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Abstract

A new approach for performing Particle Mesh Ewald in ab initio QM/MM simulations with 

extended atomic orbital basis sets is presented. The new approach, the Ambient-Potential 

Composite Ewald Method (CEw), does not perform the QM/MM interaction with Mulliken 

charges nor electrostatically fit charges. Instead the nuclei and electron density interact directly 

with the MM environment, but in a manner that avoids the use of dense Fourier transform grids. 

By performing the electrostatics with the underlying QM density, the CEw method avoids self-

consistent field instabilities that have been encountered with simple charge mapping procedures. 

Potential of mean force (PMF) profiles of the p-nitrophenyl phosphate dissociation reaction in 

explicit solvent are computed from PBE0/6-31G* QM/MM molecular dynamics simulations with 

various electrostatic protocols. The CEw profiles are shown to be stable with respect to real-space 

Ewald cutoff, whereas the PMFs computed from truncated and switched electrostatics produce 

artifacts. PBE0/6-311G**, AM1/d-PhoT, and DFTB2 QM/MM simulations are performed to 

generate two-dimensional PMF profiles of the phosphoryl transesterification reactions with 

ethoxide and phenoxide leaving groups. The semiempirical models incorrectly produce a 

concerted ethoxide mechanism, whereas PBE0 correctly produces a stepwise mechanism. The ab 
initio reaction barriers agree more closely to experiment than the semiempirical models. The 

failure of Mulliken-charge QM/MM-Ewald is analyzed.

TOC images

1 Introduction

The rigorous treatment of long-ranged electrostatics is essential for a proper modeling of 

biological processes in solution.1–5 One technique for including long-range electrostatics is 
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Ewald’s method,6 which replicates a primary unit cell composed of Gaussian charges to 

form an infinite periodic lattice. The periodic Gaussian charge density is resolved in a plane-

wave basis, whence the electrostatic potential is readily calculated. The plane-wave potential 

is then modified with short-ranged corrections to account for the Gaussian charge 

penetration and thus recover the electrostatic potential of the point charge system. The 

computational performance of Ewald’s method was greatly improved with the advent of the 

Particle Mesh Ewald7–10 (PME) method, which has become the de facto standard for 

molecular mechanical (MM) force field molecular dynamics (MD) simulations. Although 

the PME method was originally formulated for point charges, it has been extended 

throughout the years to handle Cartesian11–16 and solid harmonic17,18 multipoles for its 

application with the AMOEBA polarizable force field19 and the modified Divide-and-

Conquer (mDC) quantum mechanical force field20–22 (QMFF). Before the widespread 

adoption of PME, electrostatic force truncation, switching, and shifting were frequently 

used.23,24 Electrostatic cutoff methods were later found to produce artifacts in the properties 

of water25–28 and the structural stability of large biomolecules.29–31 Consequently it has 

been suggested that new models not be parametrized using cutoff electrostatics.26

The treatment of electrostatics within quantum mechanical/molecular mechanical (QM/MM) 

models32 has followed one of two general prescriptions: electrostatic embedding and 

mechanical embedding.33,34 Mechanical embedding is a “subtractive” paradigm, whereby 

the quantum mechanical (QM) region is represented by a MM-analogue, the electrostatics 

are computed entirely with MM charges, and the QM region is introduced by removing the 

MM-analogue self-energy and replacing it with the gas-phase QM energy. In this sense 

mechanical embedding can be viewed as a type of ONIOM method.35–37 Although 

mechanical embedding is simple to implement, it suffers from the major drawback that the 

QM charge density does not directly polarize to the MM environment; therefore, the 

electrostatic embedding method is instead often used. Electrostatic embedding decomposes 

the total energy into MM/MM, QM/QM, and QM/MM “additive” components. The 

QM/MM interaction explicitly includes the electrostatics between the QM charge density 

and the MM point charges – among other interactions, including van der Waals (vdW) forces 

– thereby polarizing the QM electron density.

Combined QM/MM MD applications have been dominated by the use of semiempirical 

Hamiltonians; for example, AM1/d-PhoT,38 DFTB2,39,40 and related models,41–43 because 

the high cost of ab initio wavefunction methods has often precluded their ability to obtain 

the amount of statistical sampling necessary for making a meaningful comparison with 

experiment.44 Nevertheless ab initio QM/MM methods45 have found applications46 through 

the calculation of single point energies,47 NMR chemical shifts,48 geometry optimizations,49 

adiabatic potential energy surfaces,50 nudge elastic band pathways,51 finite temperature 

string methods,52–54 multiple time step simulations,55 and to correct potential of mean force 

(PMF) free energy surfaces obtained from semiempirical QM/MM calculations.56–59

Applications of semiempirical QM/MM methods routinely employed electrostatic 

embedding with truncated QM/MM electrostatic cutoffs60–62 until the development of the 

semiempirical QM/MM Ewald presented by Nam,63 which was independently reported by 

Riccardi;64 both of which were influenced by the method presented several years prior by 
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Gao.65 More recently these methods have been adapted for use with PME66 and 

semiempirical X-Pol models.67 The use of explicit lattice summations can also be found in 

the literature.68

Considering that Ewald methods have traditionally been implemented for point-charge 

distributions, the semiempirical QM/MM-Ewald methods have chosen to use a Mulliken 

charge representation of the QM region to perform the long-range interactions. When this 

approach was applied to ab initio QM/MM, it was found that the use of Mulliken or Löwdin 

charges caused self-consistent field (SCF) convergence problems when non-minimal atomic 

orbital (AO) basis sets were used.69,70 This has motivated the use of ChElPG71 or other 

electrostatic potential charge fitting procedures to produce stable ab initio QM/MM-Ewald 

trajectories.69,70,72–76 However, applications of ab initio QM/MM often still forego the use 

Ewald summations, preferring instead to model the long-range electrostatic with a reaction 

field method77,78 or perform real-space electrostatic truncation, shifting, or 

smoothing.52–54,79–84 Recent work has advocated a 22 Å real-space switched electrostatic 

cutoff method using the minimum image convention.85 Regrettably we’ve noticed that many 

authors have failed to report the size of the QM/MM nonbond cutoff that they’ve used, and 

other details defining how the electrostatics were performed.

Ab initio QM/MM methods will become frequently used in the near future as 

QMFFs80,86–88 and free energy correction methods mature and as hardware technology 

continues to improve. To this end, we question if the effort placed into the evaluation of the 

underlying ab initio calculation isn’t somewhat wasted by performing the QM/MM 

interaction with QM atomic partial charges rather than the nuclei and ab initio electron 

density. Choosing the partial charges to model the QM electrostatic potential certainly helps 

to alleviate this concern to the extent that those charges indeed reproduce the potential, but 

the effort required to perform the fit could instead have been spent on a method that avoids 

charge fitting altogether. After all, the reason why the community is resorting to partial 

charge fitting is because a tractable alternative for evaluating the Ewald sum in ab initio 
QM/MM simulations has yet to be realized. The principle complication encountered in a 

direct adaptation of the Ewald or PME methods is borne from the electron density’s rapid 

changes near the nuclei, which requires an unacceptably large number of plane waves to 

resolve. Even if one could perform Ewald’s method using no more plane waves than what is 

found to be acceptable in a purely MM application, the analytic evaluation of each AO 

product’s Fourier coefficients would still be very costly. The computational effort would be 

further amplified by having to re-evaluate the Ewald potential at each step of the SCF 

procedure. A wholly new approach is needed.84,89

In this work, we present a new ab initio QM/MM-Ewald method called the Ambient-

Potential Composite Ewald Method, or Composite Ewald Method (CEw) for short. The new 

method does not require more plane waves than what is typically used within pure-MM 

applications. The analytic evaluation of AO-product Fourier coefficients are avoided by 

numerically integrating the Ewald reciprocal-space potential on the molecular quadrature 

grid normally used to compute the density functional theory (DFT) exchange-correlation 

functional. The long-range interactions between the QM region and its periodic replicas are 

computed from a truncated Taylor series that is expanded about a MM point-charge 
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representation of the QM region. This approximation does not affect the interaction between 

the QM and MM regions; it only affects the interaction of the QM region with its own 

periodic images. As a consequence of this approximation, the Ewald contribution to the QM 

Fock matrix does not change during the SCF procedure, and the evaluation of the plane-

wave Ewald potential becomes analogous to a one-time evaluation of a local density 

approximation (LDA) exchange-correlation functional.

We compare the new Ewald method to several other electrostatic protocols by performing 

umbrella window simulations to compute the PMF profiles of the p-nitrophenyl phosphate 

dissociation reaction. We show how various electrostatic protocols affect the MM-water 

solvation around charged QM regions. We extend and elaborate on the analysis first 

discussed by Holden et al.69,70 to elucidate the failure of Nam’s semiempirical QM/MM-

Ewald method63 when it is applied to non-minimal basis set ab initio methods. We compare 

the computational cost of the new method to electrostatic embedding as a function of the 

number of QM atoms. Finally, we compute two-dimensional PMF profiles for phosphoryl 

transesterification reactions involving ethoxide and phenoxide leaving groups to compare the 

pathways produced by AM1/d-PhoT,38 DFTB2,39,40 and the PBE0/6-311G** hybrid 

functional DFT method.90,91

2 Methods

2.1 The QM/MM energy

In this work, we consider a QM/MM system that contains a localized QM region; for 

example, a small solute QM molecule in MM solvent, or a QM active site within a large 

biomolecule. Furthermore, we suppose that the calculation is performed under periodic 

boundary conditions, whose real- and reciprocal-space lattice vectors are a1, a2, a3 and , 

, , respectively. The total potential energy of the QM/MM system is

(1)

where R is the set of atomic coordinates and P is the single-particle density matrix (see eq. 

11). The various components of the energy are defined below.

The bonded energy Ebonded, is the collection of MM terms describing the bonds, angles, and 

torsions between covalently linked MM atoms and those combinations of MM and QM 

atoms which contain at least one MM atom.

Giese and York Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2)

The k values are force constants, and Rab, θabc, and ϕabcd are bond lengths, angles, and 

torsion angles, respectively. The Lennard-Jones (LJ) energy ELJ, is explicitly evaluated for 

all pairs of nonbonded atoms within a cutoff Rcut, and a long-range correction is applied to 

account for the dispersion beyond the nonbond cutoff,

(3)

where u,v index atom types and Nu is the number of atoms of type u. The asterisk excludes 

pairs where a and b are both QM, Rab is assumed to be the “minimum image” distance 

between atoms a and b, and V = a1 · a2 × a3 is the unit cell volume. The periodic 

electrostatic energy Eelec, is

(4)

where n = n1a1 + n2a2 + n3a3 is a lattice translation and q(r) is the total charge density (see 

eq. 5). The MM atom charge density is a collection of static point charges (see eq. 6), and 

the QM charge density consists of the atomic nuclei and electrons (see eq. 7). The notation 

for the electrostatic energy shown in eq. 4 presumes the standard convention of excluding 

the infinite Coulomb self-energy of the point charges whenever those terms may appear.

Total charge density:

(5)

MM charge density:
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(6)

QM charge density:

(7)

Total electron (number) density:

(8)

Spin-resolved (number) density:

(9)

Spin-resolved molecular orbital (MO):

(10)

Atomic orbital (AO) representation of the single-particle density matrix:

(11)

Spin-resolved density matrix:

(12)

where Za is a nuclear charge, χ(r) is an AO basis function, and nσ and Cσ are the spin-

resolved occupation numbers and MO coefficients, respectively. The densities and MOs 

defined by eqs. 7–10 have been written as a function of r; however, we emphasize that these 

terms also depend on the atomic positions through the use of atom-centered basis functions, 

and this dependence must be considered when evaluating the atomic forces.
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The parameters within Ebonded are chosen to implicitly account for the electrostatic 

interactions between the bonded atoms, but those interactions are explicitly included in eq. 4 

for notational convenience. Therefore, Ebonded-elec denotes a correction that removes the 

explicit electrostatic interactions between the pairs of MM atoms appearing within Ebonded,

(13)

The remaining energy terms in eq. 1 are the electron interactions that do not directly couple 

to the MM environment.

The noninteracting electron kinetic energy:

(14)

(15)

The Hartree-Fock exchange energy:

(16)

Electron repulsion integral (ERI):

(17)

The density functional theory (DFT) exchange-correlation energy:

(18)

where , wi is a molecular quadrature weight, and exc is a linear 

combination of exchange and correlation functional integrands,
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(19)

where we have simplified the exc notation for brevity. The results shown in the present work 

are evaluated with PBE0/6-31G* or PBE0/6-311G**. PBE0 is the Perdew-Burke-Ernzerhof 

hybrid functional,90,91 which uses the generalized gradient approximation functional 

described in Ref. 92. The PBE0 coefficients are cDFT/x = 0.75, cDFT/c = 1, and cHF/x = 0.25.

The summation appearing in eq. 18 is a numerical integration of the DFT functional 

performed on a molecular quadrature grid. The molecular quadrature grid is a union of 

atomic quadrature grids, and an atomic grid is a series of concentric discretized spheres. 

That is, each atomic quadrature point i is an element within a set of angular points  that 

form a spherical shell of radius Rrad which is tethered to atom a. The atomic grid point 

locations and weights are  and watomic,i = wrad,iwΩ,i, respectively, where 

the notation i ∈ a denotes the grid point i within the set of points tethered to atom a. Many 

types of radial quadrature rules have been developed, including those based on Gauss-

Chebyshev, Gauss-Legendre, Euler-Maclauren schemes.93–96 In the present work, we use 

Gauss-Laguerre and Lebedev97 rules for the radial and angular quadratures to form atomic 

grids consisting of 5580 points per heavy atom and 4296 points per hydrogen. In principle, 

each atomic grid integrates all-space; however, each atomic grid only samples the integrand 

adequately near their respective centers. Therefore, the molecular quadrature weights wi ≡ 

w(ri∈a,R) = Γa(ri,R)watomic,i, introduce a “spatial partition function” Γa, to avoid an over-

counting of the integrand when two-or-more atomic grids sample the same spatial area. 

Specifically, we use the “fuzzy Voronoi” partitioning scheme proposed by Becke,98 which is 

summarized by eqs. 20–26. The relative size of the Voronoi are biased according to the 

atom’s Bragg-Slater radius, RBS,a.

(20)

(21)

(22)

(23)
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(24)

(25)

(26)

Formally, one would need to notationally account for periodicity within eqs. 15–18. If the 

electron density extends no more than half the box length, then one can evaluate these 

energy terms as written while assuming a minimum image convention. This is typically 

implemented by translating the QM region to the center of the simulation box, and then 

wrapping the MM atoms around it.

For a given set of coordinates, one must nonlinearly minimize the energy with respect to the 

MO coefficients in a SCF procedure, under the constraint that the MOs remain orthonormal 

to each other,

(27)

where S is the AO overlap matrix,

(28)

and Iij = δij is the identity matrix. Under these constraints, the optimal set MO coefficients 

can be shown to obey the Roothaan-Hall equation,

(29)

where Eσ are the spin-resolved orbital eigenvalues and Fσ is the AO representation of the 

spin-resolved Fock matrix,

(30)

Giese and York Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Equation 29 is a generalized eigenvalue problem, which can be reduced to standard form by 

introducing a transformation matrix,

(31)

where U and s are the eigenvectors and eigenvalues of the overlap matrix, respectively; S = 

U · s · UT. It follows that XT · S · X = I, and

(32)

where Fσ,OAO is the orthonormal atomic orbital (OAO) basis representation of the Fock 

matrix,

(33)

and Cσ,OAO are the corresponding MO coefficients,

(34)

for the OAO basis defined by the transformation:

(35)

The AO Fock matrix elements are the partial derivatives shown in eq. 30 applied to eq. 1:

(36)

where σ′ denotes the spin that is antiparallel to σ.

Upon reaching SCF convergence, the atomic gradients ∂/∂Xa, are readily obtained from 

elementary chain-rule differentiation of the energy.
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MM atom gradients (a ∈ mm):

(37)

QM atom gradients (a ∈ qm):

(38)

Gradient of the exchange-correlation energy:

(39)

The ∂xi/∂Xa derivative has a value of one only if the quadrature point i is tethered to atom a. 

Furthermore, the density is a linear combination of AO products, whose gradients satisfy 

∇rχ(r − R) = −∇Rχ(r − R); therefore, the last term on the first line of eq. 7 reduces to:

(40)

For brevity, we refer the reader to Ref. 99 for additional simplifications of eq. 39. The 

appendix of Ref. 99 also contains explicit expressions for the quadrature weight derivative, 

∂w/∂Xa. Algorithms for computing the ERIs and ERI gradients are found in Refs. 100 and 

101, and the one electron Gaussian integrals can be found in the seminal work by Obara and 

Saika.102

When the QM/MM boundary severs a covalent bond, we use the link atom approach 

described in Ref. 66. In brief, “dangling bonds” are capped with a hydrogen QM atom. The 

link atom bond length is fixed, and its orientation is colinear with the severed QM/MM 
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bond. The atomic forces of the link atom are propagated to the real QM and MM atoms via 

elementary chain rule derivatives. For completeness, we note that other treatments of the 

QM/MM boundary can be found in the literature, including the Generalized Hybrid Orbital 

method,103–106 Effective Fragment Potential method,107–109 and Local Self-Consistent Field 

method110–112 to name just a few.113

2.2 The Ambient-Potential Composite Ewald Method

It is worthwhile to begin with some clarifying remarks regarding eq. 4 which may cause 

confusion for some readers because the lattice translation n, occurs in one (but not both) of 

the charge densities. In other words, one might have expected the Coulomb self-energy of a 

periodic density Σnq(r + n), to be

(41)

because the Coulomb self-energy of an aperiodic density q(r), is

(42)

However, eq. 41 is formally infinite if q(r) is anywhere nonzero114 because each cell then 

contains some amount of self-energy and there are an infinite number of cells in the lattice. 

When performing an inner-product of two functions that are each periodic (the density and 

the electrostatic potential are both periodic in eq. 41), the desired quantity is actually the 

inner-product’s average per unit cell. All cells in the lattice are identical, so the calculation 

of the average energy per unit cell merely requires one to change the range of integration in 

eq. 41 from “all space” to “the volume of one cell”.

(43)

Equation 4 is recovered from eq. 43 by exploiting the periodicity of the electrostatic 

potential. Although the aperiodic density is not necessarily confined within a unit cell, the 

combined effluence of density produced from the construction of Σnq(r + n) causes each 

cell within the lattice to contain one instance of q(r) that appears to have been “wrapped” to 

the cell boundary. Equation 4 differs from eq. 43 only by “unwrapping” the density and 

making a corresponding adjustment to the integration limits.

Another possible source of confusion may arise from the prevalence of expressions in the 

literature that place lattice translations in the denominator rather than the numerator; that is,
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(44)

Equations 4 and 44 are equivalent. Equation 4 is recovered from eq. 44 by performing a u-

substitution that replaces r′ → u + n and d3r′ → d3u within eq. 44 and then changing the 

dummy integration variable from u to r′. One could also write eq. 44 with a denominator of |

r − r′ − n|−1, because the lattice summation considers all unique cell translations.

Our description of the Ambient-Potential Composite Ewald Method makes frequent use of 

Dirac notation, which is now summarized. A function is written as a “ket”, f(r) = 〈r|f〉. A 

complex conjugate is a “bra”, f∗(r) = 〈f|r〉. An inner-product is a “braket”, ∫ f ∗(r)g(r)d3r = 

〈f|g〉. If both functions are periodic, then the inner-product’s integration is performed over 

the unit cell volume, ∫Vd3r. From these definitions, one can immediately write the aperiodic 

(or “primary”) charge density:

(45)

and the periodic charge density:

(46)

One can further define an “ambient charge density”:

(47)

which consists of all translated copies of the density enclosing the primary image.

The act of producing the various forms of the density described above is aided through the 

use of specialized electrostatic operators. Let us define the “primary electrostatic operator”:

(48)

the “periodic electrostatic operator”:

(49)
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and the “ambient electrostatic operator”:

(50)

These operators act upon an aperiodic charge density to produce the “primary electrostatic 

potential” (the electrostatic potential of the aperiodic density):

(51)

the “periodic electrostatic potential” (the electrostatic potential of the periodic density):

(52)

and the “ambient electrostatic potential”:

(53)

The ambient electrostatic potential is produced solely from the periodic surroundings. That 

is, it is how the electrostatic potential is altered upon introducing periodicity to the system.

The electrostatic energy of the periodic system (eq. 4) can be decomposed into QM/QM, 

MM/MM, and QM/MM interactions as follows:

(54)

The last term in eq. 54 is the “QM ambient energy”. It is the Coulomb interaction between 

the primary image’s QM region with the QM regions located in the periodic surrounding. 

The QM ambient energy is inconvenient to evaluate because the character of the QM 

ambient potential changes at each SCF step. We shall introduce an approximation that 

avoids this inconvenience. To begin, note that the QM region’s ambient energy can be 

expressed as a Taylor series expansion about a reference charge density, .

QM charge density evaluated about the reference:
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(55)

QM ambient energy evaluated about the reference:

(56)

where .

Obviously, if , then the last term in eq. 56 is small. More importantly, the 

ambient electrostatic operator only interacts the QM region with those located in different 
periodic cells. If the unit cell was larger than the sphere which circumscribes the QM charge 

density, then this energy could, in principle, be performed via multipole moment expansions 

of qqm(r). In other words, the last term in eq. 56 is also negligible when the multipole 

moments of  reasonably approximate those of qqm(r). Therefore, an appropriate 

choice of  is one which satisfies

(57)

where Clμ(r) is a regular solid harmonic.115 There are many potential choices which could 

satisfy this condition; however, considering that force fields have already developed their 

partial charges to reasonably model the electrostatics, the most convenient choice would be 

to reuse the underlying MM atomic charges for . Complicating the form of  by 

using, for example, atomic multipoles or diffuse auxiliary basis functions, would only 

increase the accuracy of the method insofar as those complications could improve the overall 

description of the QM region’s multipole moments. Alternatively, one could improve the 

multipole moments by simply adjusting the underlying MM partial charges if it was found to 

be necessary, thus rendering additional complications moot. Following this logic, the 

approach taken in the present work is to use a set of static point charges to approximate the 

ambient QM charge density,

(58)

and then truncate the Taylor series to first-order,

(59)
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(60)

such that the ambient QM energy becomes a composite interaction between qqm(r) with 

, and  with itself. After simplification, the energy becomes ECEw[q] ≈ Eelec[q],

(61)

In this manner, the periodic potentials only involve static point charge distributions, which 

can be computed once before the SCF procedure begins.

Equation 61 is an approximation, but our formulation was designed to reduce the error’s 

magnitude for typical QM/MM applications. It should be pointed out that the truncated 

Taylor series expansion only effects the interaction of the QM region with its images; it does 

not approximate the interaction between the QM and MM regions nor the MM region with 

itself. Nevertheless, if the interaction between the QM region with its periodic images was 

such that the Taylor series could not reasonably be truncated, then one could directly 

evaluate the QM ambient energy in eq. 54 by evaluating the multipole moments of qqm(r) at 

each SCF step and then use the point-multipole particle mesh Ewald (PME) method 

described in Ref. 17; however, the small size of – and, therefore, intercellular distance 

between – QM regions should make this added layer of complexity unnecessary in most 

applications.

The periodic electrostatic potential of the point charge distributions appearing in eq. 61 can 

be computed with either the Ewald or PME methods. A detailed theoretical development of 

these methods can be found in Ref. 17, whose notation we adopt henceforth. Specifically, we 

reserve

(62)

to index the angular wave numbers of a plane wave basis:

(63)

Furthermore, we shall refer to B-spline weights,

(64)
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that are constructed from order–n Cardinal B-spline functions,

(65)

and whose discrete Fourier transform coefficients,

(66)

are evaluated from a uniformly spaced grid. The grid consists of N = N1N2N3 points that are 

indexed by t = (t1,t2,t3) and positioned at Rt.

(67)

We will continue by summarizing the necessary equations for PME, written below for a 

generic point charge distribution, qpt(r).

(68)

In brief, the PME method computes the periodic potential of a model Gaussian density

(69)

and then corrects for the short-range difference between the point and Gaussian potentials. 

The electrostatic potential of the periodic Gaussian density is performed analytically upon 

fitting it to a plane wave basis. Therefore, the PME potential (see eq. 70) decomposes into a 

plane-wave potential (see eq. 75), a short-range correction that removes the Gaussian 

potential (see eq. 73), a corresponding short-range “near-field” potential that reintroduces 

the point-charges (see eq. 71), and, for charged systems, a uniform background potential 

(see eq. 76). Several of these potentials can be grouped together, when convenient, into “far-

field” (see eq. 72), “real-space” (see eq. 74), and “reciprocal-space” (see eq. 77) potentials. 

The difference between the Gaussian and point-charge electrostatic potentials is negligible at 

large distances, so one need only evaluate the near-field and Gaussian potentials within a 

real-space Ewald cutoff Rcut around r while assuming a minimum image convention. When 

applied to eq. 61, one must evaluate the potential at all r values where qqm(r) is non-

negligible. In other words, the near-field and Gaussian potentials must be evaluated for all 

imaged point charges within Rcut of qqm(r).
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PME potential:

(70)

Near-field potential; that is, the potential caused by everything within the real-space Ewald 

cutoff Rcut around r:

(71)

Far-field potential; that is, the potential caused by everything outside Rcut:

(72)

Gaussian potential:

(73)

Real-space potential:

(74)

Plane-wave potential (interpolated from a regular grid):

(75)

Uniform background potential:
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(76)

Reciprocal-space potential:

(77)

PME potential interpolation control points:

(78)

PME structure factor; that is, the forward discrete Fourier transform coefficients of the B-

spline interpolated point charges:

(79)

Having now introduced the near and far-field potentials, we show how they are used to 

simplify the second line in eq. 61,

(80)

through the cancellation of terms,

which are equivalent because  is necessarily within Rcut of qqm(r). For the same 

reason, the last line of eq. 61 merely removes of the QM reference density’s near-field 

energy, assuming that the QM region’s size is less than half the box length.

(81)
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The energy expression for the Ambient-Potential Composite Ewald method (see eq. 83) is 

obtained upon replacing the second and third lines of eq. 61 with the last line of eq. 80 and 

eq. 81, respectively,

(82)

and then expanding the far field potentials using the second line of eq. 72.

(83)

Explicit expressions for the energy terms appearing in eq. 83 are summarized by eqs. 84–96.

(84)

(85)

(86)

(87)

(88)
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(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

Equation 88 is performed numerically using a molecular quadrature grid consisting of 

quadrature points ri and partitioned quadrature weights wi. In other words, one integrates 
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 in a manner analogous to a LDA exchange-correlation potential. 

Specifically, the reciprocal-space potential is computed at the FFT grid points, and the B-

splines are used to interpolate the potential onto the molecular quadrature grid. If β (see eq. 

69) was large, then the numerical integration of the reciprocal space potential shown in eq. 

88 would be inaccurate unless additional atomic quadrature grids were also placed around 

the near-field MM atoms; that is, the reciprocal space potential has “lumps” at the atomic 

positions, and those lumps look increasingly like q/r as β → ∞. In practice, the β values 

used in typical QM/MM simulations are sufficiently small that the use of “MM quadrature 

centers” is unnecessary. For the sake of argument, even if this were an issue, one would 

eliminate the lumps by numerically integrating eq. 90 along with the reciprocal-space 

potential, rather than introducing additional quadrature centers.

The contribution of ECEw to the QM spin-resolved Fock matrix is the derivative with respect 

to the density matrix:

(97)

Similarly, the electrostatic energy contribution to the atomic gradients is the derivative ∂E/

∂Xa|P. Most of the gradient terms reduce to expressions involving standard nuclear-nuclear, 

electron-nuclear, and electron-repulsion integrals; for brevity, eqs. 98–101 summarizes only 

those expressions which involve the plane wave basis and/or numerical quadrature grid.

(98)

(99)
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(100)

where

(101)

Equation 101 requires the evaluation of the QM electron density on the molecular quadrature 

grid. Each quadrature grid point density is then B-spline interpolated onto the FFT grid. The 

FFT-grid representation of the QM charge density then undergoes a forward FFT to produce 

a set of structure factors. Equation 101 does not introduce a new approximation; it naturally 

arises from standard chain-rule differentiation of the energy. The numerical integration of 

the reciprocal-space potential avoids the explicit evaluation of the AO-product Fourier 

coefficients.

2.3 Other QM/MM electrostatic protocols

The Ambient-Potential Composite Ewald method (denoted by “CEw”, see eq. 83) will be 

compared to three other electrostatic models:

1. Electrostatic embedding with truncated electrostatics for both the MM/MM 

and QM/MM interactions (denoted by “cut”, see eq. 102).

2. The QM/MM Mulliken charge Ewald method introduced by Nam63 (denoted 

by “Ewq”, see eq. 104).
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3. A model-MM Ewald energy with a smooth, short-range QM/MM correction 

(denoted by “MMEw”, see eq. 108). The MMEw model is a mixture of 

mechanical and electrostatic embedding. We define a nonbond cutoff radius 

around the QM region, outside of which the QM/MM interactions occur with 

mechanical embedding (including the long-range Ewald interaction), and 

inside of which the interactions are performed with electrostatic embedding. 

This approach is generalized in the MMEw method by introducing a switch 

that smoothly transitions between the two limits to yield a continuous potential 

energy. In the limit that the switching width becomes zero, the transition 

occurs discontinuously.

Cutoff-based electrostatics (Ecut[q] ≈ Eelec[q]):

(102)

Ecut contribution to the Fock matrix:

(103)

Mulliken charge QM/MM Ewald method (EEwq[q] ≈ Eelec[q]):

(104)

(105)

Mulliken charge:
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(106)

EEwq contribution to the Fock matrix:

(107)

Model-MM Ewald energy with a short-range QM/MM correction (EMMEw[q] ≈ Eelec[q]):

(108)

The smooth, short-range incorporation of the QM/MM interactions:

(109)

The switched, short-range model-MM interactions:

(110)

The “switch off” function:
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(111)

The distance between MM atom b and the nearest QM atom:

(112)

EMMEw contribution to the Fock matrix:

(113)

The expression for the Lennard Jones energy (eq. 3) and the ECEw (eq. 83), Ecut (eq. 102), 

EEwq (eq. 104), and EMMEw (eq. 108) electrostatic methods all employ the symbol “Rcut”. In 

all cases, this distance is the “nonbond cutoff” radius used by the MM program to generate 

neighbor lists. We proceed by summarizing how the nonbond cutoff is used within different 

methods. In doing so, we use the phrases “real-space Ewald cutoff”, “electrostatic cutoff”, 

and “switched cutoff” to aid the reader’s ability to recall how the various methods behave at 

the nonbond cutoff. If an atom is inside the nonbond cutoff, then the pairwise Lennard-Jones 

energy is computed; whereas, if it is outside the nonbond cutoff, then its interaction is 

modeled through a long-range tail correction. The electrostatic methods use a single 

neighbor list for the QM region, as a whole, which is constructed from the union of the 

individual QM atom neighbor lists. Therefore, an MM atom is within the nonbond cutoff if 

its distance to any QM atom is less than Rcut. The Rcut appearing in the ECEw and EEwq 

methods are “real-space Ewald cutoffs”, which merely denotes the distance where the point 

charge and PME Gaussian potentials are sufficiently similar that additional real-space 

corrections would have a negligible effect. The Rcut appearing in the Ecut method is an 

“electrostatic cutoff” that marks the distance outside of which the electrostatic interactions 

are strictly (and discontinuously) ignored. The Rcut appearing in the EMMEw method is the 

outer edge of a “switched cutoff” that extends from Rcut − wsw to Rcut. Inside the switching 

region (R ≤ Rcut − wsw), the QM/MM electrostatic interaction explicitly involve the atomic 

nuclei and AO products. Outside of the switched cutoff (R ≥ Rcut), the QM/MM electrostatic 

interaction (including the long-range Ewald-component of the energy) is performed using a 

static, MM point charge representation of the QM atoms. The EMMEw switching region (Rcut 

−wsw > R > Rcut) smoothly transitions between these two limits. Therefore, the EMMEw QM 
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atom forces are influenced by the Ewald potential, but the QM electron density explicitly 

polarizes only to the nearby MM atoms within the switched cutoff.

It has previously been noted69,70 that the use of Mulliken charges within EEwq can result in 

SCF convergence instability when applied to standard, all-electron AO basis sets. In order to 

improve the SCF stability, our implementation of EEwq holds the Mulliken charges within 

the current MD step fixed to the SCF converged Mulliken charges from the previous MD 

step. In other words, the  charge derivatives appearing in eq. 107 are computed 

once at the beginning of the SCF procedure.

2.4 Computational details

The ab initio code and all electrostatic methods described in the previous sections were 

implemented from scratch within a development version of AmberTools 15 and interfaced to 

the Sander MD program, which was used to perform all simulations described below.116

The notation Ecut R, EMMEw RwD, ECEw R, EEwq R is used to distinguish the electrostatic 

protocols described in the previous sections and their associated nonbond cutoffs. For 

example, Ecut 14 denotes the use of eq. 102 with Rcut = 14 Å, and EMMEw 14w4 is eq. 108 

with Rcut = 14 Å and wsw = 4 Å. Similarly, ECEw 14 and EEwq 14 refer to eq. 83 and eq. 104, 

respectively, with Rcut = 14 Å.

All Ewald reciprocal-space calculations are performed using a 1 Å−3 grid density, and the 

Ewald coefficient was chosen from the value of Rcut to reproduce a direct sum tolerance of 

10−6 au.

Figures 1–6 display simulation results for a system composed of a p-nitrophenyl phosphate 

(pNPP) QM region in a truncated octahedron filled with 4563 TIP4P/Ew water molecules. 

Salt ions were not added to the system. The total charge of the system is 2-. The Ewald 

methods use a neutralizing uniform background potential (eq. 76) to account for the net 

charge. The pNPP Lennard-Jones and qref parameters were obtained from the Antechamber 

program included in AmberTools 15, which chose the LJ parameters and charges from the 

GAFF force field and AM1-BCC protocol, respectively.116–119 The system volume was 

equilibrated using the DFTB2 semiempirical Hamiltonian and the QM/MM Ewald method 

described in Ref. 63 in the isothermal-isobaric ensemble (NPT) for 100 ps (1 fs/step) at 298 

K and 1 atm. The Berendsen barostat was used to control the pressure with a relaxation time 

of 2 ps, and the Langevin thermostat controlled the temperature with a collision frequency of 

5 ps−1. The simulation cell’s equilibrated real-space lattice vectors are 56.42 Å. The 

equilibrated volume and coordinates were then used for the microcanonical (NVE) and 

canonical (NVT) ensemble simulations described below.

Figure 1 shows the PBE0/6-31G* QM/MM simulation total energy, relative to the first step, 

for a series of NVE simulations that differ only by their choice of electrostatic protocol. 

Each simulation was run for 30 ps (30 000 steps), and they started from the same initial 

conditions.
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Figure 2 displays PBE0/6-31G* QM/MM potential of mean force (PMF) profiles of the 

pNPP dissociation reaction: , where the 

reaction coordinate is the P-O distance. Each PMF was generated from 96 umbrella window 

NVT simulations that spanned from RPO = 1.4 Å to 6.1 Å in steps of 0.1 Å. The umbrella 

harmonic potentials used a force constant of 50 kcal mol−1 Å−2. The PMFs were generated 

from the distribution of RPO values using the variational free energy profile (vFEP) 

method.120 Each NVT simulation was performed at 298 K for 12 ps (Fig. 2a), 24 ps (Fig. 2b 

and Fig. 2c), or 36 ps (Fig. 2d). The total amount of sampling for each curve was chosen to 

achieve aesthetically pleasing figures; that is, the PMFs shown in Fig. 2d are all sufficiently 

similar to one another that additional sampling was added to remove small numerical noise 

in the region where the PMF is relatively “flat”, so that the curves could be more easily 

distinguished. Alternatively, the PMFs appearing in Fig. 2a are identifiably different such 

that sampling beyond 12 ps was not considered to be a prudent use of resources. We note 

that the EMMEw 14w1 PMF appearing in Fig. 2b is terminated at RPO ≈ 4 Å because many of 

the EMMEw 14w1 simulation windows beyond RPO > 4 fail to complete due to large velocity 

warnings. This is expected because the switching width in this case is so small that any 

waters within the switching layer experience a large force, because the potential energy 

approaches a discontinuity as the width nears zero. The dashed, horizontal lines in Fig. 2a–

2d mark the experimental barrier in solution121 (29.6 kcal/mol).

Figure 3 compares radial distribution functions (RDFs) between the phosphorous and water-

oxygens observed within PBE0/6-31G* QM/MM pNPP simulations performed using several 

electrostatic protocols. Figures 3a and 3b are RDFs obtained from simulations whose 

umbrella potential is centered about RPO = 1.7 Å (the approximate minimum of the PMF), 

and Figs. 3c and 3d were obtained using an umbrella window centered about RPO = 4.0 Å 

(the approximate transition state of the PMF). Figures 3b and 3d are zoomed areas of 3a and 

3c, respectively, as marked by the black boxes. The RDFs were generated from 500 ps of 

NVT simulations at 298 K, whose trajectory was written every 50 steps.

Figure 4 shows the potential, kinetic, and total energies from PBE0/6-31G* QM/MM NVE 

simulations of pNPP performed using the EEwq 14 (Fig. 4a) and ECEw 14 (Fig. 4b) 

electrostatic protocols as a function of time step (1 fs/step). Both trajectories start from the 

same coordinates and initial velocities, and an umbrella potential at RPO = 1.7 Å is applied. 

The EEwq 14 trajectory fails to SCF converge after step 108. Therefore, the EEwq 14 trajectory 

is restarted at step 108 from the coordinates and velocities produced by the ECEw 14 

trajectory at step 108. The EEwq 14 trajectory again fails to SCF converge after step 197. The 

EEwq 14 SCF failures are marked in Fig. 4a by “Implosion #1” and “Implosion #2.” Several 

snapshots of the pNPP solute from the EEwq 14 and ECEw 14 trajectories are shown 

immediately below their respective energy profiles.

Figures 5 and 6 re-analyze the PBE0/6-31G* Mulliken charges and Wiberg bond orders of 

the first 108 steps from each trajectory shown in Fig. 4. Specifically, Figs. 5a–5d are the SCF 

converged Mulliken charges produced by the EEwq 14 method using the atomic coordinates 

from the first 108 steps of Fig. 4a. Figures 5e–5h are the SCF converged Mulliken charges 

produced by the ECEw 14 method using the atomic coordinates from the first 108 steps of 

Fig. 4a. Similarly, Figs. 5i–5l and 5m–5p are the EEwq 14 and ECEw 14 Mulliken charges, 
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respectively, evaluated from the first 108 steps of Fig. 4b. The format of Fig. 6 is analogous; 

it differs from Fig. 5 only by displaying the Wiberg bond orders rather than Mulliken 

charges. For clarity, the Mulliken charges and Wiberg bond orders are evaluated using the 

coordinates of the entire QM/MM system.

Table 1 compares the QM/MM simulation rates acheived using ECEw 14 and EMMEw 14w4 

when applied to the solvated 72 atom alanine chain shown in Fig. 7. The alanine chain is 

enclosed within a truncated octohedron containing 5083 TIP4P/Ew waters. The timings are 

listed as the average simulation rate (ps/day) reported by Sander after 1 ps (1000 steps) of 

PBE0/6-31G* NVT simulation at 298 K. The simulation rates are reported as a function of 

central processing unit (CPU) core count and QM system size, including link atoms. The 

QM region consists of all atoms to the left of the cuts shown in Fig. 7 and the hydrogen link-

atoms crossing the boundaries. The timings were performed on the stampede 

supercomputing cluster at the Texas Advanced Computing Center. Each node contains two 

Intel Xeon E5-2680 processors (8 cores/processor), and the nodes are interconnected with 

Mellanox FDR InfiniBand technology. Although Intel Phi coprocessors and/or Nvidia 

graphics cards were available on the compute nodes, our code currently only runs on the 

CPU.

Figure 8 is a schematic of the transesterification of hydroxyalkyl phosphate esters. Of 

particular interest in this work are the reactions involving ethoxide (EtO) or phenoxide 

(PhO), which are representative of “poor” and “enhanced” leaving groups, respectively. The 

“R1” and “R2” bond labels appearing in Fig. 8 are reaction coordinates used to perform the 

two-dimensional (2D) umbrella window simulations shown in Fig. 9. Figures 9a–9c are 2D 

PMFs of the EtO phosphoryl transesterification and Figs. 9d–9f are 2D PMFs of the PhO 

phosphoryl transesterification. Figures 9a and 9d were performed with AM1/d-PhoT 

(abbreviated as AM1/d); Figs. 9b and 9e were performed with DFTB2; and Figs. 9b and 9e 

were performed with PBE0/6-311G**. The EtO simulations consisted of 134 windows that 

form a grid from (R1,R2) = (1.4 Å,1.4 Å) to (5.6 Å,2.2 Å) and from (1.4 Å,2.1 Å) to (2.4 Å,

3.0 Å) using a 0.2 Å spacing in either direction. The PhO simulations consisted of 109 

windows from (R1,R2) = (1.4 Å,1.4 Å) to (5.6 Å,2.2 Å). The umbrella windows had a force 

constant of 85 kcal mol−1 Å−2, and the QM solute was enclosed within an truncated 

octohedron containing 4204 (EtO) or 5183 (PhO) TIP4P/Ew waters. The density of the 

system was equilibrated with DFTB2 in a NPT simulation in a manner analogous to the 

pNPP equilibration protocol described above, and production was performed in the NVT 

ensemble at 298 K. The AM1/d-PhoT and DFTB2 semiempirial models were sampled and 

analyzed for 100 ps/window, whereas the PBE0/6-311G** simulations were run for 30 ps/

window. Analysis of the first 20 ps changes the PBE0/6-311G** barriers by less than 0.2 

kcal/mol; therefore, sampling was suspended at 30 ps. The vFEP method was used to 

generate the 2D PMFs from the distributions of R1 and R2 values observed in the 

simulations.120 The circle and X marks appearing in Fig. 9 are minima and transition states 

of the 2D surfaces, and the colored lines connecting the stationary points are a nudge elastic 

band minimum free energy path.122,123 The 1D PMFs appearing in Fig. 9 are the free energy 

profiles along the minimum free energy path.
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Our QM/MM simulations assume that the 2′-O has already been deprotonated. That is, we 

explicitly model the reaction barrier from R* to TS (see Fig. 8), whereas the experimental 

barrier corresponds to the reaction from R to TS. Therefore, our calculated free energies are 

corrected to account for the free energy difference between R and R*. The rate of the 

reaction shown in Fig. 8 was experimentally determined to be k = 1.57×107 and 7.40×1010 

mol−1s−1 for the EtO and PhO leaving groups, respectively, at 80 C in a pH 8 buffer 

solution.124 The transition state free energies at standard state concentration are computed 

from the Eyring equation, ΔG‡ = −RT ln(kh/kBT), where h and kB are Planck’s constant and 

Boltmann’s constant, respectively. Thus the experimental barriers for EtO and PhO are 28.55 

and 22.62 kcal/mol, respectively. To correct our free energies, we must consider the pKa of 

2′-OH at pH 8. Experimental measurements of the 2′-OH pKa in small molecule models of 

RNA have ranged between 12.35–13.9, depending on the structure and experimental 

technique.125–128 Of the available experimental pKa data, the model most closely resembling 

those shown in Fig. 8 is the adenosine 3′-ethyl phosphate used in Ref. 127, whose 2′-OH 

pKa was found to be 12.68 ± 0.06. Assuming a pKa of 12.68, the free energy of the 

deprotonated 2′-O at pH 8 and 298 K is estimated to be ΔGR→R* = −2.303RT(pH − pKa) = 

6.38 kcal/mol. Therefore, 6.38 kcal/mol have been added to all computed free energies 

shown in Fig. 9.

3 Results

3.1 Comparison of electrostatic protocols

Energy conservation—The drift in total energy observed within NVE simulations of 

pNPP are shown in Figure 1. The Ecut 14 and EMMEw 14w0 methods produce strong energy 

drifts because their potential energy surfaces contain discontinuities. The Ecut 14 energy drift 

is larger than EMMEw 14w0 because the Ecut 14 method excludes the long-range interactions 

entirely. The EMMEw 14w4 and ECEw 14 methods conserve the total energy. Both models have 

continuous potential energies and model the long-range interactions, albeit in different 

manners. The EEwq electrostatic method first developed by Nam et al.63 is not shown in Fig. 

1 because the QM solute “implodes” after 100 steps. The instability of EEwq trajectories will 

be discussed in detail below. In brief, the EEwq simulations do conserve the total energy for 

the length of time that they can be run.

The conservation of total energy is important for maintaining a stable simulation 

temperature.129 Although the temperature can be corrected through velocity rescaling, the 

lack of total energy conservation can, over time, manifest itself by dampening high-

frequency motion and transforming it to low-frequency motions.130 Furthermore, the 

treatment of long-range forces has also been shown to dramatically affect the structural 

stability of proteins30 even when switching functions are introduced.131 The simulations 

performed in the remainder of this manuscript are not performed on a time scale that is long 

enough to directly observe these previously observed artifacts.

pNPP free energy profiles—Simulations of reactions involving charged species are 

ubiquitous in biology. Among the most important are phosphoryl transfer reactions, which 

are vital for many celluler processes; for example, gene regulation, cell signalling, and 
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energy conversion.132–134 Phosphoryl transfer reactions have been studied extensively by 

computational methods,135 and mechanistic insights have been gained by studying model 

systems that provide an interpretation of linear free-energy relations136 and kinetic isotope 

effects.137 In this section, we examine how various electrostatic protocols affect the the 

phosphoryl transfer reaction barrier of pNPP (see Figure 2).

In the vicinity of ROP ≈ 1.7 Å, the metaphosphate is covalently bound to nitrophenyl such 

that it is a single molecule with a −2 charge. At a separation of ROP ≳ 4 Å, the solute is 

better described as two polyatomic monoanions. One can gain insight into the role of 

solvation in these two situations by refering to a Born ion model which, for water, 

approximately translates to: ΔGsolv ≈ −Q2/R, where R is the radius of the ion. In other 

words, there is a greater degree of solvent stabilization near the PMF minimum than there is 

near the transition state. Although various electrostatic methods appear to increase the 

barrier, the differences are related to the solvent stabilization near the PMF minimum, which 

has been chosen to define the zero of free energy in all cases. Had the system consisted of a 

pair of counter ions, such as the  or  systems examined in Ref. 63, 

then the solvent stability of the QM region would be enhanced as the ions were separated, 

because the separation of ions produces an increasing dipole moment.

The series of Ecut profiles shown in Fig. 2a differ strikingly from the other electrostatic 

protocols. The PMFs continually increase as the metaphosphate dissociates. The truncated 

electrostatic forces cause the waters to become structured at the QM/MM electrostatic cutoff 

(see Fig. 3), which acts to create an artificial solvation shell. As one decreases the 

electrostatic cutoff from 18 Å to 10 Å, the artificial solvation shell forms closer to the solute 

and thus increases the stability of the PMF minimum. The profiles do not contain a 

transition state below ROP < 6 Å for two reasons:

1. The length of the electrostatic cutoff prevents the solvation shells of each 

fragement from dissociating from each other in this range.

2. The water around phosphorous continues to display an artifically structured 

RDF even when the metaphosphate is separated (see Figs. 3c–3d), so the radius 

of the “effective Born ion” increases as the metaphosphate dissociates.

The EMMEw method’s treatment of the long-range QM/MM electrostatics is fundamentally 

different from Ecut, and this difference causes the EMMEw PMFs to exhibit transition states 

(see Fig. 2b). As the width of the switching region is reduced, the dissociation barrier 

increases. This observation appears to be related to how the switching width affects the 

solvent structure in the vicinity of the switching region. Figures 3a–3b and 3c–3d illustrate 

the solvent structure of EMMEw 14w2, EMMEw 14w3, and EMMEw 14w4 at ROP = 1.70 Å and 

ROP = 4.00 Å, respectively. As the switching width becomes smaller, the transition between 

the QM/MM and MM-analogue/MM interactions occurs more abruptly, and the waters 

experience a greater force in the switching region. The degree of water structure at the 

switching region is greater at ROP = 1.70 Å because the solute more closely resembles a 

dianion. Unlike the Ecut method, the artificial solvation shell dissipates as the metaphosphate 

dissociates. The series of EMMEw profiles shown in Fig. 2c use a switching width of zero. 

Thus, the width is too small for the waters to experience a force associated with the 
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transition, and the difference between MM-analogue/MM and QM/MM interactions is too 

subtle to cause a dramatic difference in the transition state barrier. Increasing the real-space 

Ewald cutoff from 10 to 18 Å lowers the barrier from 32.4 (EMMEw 10w0) to 30.2 

(EMMEw 18w0) kcal/mol. Relative to Figs. 2a–2b, the EMMEw Rw0 profiles shown in Fig. 2c 

are relatively stable and agree with experiment much more closely; however, the reader 

should take note that the electrostatic protocols shown in Fig. 2c do not conserve the total 

energy in NVE simulations.

The series of ECEw profiles shown in Fig. 2d exhibit the greatest degree of similarity as a 

function of nonbond cutoff. The barriers are: 32.2 kcal/mol (ECEw 10), 31.8 kcal/mol 

(ECEw 14), 31.2 kcal/mol (ECEw 18). Unlike the other electrostatic protocols appearing in Fig. 

2a–2c, the ECEw method allows the QM Hamiltonian to explicitly polarize to both the short- 

and long-range electrostatics. As a consequence, ECEw 14 does not induce an artificially 

structured solvation shell, as can be seen in Fig. 3.

Electronic polarization—Figures 4–6 are used to discuss the symptoms which arise 

when attempting to use the semiempirical-style QM/MM-Ewald method63 with an ab initio 
Hamiltonian. To analyze the behavior of EEwq 14 and ECEw 14, we construct NVE trajectories 

of each (Fig. 4a and 4b, respectively), starting from the same initial conditions. The EEwq 14 

total energy is conserved until step 106, at which point the atom velocities are too large to 

adequately propagate with a 1 fs time step. Furthermore, we are unable to SCF converge the 

EEwq 14 QM region after step 108. The solute exhibits unusual changes in the hydrogen 

covalent angles after the first 75 steps, a dramatic deformation of the phenyl ring after the 

first 90 steps, and wildly nonphysical bond lengths in the last few steps – at which point, the 

solute can only be described as having undergone an “implosion”. The ECEw 14 trajectory 

(Fig. 4b) does not encounter any of these symptoms. To demonstrate that the EEwq 14 

implosion is not a fluke, we restarted the EEwq 14 simulation from the coordinates taken from 

step 108 of the ECEw 14 trajectory. The EEwq 14 trajectory again implodes after an additional 

80 steps.

The instability of EEwq trajectories has previously been described by Holden et al.,69,70 

which motivated them to concoct a point-charge representation of the QM charge density 

using a ChElPG charge-fitting procedure.71 The ECEw method described in the present work 

interacts the QM region with its surroundings without resorting to an auxiliary 

representation. Nevertheless, we agree with Holden et al. that the underlying reason for the 

instability of EEwq trajectories arises from the manner in which the Mulliken potentials 

contribute to the Fock matrix. In other words, the EEwq 14 trajectory in Fig. 4a becomes 

nonphysical because the electrostatic protocol spuriously polarizes the density matrix to the 

environment.

Figures 5–6 compare how the EEwq 14 and ECEw 14 protocols affect the polarization of the 

QM electron density by monitoring the Mulliken charges and Wiberg bond orders at each 

step of the trajectories. Figure 5a shows the EEwq 14 carbon Mulliken charges evaluated 

using the first 108 steps of the EEwq 14 trajectory. The carbon charges diverge as the 

trajectory reaches the first implosion. At first glance, a reader might be tempted to flippantly 

dismiss Fig. 5a because Mulliken charges are known to exhibit a sensitivity to basis 
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set.138,139 However, the ECEw 14 carbon Mulliken charges shown in Fig. 5e are evaluated at 

the same coordinates as those used in Fig. 5a, and yet the ECEw 14 charges are remarkably 

stable – even as the solute implodes. The carbon charges are recomputed along the ECEw 14 

trajectory in Figs. 5m and Fig. 5i. Again, the EEwq 14 charges (Fig. 5i) are more sensitive, 

but they do not diverge because the ECEw 14 trajectory does not implode. The EEwq 14 

Mulliken charges of the other atoms (O,N,P,H) are relatively stable in comparison to carbon. 

What we conclude from Fig. 5 is:

1. The EEwq 14 Mulliken charges of carbon are particularly sensitive to geometry, 

and

2. The EEwq 14 electrostatics must be polarizing the underlying density matrix in 

a suspicious manner, because the ECEw 14 Mulliken charges are stable when 

evaluated with the same coordinates.

The C-C, C-O, C-N, and C-H Wiberg bond indices shown in Fig. 6 are a second means for 

analyzing the electron polarization. The C-C bond orders in Fig. 6a, 6e, 6i, and 6m should be 

about 1.5 because of the conjugation within the phenyl ring. However, some of the C-C 

bonds in Fig. 6a show strong antibonding behavior. The spurious EEwq 14 C-C bonding 

pattern significantly alters carbon’s bonding to the other atoms as one approaches the 

implosion.

The EEwq method’s polarization is sensitive because:

1. There is a large amount of C-C AO overlap, and

2. The Mulliken potentials produce multiple, inconsistent views of the external 

environment’s electronic chemical potential.

There is a large amount of C-C AO overlap because the “C3s” function – that is, the 

primitive s-function in 6-31G* – has a small Gaussian exponent  and there 

are 6 carbons in close proximity to each other. To be more precise, there is a large amount of 

C3s-C3s AO overlap. The strong C3s AO overlap produces a near-linear dependence and a 

correspondingly small AO overlap matrix eigenvalue. Consequently, the first column 

(assuming the eigenvalues are sorted) of X (eq. 31) is a series of numbers that are large in 

magnitude, oscillate in sign, and are dominated by C3s-character. Alternatively stated, the 

C3s AOs are transformed in the OAO basis (eq. 35) to become oscillatory and delocalized 

across the phenyl ring. The near-linear dependence that we’ve just described is expected and 

routine. Most applications of ab initio methods with small molecules encounter far smaller 

AO overlap eigenvalues than what is found here. The degree of near-linear dependence in 

the present example only becomes a problem once the chemical potential is inconsistently 

viewed. The electronic chemical potential produced by the external environment (the MM 

atoms and long-range electrostatics) is

(114)

and it polarizes the electron density through its contribution to the Fock matrix.

Giese and York Page 33

J Chem Theory Comput. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(115)

By performing the interaction through Mulliken charges, the EEwq method produces 

different chemical potentials for each AO product.

(116)

Each of these chemical potentials is a constant throughout space, but every AO-pair 

experiences a different constant. When eq. 115 is transformed into the OAO basis, the spatial 

inconsistencies of μEwq,µν(r) and the multicenter delocalization of eq. 35 malforms the 

chemical potential relative to the other OAO basis functions to produce irregularities in the 

electron polarization. The ECEw method presented in this work does not produce errant 

polarizations because it uses a single, consistent view of the external environment’s 

chemical potential.

Computational efficiency—The ECEw method is more expensive than EMMEw because 

ECEw polarizes the QM region to both the short- and long-range interactions. Specifically, 

ECEw integrates the Ewald Gaussian potential via molecular quadrature, and the ECEw 

gradients (eq. 100) require a forward Fourier transform of the QM charge density from the 

molecular quadrature grid. As shown in Table 1, this additional layer of computation slows 

the ECEw simulations by only a small amount because the dominant effort continues to 

involve the calculation of standard Gaussian integrals required by the underlying ab initio 
Hamiltonian. For a 52 atom QM region, the difference in timings between ECEw and EMMEw 

is 1% to 4%, depending on how many CPU cores are used.

The choice of real-space Ewald cutoff affects the relative cost between the real- and 

reciprocal-space evaluations, and it thus could be tuned to optimize the overall cost. 

Specifically, reducing the size of the real-space Ewald cutoff necessitates the use of larger 

Ewald coefficients which in turn requires a larger number of plane waves to resolve. The 

optimal choice is obtained from empirical observation. The strategy used in Amber, which 

we have adopted in this work, is to use a 1 point/Å3 FFT grid density, and then choose the 

Ewald coefficient such that erf(βRcut) = εRcut, where ε is a “direct sum tolerance”. One 

could argue that larger values of Rcut may be necessary when using ab initio methods 

because the electron density extends several Ångstroms beyond the nucleus. By employing a 

14 Å real-space Ewald cutoff, we are attempting to pre-emptively diffuse that argument. 

Having said that, we have not yet encountered a scenerio where a 10 Å real-space Ewald 

cutoff produces a questionable result. In practice, the pNPP simulations employing a 14 Å 

real-space Ewald cutoff slowed the calculation by 7 to 8% relative to the 10 Å real-space 

Ewald cutoff.
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3.2 Comparison between ab initio and semiempirical free energy profiles

Semiempirical theory has seen widespread use for generating potential of mean force free 

energy profiles from QM/MM simulations. Considering that semiempirical models are 

approximately 100 times faster than many ab initio methods, one may verily question 

whether the accuracy of ab initio approaches is worth their added effort. Figure 9 compares 

the AM1/d-PhoT and DFTB2 semiempirical model PMFs with those produced by 

PBE0/6-311G** for the transesterification reaction shown in Fig. 8. The most striking 

difference occurs with the EtO leaving group (Figs. 9a–9c). The semiempirical models 

predict a single, late transition state, whereas PBE0 produces two transition states (the late 

transition state is rate controlling) and an intermediate. In other words, the AM1/d-PhoT and 

DFTB2 semiempirical models predict a “concerted” mechanism, and PBE0 predicts a 

“stepwise” mechanism. The experimental rates of this reaction do not provide insight into 

whether or not an intermediate exists; however, we have used the Gaussian program140 to 

perform geometry optimizations and transition state searches using PBE0/6-31G*, 

PBE0/6-311G**, B3LYP/6-31G*, and B3LYP/6-311G** with polarized continuum model 

(PCM) implicit solvent.141 All of the PCM calculations that we performed predict the 

existence of an intermediate and two transition states, in agreement with our PBE0 explicit 

solvent QM/MM PMF. Previous studies of transesterification reactions with various leaving 

groups have found that poor (EtO) and enhanced (PhO) leaving groups generally follow a 

stepwise and concerted mechanisms, respectively.136 Indeed, the transesterification reaction 

PMFs involving the PhO leaving group (Figs. 9d–9f) are predicted to undergo a concerted 

mechanism for all 3 methods.

The PBE0/6-311G** reaction barriers agree more closely to experiment than either AM1/d-

PhoT or DFTB2. The semiempirical methods predict EtO barriers that are 10 kcal/mol larger 

than experiment, whereas PBE0 is only 3.6 kcal/mol larger. Similarly, the semiempirical 

models produce PhO barriers that are 8 kcal/mol larger than experiment, and PBE0 differs 

from experiment by only 0.8 kcal/mol.

4 Conclusion

In this work, we presented a new, composite Ewald method (CEw) for QM/MM simulations. 

Unlike the semiempirical-QM/MM Ewald method introduced by Nam,63 the new method 

produces stable MD trajectories when evaluated with non-minimal Gaussian AO basis sets. 

The CEw method differs from the recently described QM/MM-LREC approach85 by 

polarizing the QM region to the long-range electrostatics using an Ewald summation. It 

further differs from the approach described by Holden et al.69,70 by interacting the QM 

region with the external environment directly through the QM charge density, as opposed to 

resorting to a point-charge auxiliary representation.

We compared how various electrostatic protocols affect the PMF of the p-nitrophenyl 

phosphate dissociation reaction. It was shown that the CEw PMFs are less sensitive to the 

division of short- and long-range interactions than the other methods that we compared to. 

For example, the difference in free energy barriers between using a real-space Ewald cutoff 

of 10 Å and 18 Å was found to be 1 kcal/mol when using the composite Ewald method. We 

compared CEw to a subtractive Ewald scheme (MMEw) and found that CEw avoided the 
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structural artifacts associated with switching the QM/MM interaction between electrostatic 

and mechanical embedding.

We examined the computational cost of the new method and found that the incorporation of 

Ewald sums into the QM calculation only slowed the simulation rate by 1% to 4% for a 52 

atom QM region.

We confirmed Holden’s explanation69,70 for the instability encountered with Mulliken 

charge-based QM/MM Ewald methods.63 The use of Mulliken charges produces 

inconsistent representations of the electronic chemical potential which, in the orthogonalized 

atomic orbital representation of the Fock matrix, become deformed and thus errantly 

polarizes the QM electron density. The new CEw method polarizes the QM density to a 

globally-consistent representation of the chemical potential.

We performed two-dimensional PMFs of phosphoryl transesterification reactions with 

ethoxide and phenoxide leaving groups to compare PBE0/6-311G** with the AM1/d-PhoT 

and DFTB2 semiempirical models. We found that the semiempirical models produced 

concerted reaction mechanisms for the ethoxide leaving group, whereas PBE0 simulations 

produced a stepwise mechanism, in agreement with implicit solvation calculations and 

previous work.136,137 Furthermore, the PBE0/6-311G** reaction barriers were found to 

more closely match experiment than the semiempirical methods by 6 to 7 kcal/mol for both 

leaving groups.
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Figure 1. 
NVE simulation energy conservation as a function of time step (0.001 ps/step) using various 

electrostatic protocols. The system is a pNPP solute computed with PBE0/6-31G* in a 

truncated octahedron of TIP4P/Ew waters. See the text in Computational Details for a 

description of the notation used to distinguish the various electrostatic protocols.
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Figure 2. 
The effect of various electrostatic protocols on the potential of mean force profiles of the 

pNPP dissociative reaction.
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Figure 3. 
The pairwise radial distribution function between phosphorous and the water-oxygens. The 

metaphosphate RPO separation in panes (a) and (c) are 1.70 Å and 4.00 Å, respectively. 

Panes (b) and (d) are zoomed areas of (a) and (c), as indicated by the dashed boxes.
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Figure 4. 
QM/MM NVE simulations of the pNPP molecule (near the minimum of the PMF; that is, 

the RPO = 1.7Å window) using the EEwq 14 (left) and ECEw 14 (right) methods. The plots 

(top) decompose the total simulation energy into kinetic (red) and potential (green) energy 

contributions, relative to the initial condition. Both simulations start from the same initial 

condition. The molecules beneath each plot are snapshots of the QM solute along their 

respective trajectory. Each time step is 0.001 ps.
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Figure 5. 
Mulliken charge analysis of the EEwq 14 and ECEw 14 SCF converged electron densities as a 

function of time step. The two left-most columns are evaluated at the atomic positions 

generated by the EEwq 14 trajectory. The two right-most columns are evaluated at the atomic 

positions generated by the ECEw 14 trajectory. The EEwq 14 and ECEw 14 trajectories as those 

shown in Figure 4.
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Figure 6. 
Wiberg bond order indices of the EEwq 14 and ECEw 14 SCF converged electron densities as a 

function of time step. The two left-most columns are evaluated at the atomic positions 

generated by the EEwq 14 trajectory. The two right-most columns are evaluated at the atomic 

positions generated by the ECEw 14 trajectory. The EEwq 14 and ECEw 14 trajectories as those 

shown in Figure 4.
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Figure 7. 
The QM/MM simulation rates are performed using a 72 atom alanine chain solvated by 5083 

TIP4P/Ew waters in a truncated octahedron simulation cell. The timings were performed 

with different QM regions, which correspond to the various cuts in the covalent bonds 

shown in the figure. The severed bonds are capped with hydrogen link atoms, which are 

included in the count for the number of QM atoms.
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Figure 8. 
Schematic of the phosphoryl transfer (model RNA transesterification) reactions with 

ethoxide and phenoxide leaving groups.
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Figure 9. 
Free energy profiles of the transesterification reactions shown in Fig. 8. Ethoxide leaving 

group: (a)–(c). Phenoxide leaving group: (d)–(f). The inset, one-dimensional plots are the 

free energies along the nudge elastic band path connecting the minimum to the rate-limiting 

transition state. The horizontal line in the inset plots mark the experimental barrier.
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