA concentrations in
urine, serum and digesta with results from blind-scoring of specific lesions in the brain and
other tissues. Potential immunomodulatory effects for DA have been reported for leukocytes
(Jones et al., 1995). If an immunosuppressive or immunopotentiating effect for DA is
confirmed, exposure to sublethal concentrations could render exposed wildlife (and humans)
more susceptible to opportunistic pathogens like S. neuronaand T. gondii. DA exposure was
thought to have played a contributory role in the 2004 event, but the magnitude and
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significance of its overall contribution to sea otter mortality could not be determined given
our current state of knowledge.

Given the strong seasonal pattern of detection of S. neurona-associated disease in sea otters
(Kreuder et al., 2003), it is likely that sporocyst shedding in opossum populations is
seasonally influenced, thus enhancing risk for marine mammals feeding in areas impacted
by freshwater drainage during periods of high coastal precipitation. Also, based on past sea
otter capture records, Estero Bay is heavily used by immature and subadult otters, forming a
large, local population of immunologically naive animals that are more likely to die due to
S. ne urona-associated meningoencephalitis (Kreuder et al., 2003).

The nearshore aggregation of sea otters due to ready availability of razor clams was another
possible contributing factor (Figure 6). Prior to and during the epizootic large numbers of
otters were observed foraging in shallow water along local beaches and significant quantities
of razor clam shell fragments were observed along the adjacent shoreline. Only sand-
dwelling invertebrates (razor clams and sand crabs) were recovered from the digestive tracts
of affected sea otters. Also, over half of stranded otters had intestinal infections by
Profillicolis spp. acanthocephalans whose main intermediate hosts are sand and mole crabs
that reside along sandy beaches (Mayer et al., 2003). To summarize, it appears that the otters
dying due to S. neurona infection fed on a common food source (razor clams) near the
shoreline, thereby enhancing their exposure to S. neurona sporocysts released from coastal
lagoons during the large storm event.

Our investigation of the 2004 mortality event has provided important insights regarding the
potential of terrestrial pathogens to negatively impact protected marine species. The ability
of marine and estuarine invertebrates to bioconcentrate both DA and protozoa is well
documented (Goldberg, 2003; Fayer et al, 2004). The recent confirmation of Type X 7.
gondii uptake by a wild marine mussel from coastal California and demonstration of the
same unusual genotype in coastal-dwelling terrestrial felids and sympatric sea otters strongly
supports the hypothesis of land-sea transfer of protozoal pathogens (Miller et al., 2008).
Here we describe an additional model system; that of S. neurona, opossums, invertebrates
and sea otters that demonstrates the importance of land-sea transport as a potential source of
human and animal exposure to biological pathogens.
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A: Number of southern sea otters stranding rangewide by month. 1B: Number of sea otters

stranding between Cayucos and Point Sal, California from March through May. 1C:
Locations of Estero Bay and Morro Bay along the central coast of California.
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Figure 2.
A: Grossly normal (control) sea otter heart with moderate coronary groove fat. 2B: Heart

from a sea otter that stranded during the epizootic. There is mild, diffuse cardiomegaly,
mottling and discoloration of the ventricular myocardium and dilation and hyperemia of the
epicardial vasculature.

Vet Parasitol. Author manuscript; available in PMC 2016 June 14.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Miller et al. Page 15

Figure 3.
A: Normal (control) sea otter liver, characterized by diffuse, pale tan-brown color and sharp

lobular margins. 3B: Liver from an otter that died during the epizootic, showing severe,
diffuse passive vascular congestion and rounded lobular margins, presumably due to cardiac
insufficiency as a result of the myocardial lesions depicted in Figure 2 above. 3C: Diffuse
chemosis affecting the ocular conjunctiva of an otter that stranded during the epizootic. 3D:
Multifocal petechiation and mild serous atrophy of adipose of the ventral abdominal subcutis
of an otter that died during the epizootic.
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Figure 4.
Photomicrographs of paraffin-embedded, H&E-stained tissues from otters dying during the

epizootic. 4A: Skeletal muscle containing a single smooth-walled, immature-appearing
sarcocyst encompassing numerous zoites (Bar = 30 um). 4B: Two intramuscular sarcocysts
that are larger and more fully developed, with a thick cyst wall and prominent surface villi
(Bar = 25 pm). 4C: Neuropil containing numerous S. neurona schizonts, including 2 rosette-
form schizonts, characterized by a distinctive radial arrangement of budding merozoites
(arrows) (Bar = 20um).
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Figure 5.
Paraffin-embedded brain from a sea otter dying from disseminated Sarcocystis neurona

infection during the epizootic. 5A: Hematoxylin and eosin-stained cerebrum, demonstrating
a marked diffuse and perivascular infiltrate of lymphocytes and plasma cells, with fewer
macrophages and neutrophils. Protozoal schizonts of varying stages of development are
apparent in the cytoplasm of neurons and glial cells arrows) and there is moderate
rarefaction of adjacent neuropil (Bar = 40um). 5B: Paraffin-embedded cerebrum from the
same otter labeled with antibodies to S. neurona using an immunoperoxidase method.
Numerous protozoal schizonts (slender arrow) and both free and intracytoplasmic
merozoites are apparent (thicker arrow) (Bar = 20um).
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Figure 6.

Timeline of major local events preceding and including the epizootic that could have
enhanced exposure of susceptible sea otters to Sarcocystis neurona.
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Table 4

Indirect fluorescent antibodly titers to Sarcocystis neurona for sea otters from the epizootic: Comparison with
control otters of known S. neurona infection status

Sarcocystis neurona titers

Serum sample type? IgM I9G

2004 epizootic 81,920 81,920

2004 epizootic 81,920 40,960

2004 epizootic 81,920 20,480

2004 epizootic 40,960 20,480

2004 epizootic 40,960 2,560

2004 epizootic 20,480 10,240

2004 epizootic 10,240 10,240

2004 epizootic 1,280 10,240

2004 epizootic 1,280 10,240

2004 epizootic 640 10,240
Positive control: Acute S. neurona infection 81,920 <80
Positive control: Acute S. neurona infection 40,960 640

Positive control: Subacute S. neurona infection 81,920 81,920

Positive control: Subacute S. neurona infection 40,960 10,240

Positive control: Subacute S. neurona infection 1,280 10,240
Positive control: Chronic/ incidental S. neurona infection 1,280 80
Positive control: Chronic/ incidental S. neurona infection 80 640
Negative control: S. neurona-negative otter 80 <80
Negative control: S. neurona-negative otter 80 160

aCase definitions: Acute infection = PCR-confirmed, S. neurona-associated interstitial pneumonia with mild/ no brain disease Subacute infection =
PCR-confirmed, S. neurona-associated meningoencephalitis as the main finding on necropsy & histopathology Chronic infection = Muscle PCR +
for S. neurona with histologically mature-appearing sarcocysts, but no brain lesions & brain is PCR-negative Negative control = negative for S.
neurona or Sarcocystis spp. on histopathology, immunohistochemistry and PCR
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