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Abstract

Diterpenes are widely distributed across many biological kingdoms, where they serve a diverse 

range of physiological functions, and some have significant industrial utility. Their biosynthesis 

involves class I diterpene synthases (DTSs), whose activity can be preceded by that of class II 

diterpene cyclases (DTCs). Here, a modular metabolic engineering system was used to examine 

the promiscuity of DTSs. Strikingly, both a bacterial and plant DTS were found to exhibit extreme 

promiscuity, reacting with all available precursors with orthogonal activity, producing an olefin or 

hydroxyl group, respectively. Such DTS promiscuity enables combinatorial biosynthesis, with 

remarkably high yields for these unoptimized non-native enzymatic combinations (up to 15 mg/L). 

Indeed, it was possible to readily characterize the 13 unknown products. Notably, 16 of the 

observed diterpenes were previously inaccessible, and these results provide biosynthetic routes 

that are further expected to enable assembly of more extended pathways to produce additionally 

elaborated ‘non-natural’ diterpenoids.
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1. Introduction

Diterpenes are widely distributed metabolites that exhibit various biological functions. For 

example, the gibberellin plant hormones are essential for normal plant development (Sun, 

2011). In addition, many more-specialized diterpenes serve various ecological roles – e.g, as 
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phytoalexins produced against infection in cereal crop plants (Schmelz et al., 2014), or 

allelochemicals in rice (Kato-Noguchi and Peters, 2013). Notably, several diterpenes also are 

widely used in industry – e.g., sclareol and cis-abienol are precursors for synthesis of the 

perfuming agent ambroxide (Caniard et al., 2012; Schalk et al., 2012), and others are 

pharmaceutical agents, such as Taxol and the tanshinones (Croteau et al., 2006; Guo et al., in 

press).

(E,E,E)-Geranylgeranyl diphosphate (GGPP, 1)1 serves as the general diterpene precursor. 

However, it has recently been shown that the cisoid analog (Z,Z,Z)-nerylneryl diphosphate 

(NNPP, 2) can serve a precursor as well (Zi et al., 2014b). This result suggests that 

diterpenes may be more broadly derived from various precursors with a variety of double-

bonds configurations and potentially even irregularly (i.e., not just head-to-tail) joined 

isoprenyl units, as suggested by the production of such compounds by certain isoprenyl 

diphosphate synthases (Noike et al., 2008; Teufel et al., 2014). Nevertheless, among 

diterpenes the labdane-related super-family stands out for its sheer size, as these comprise 

almost 7,000 of the 12,000 known such natural products (Peters, 2010). This super-family is 

characterized by a core decalin ring structure produced by the initiating class II diterpene 

cyclases (DTCs), from GGPP – e.g. the eponymous labdadienyl/copalyl diphosphate (CPP)

(Peters, 2010). These bicyclic diphosphate esters are then typically further transformed by 

subsequently acting class I diterpene synthases (DTSs) that catalyze lysis/ionization-initiated 

cationic cyclization and/or rearrangement reactions, leading to a structurally diverse range of 

diterpenes with varied biological and industrial functions, such as the gibberellin 

phytohormones and the potential pharmaceutical tanshinones.

Due to the interesting activities associated with diterpene natural products their biosynthesis 

has been extensively investigated (Zi et al., 2014a). This is perhaps most advanced with 

regards to diterpene cyclases/synthases, significant numbers of which have been identified 

over the last two decades. These studies have relied on recombinant expression of these 

DTCs and/or DTSs in heterologous organisms ranging from bacteria to yeast and tobacco 

plants, often with co-expression of a GGPP synthase to provide this precursor in a metabolic 

engineering approach that enables product characterization upon simple extraction, 

including combining native pairs of labdane-related diterpene cyclases/synthases (Zerbe and 

Bohlmann, 2015).

Recent results have highlighted the structural diversity that can be generated by DTCs. 

While these all catalyze bicyclization of GGPP, this can occur in four possible 

configurations, and can be followed by rearrangement and/or the addition of water prior to 

concluding deprotonation (Fig. 1). Thus, DTCs can generate three basic types of bicyclic 

1Abbreviations: DTCs, diterpene cyclases; DTSs, diterpene synthases; KgTS, terpentetriene synthase from Kitasatospora griseola; 
SsSS, sclareol synthase from Salvia sclarea; GGPP, (E,E,E)-geranylgeranyl diphosphate; NNPP, (Z,Z,Z)-nerylneryl diphosphate; 
GGPS, (E,E,E)-geranylgeranyl diphosphate synthase; CPP, copalyl diphosphate; Rv3378c, tuberculosinol synthase from 
Mycobacterium tuberculosis; NNPS, (Z,Z,Z)-nerylneryl diphosphate synthase; AgAS, abietaenol synthase from Abies grandis; 
SmCPS/KSL1, labda-7,13E-dien-15-ol synthase from Selaginella moellendorffii; NgCLS, 8α-hydroxy-CPP synthase from Nicotiana 
glutinosa; MvCPS1, peregrinol diphosphate synthase from Marrubium vulgare; An2, ent-CPP synthase from Zea mays; AtCPS, ent-
CPP synthase from Arabidopsis thaliana; OsCPS4, syn-CPP synthase from Oryza sativa; Haur_2145, kolavenyl diphosphate synthase 
from Herpetosiphon aurantiacus; KgTPS, terpentedienyl diphosphate synthase from Kitasatospora griseola; MtHPS, tuberculosinyl/
halimadienyl diphosphate synthase from Mycobacterium tuberculosis; IPTG, isopropylthiogalactoside.
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scaffolds, corresponding to labdanes, halimadanes and clerodanes (Peters, 2010). Each of 

these can be generated in differing stereochemistries, resulting from differing conformations 

of GGPP (Peters, 2010), which can perhaps be most readily observed in the initially formed 

labdadienyl bicycles by examination of the configuration of carbons 9 and 10 (C9 and C10; 

see Fig. 1 for numbering). Immediate deprotonation at the C8-methyl yields CPP 

(labda-8(17),13-dienyl diphosphate), traditionally designated as normal (3, with absolute 

configuration of 9S,10S), ent- (4, with 9R,10R), syn- (5, with 9R,10S), or syn-ent- (with 9S,

10R, although this has not yet been observed) – note that the configuration of the C5-

hydrogen is always trans to the C10-methyl in these. While CPP production is quite 

common, deprotonation can occur at alternative positions, such as C7, generating double 

bond isomers such as endo-CPP (labda-7,13-dienyl diphosphate, 6) (Mafu et al., 2011). 

Alternatively, water can be added to the initially formed labda-13E-en-8-yl+ diphosphate 

carbocation prior to deprotonation, to yield a hydroxylated product (e.g. labda-13E-en-8α-ol 

diphosphate, 7), producing further chemical diversity (Falara et al., 2010). Moreover, the 

initially formed labda-13E-en-8-yl+ diphosphate carbocation can undergo rearrangement as 

well, typically through a series of 1,2-shifts of hydride and methyl groups, although 

modulation of the initially formed decalin ring structure also has been suggested to occur 

(Peters, 2010). Each of the resulting carbocationic intermediates can undergo the addition of 

water prior to deprotonation, which otherwise often can occur at more than one location, 

giving rise to various double-bond isomers, further increasing the resulting chemical 

complexity. To date, through cloning from native sources and/or enzyme engineering efforts, 

DTCs catalyzing the production of 12 distinct products are known (see Table 1).

However, the scarcity and specificity of subsequently acting DTSs largely restricts our 

ability to access the full structural diversity of diterpenes. In particular, most of DTSs 

characterized thus far exhibit both regio- and stereo-specificity, as exemplified by ent-
kaurene synthases from rice and lettuce (Shimane et al., 2014), which only showed activity 

towards ent-CPP (4), although a few DTSs have been found that react with more than one 

CPP stereoisomer, as exemplified by several DTSs from cereal crop plants (Morrone et al., 

2011; Zhou et al., 2012).

Intriguingly, the terpentetriene synthase from Kitasatospora griseola (Dairi et al., 2001; 

Hamano et al., 2002), termed here KgTS, and the sclareol synthase from Salvia sclarea 
(Caniard et al., 2012; Schalk et al., 2012), termed here SsSS, have both been reported to 

exhibit some substrate promiscuity (Ignea et al., 2015; Nakano et al., 2010). However, these 

studies were somewhat limited in the number of potential substrates examined. Here both 

were investigated with both the two known linear precursors 1 and 2, and the 12 currently 

available bicyclic DTC products (3 – 14) via a modular metabolic engineering system in a 

combinatorial biosynthetic approach. Strikingly, both KgTS and SsSS reacted with all 12 

bicycles and even one or two linear precursors with reasonable efficiency, as demonstrated 

by facile production of sufficient amounts for structural characterization of the 13 observed 

unknown enzymatic products.
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2. Results

2.1. Modular metabolic engineering reveals extreme promiscuity

To probe the full extent of the substrate promiscuity of KgTS and SsSS, a previously 

developed modular metabolic engineering system was utilized. This system enables facile 

co-expression of DTCs and DTSs in E. coli also engineered to produce 1 via co-expression 

of a GGPP synthase as well (Cyr et al., 2007). Moreover, it is possible to readily further 

increase flux towards isoprenoid metabolism (Morrone et al., 2010), which allows 

production of sufficient amounts of the resulting diterpenes for purification and structural 

analysis by NMR from reasonably small culture volumes (≤ 3 L). The system has further 

proved amendable to incorporation of an NNPP rather than GGPP synthase for the 

production of 2 as a diterpene precursor instead of 1 (Zi et al., 2014b).

This system has been employed to determine the stereochemistry of DTC product outcome 

and probe the substrate specificity of DTSs from both plants and microbes (Cui et al., 2015; 

Gao et al., 2009; Hershey et al., 2014; Jackson et al., 2014; Lu et al., 2015; Morrone et al., 

2009; Wu et al., 2012; Xu et al., 2014), revealing limited promiscuity of DTSs in certain 

cases (Mafu et al., 2015; Morrone et al., 2011; Zhou et al., 2012). Strikingly, attempts to use 

SsSS to investigate DTC product stereochemistry, specifically with 8β-hydroxy-ent-CPP (8) 

that is enantiomeric to its native substrate, suggested a surprising degree of promiscuity, at 

least relative to other previously investigated plant DTSs. In particular, SsSS readily reacts 

with 8 and produces a further hydroxylated product.

To fully explore this intriguing observation, an array of DTCs with varied product outcome, 

a total of 12 (3 – 14; Table 1), was assembled into the metabolic engineering system (Table 

S1) for co-expression with SsSS. In addition, the difference in product outcome generally 

mediated by KgTS, simple removal of the diphosphate to yield an additional carbon-carbon 

double bond, relative to SsSS, which prototypically installs a hydroxyl group via the 

addition of water to the tertiary position of the allylic carbocation resulting from diphosphate 

lysis, prompted investigation of this functionally distinct DTS as well. Given the previously 

reported ability of KgTS to react with 1 in vitro (Nakano et al., 2010), both this and SsSS 

also were co-expressed with only a GGPP or NNPP synthase (i.e., to determine their ability 

to react with 1 or 2, respectively).

While KgTS has previously been shown to react with five DTC products as well as 1 
(Nakano et al., 2010), these studies were carried out in vitro, and it was unclear how relevant 

such activity would be in the context of an in vivo (albeit heterologous) setting. In particular, 

there are endogenous (E. coli) phosphatases that will act upon 1, 2 and DTC products, 

yielding the corresponding primary alcohols, which are easily extractable from the bacterial 

culture and observable by GC-MS analysis (these peaks are designated by prime’ notation of 

the number corresponding to the diphosphate precursor – i.e., 1′ – 14′). Both SsSS and 

KgTS outcompete these endogenous phosphatases for 1 (Fig. 2), with KgTS producing the 

previously reported mixture of three double bond isomers of springene (15 – 17), with the 

major product being the exo-methylene containing β-springene (Hamano et al., 2002), while 

SsSS produces the tertiary alcohol geranyllinalool (18), as identified by comparison of 

retention time and mass spectrum to an authentic standard upon GC-MS analysis (Fig. S1). 
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By contrast, KgTS does not seem to react with 2, and SsSS does so rather inefficiently, 

producing a mixture of unidentified compounds (Fig. S2).

As expected, each of the DTCs utilized here efficiently converted 1 into their particular 

bicyclic product (Fig. 3). Given that the native substrate for both SsSS and KgTS are DTC 

products, it seemed unlikely that either would effectively compete with the DTCs for 1. 

Consistent with this expectation, in none of the DTC co-expression cultures tested here were 

the linear SsSS or KgTS products observed (i.e., geranyllinalool or springenes). On the other 

hand, both SsSS and KgTS reacted quite effectively with all 12 DTC products tested here, at 

least relative to competition with the endogenous phosphatases. Indeed, in only a few cases 

are more than trace amounts of the dephosphorylated DTC product observed (for relative 

conversion percentages see Fig. S3).

2.2 DTC+DTS product identification

The observed mass spectra are consistent with the previously reported activity of SsSS and 

KgTS with their native substrates – i.e., the production of sclareol (19) from 7 by SsSS 

(Caniard et al., 2012; Schalk et al., 2012), and terpentetriene (20) from terpentedienyl 

diphosphate (9) by KgTS (Dairi et al., 2001). Similarly, SsSS reacts with the stereo-

equivalent normal CPP (3) to produce manool (21), as previously reported (Ignea et al., 

2015), and KgTS reacts with 3 – 5 and tuberculosinyl diphosphate (10), producing the 

previously reported triene derivatives (Nakano et al., 2010); specifically, sclarene (22, from 

3), (Z)-biformene (23, from 4), griseolaene (24, from 5), and tuberculosene (25, from 10). 

The mass spectra for 19 – 25 can be found in the Supporting Information (Fig. S4).

In a number of cases it seemed likely that the observed products matched previously 

reported DTS products, which was investigated by co-expression of the relevant DTS and 

comparison of the retention time and mass spectra of the resulting product(s) with those 

from SsSS or KgTS. In this manner, KgTS was found to produce cis-abienol (26) as the 

minor product (~35%) with 7 by comparison to the previously reported product of a 

bifunctional DTC/DTS from Abies balsamea (Zerbe et al., 2012)(Fig. S5), and ent-manoyl 

oxide (27) from 8 (Fig. S6), representing the only further cyclized product, by comparison to 

the previously reported facile production of such heterocycles by a number of DTSs, 

although this was only a very minor product of those enzymes (Mafu et al., 2015), and so 

KgTS offers novel biosynthetic access to 27. By similar comparisons, SsSS was found to 

produce ent-manool (28) from 4 (Fig. S7), vitexifolin A (29) from 5 (Fig. S8), and 

isotuberulosinol/nosyberkol (30) from 10 (Fig. S9), by comparison to the previously 

reported products of the enzyme encoded by Rv3378c in Mycobacterium tuberculosis with 

these same substrates (Hoshino et al., 2011; Maugel et al., 2010; Nakano et al., 2011). 

Notably, Rv3378c does not efficiently react with these substrates in the context of this 

bacterial metabolic engineering system (Figs. S7 – 9), which presumably stems from the 

recent discovery that it primarily acts as an adenosine prenyl transferase rather than DTS 

(Layre et al., 2014). Accordingly, the SsSS activity reported here provides a much more 

efficient biosynthetic route to 28 – 30.
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In a number of cases the observed products could not be identified by comparison to readily 

available compounds, and it was necessary to obtain sufficient amounts of these for 

structural analysis by NMR. This was readily accomplished by simply growing larger 

volumes of the relevant cultures, with over-expression of several key enzymes involved in 

the endogenous isoprenoid precursor supply pathway to increase flux to terpenoid 

metabolism (Morrone et al., 2010). Indeed, in one case it was possible to further generate the 

higher amounts necessary for investigation of chirality by optical rotation. In particular, with 

the only known DTC that produces endo-CPP (6) the absolute stereochemistry has not yet 

been defined (Mafu et al., 2011). Both SsSS and KgTS readily react with 6, with yields of 

~15 mg/L for these non-native un-optimized DTC/DTS combinations. Upon purification of 

these products, the correlations observed in their respective 2D DQF-COSY, HMQC-COSY 

HSQC, HMBC spectra established the positions of the newly formed hydroxyl-group in the 

SsSS product and the carbon-carbon double bond in the KgTS product, while NOESY 

spectra were used to confirm the relative configuration of chiral carbons (Figs S10 – S13 and 

Tables S2 & S3). The specific optical rotation value of the KgTS product was then 

determined to be  = +27 (c = 3.00, CHCl3), indicating a normal configuration by 

comparison to previously reported diterpenes (Suzuki et al., 1983). Given that KgTS does 

not alter the decalin ring core structure, this further indicates that the DTC product has the 

same C9 and C10 configuration as normal CPP (3). Accordingly, the SsSS product is (9R,

10S)-labda-7,14-dien-13-ol (31), which has been previously reported (Carman et al., 1973), 

and the KgTS product is (9R,10S)-labda-7,13(16),14-triene (32), which also has been 

previously reported (Maskovic et al., 2013). However, biosynthetic routes to 31 and 32 were 

not previously known. Their mass spectra can be found in the Supporting Information (Fig. 

S14).

In the case of the only known DTC that produces peregrinol diphosphate (11) the 

stereochemical configuration of the C8-methyl has not yet been defined (Zerbe et al., 2014). 

Again, both SsSS and KgTS readily react with 11, enabling purification of sufficient 

amounts for full structural characterization by NMR (Figs S15 – S18 and Tables S4 & S5). 

In addition to establishing the positions of the introduced hydroxyl group in the SsSS 

product and the carbon-carbon double bond in the KgTS product, it was possible to use the 

observed NOESY correlations to determine that the C8-methyl was in the α or R 
configuration. Under the assumption that this arrangement is retained from the DTC product, 

this configuration is consistent with that observed in the derived diterpenoid marrubiin, and 

presumably stems from a pro-chair-boat conformation of 1 prior to bicyclization that leads 

to an initial syn-labda-13E-en-8-yl+ intermediate that undergoes a C9 → C8 hydride transfer 

before termination via the addition of water to the resulting 9-yl+ and deprotonation (Fig. 4). 

Hence, it was recognized that the SsSS product corresponds to the previously reported 

diterpenoid viteagnusin D (33)(Ono et al., 2008), while KgTS produces the novel diterpene 

(8R,9R,10S)-labda-13(16),14-dien-9-ol (34). Again, biosynthetic routes to 33 and 34 were 

not previously known. Their mass spectra can be found in the Supporting Information (Fig. 

S19).

Both SsSS and KgTS readily react with ent-kolavenyl diphosphate (12). Purification and 

structural characterization of both compounds by NMR (Figs S20 – S23 and Tables S6 & 
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S7) revealed that SsSS removes the diphosphate and forms a tertiary alcohol, ent-kolavelool 

(35)(Soares et al., 2014), while KgTS removes the diphosphate and forms an additional 

carbon-carbon double bond, producing the exo-methylene containing (5R,8R,9S,10R)-

cleroda-3,13(16),14-triene (36), which has been previously observed (Nagashima et al., 

1998). Notably, SsSS and KgTS also readily react with kolavenyl diphosphate (13) resulting 

in enantiomeric products to those observed with 12, as indicated by their identical retention 

times and mass spectra upon non-chiral GC-MS analysis (Fig. S24). Thus, with 13 SsSS 

produces the known diterpenoid kolavelool (37)(Misra et al., 1979), which also has been 

reported to be produced from 13 by a DTS found in the same operon as the relevant DTC 

(Nakano et al., 2015), while KgTS produces a new enzymatic product (5S,8S,9R,10S)-

cleroda-3,13(16),14-triene (38). Similarly, with the enantiomer of its native substrate, SsSS 

produces the enantiomer of its usual product, again as indicated by their identical retention 

times and mass spectra upon non-chiral GC-MS analysis (Fig. S25) – i.e., from 8 SsSS 

produces ent-sclareol (39). Other than for 37, biosynthetic routes were not previously known 

for these diterpenes (i.e., 35, 36, 38 & 39).

Both SsSS and KgTS further readily react with syn-halimadienyl diphosphate (14), with 

some overlap in product profile as KgTS yields small amounts of the same product observed 

with SsSS. Purification and structural characterization of both compounds by NMR revealed 

that these catalyze their prototypical reactions (Figs S26 – S29 and Tables S8 & S9). SsSS 

forms the C13 tertiary alcohol, (8R,9R,10S)-halimada-5,14-dien-13-ol (40), while KgTS 

forms the corresponding exo-methylene derivative, (8R,9R,10S)-halimada-5,13(16),14-

triene (41). Both 40 and 41 appear to be novel diterpenes and, accordingly, biosynthetic 

routes to these were not previously known. Their mass spectra can be found in the 

Supporting Information (Fig. S30).

KgTS also reacts with 7 to produce two compounds. While the minor component was 

identified as cis-abienol (26), it was necessary to purify the major product and carry out 

NMR analysis (Figs S31 & S32 and Table S10), which led to its assignment as the known 

diterpenoid iso-abienol (42)(Ekman et al., 1977). Not surprisingly, this results from removal 

of the diphosphate and formation of the C13 exo-methylene (i.e., a 13(16) double bond). 

Finally, SsSS reacts with 9 to produce an unknown product that also was purified and 

structurally characterized by NMR (Figs S33 & S34 and Table S11), again a result of 

removal of the diphosphate and formation of a C13 hydroxyl group, yielding the novel 

diterpene (5S,8R,9R,10S)-cleroda-3,14-dien-13-ol (43). Its mass spectra can be found in 

Fig. 4 (panel L). Yet again, biosynthetic routes to 42 and 43 were not previously known. 

Their mass spectra can be found in the Supporting Information (Fig. S35).

For ease of reference, all the SsSS and KgTS products reported here (i.e., 15 – 43) are listed 

in Table 2. Also presented in addition to the common name of the product (where available) 

are the corresponding semi-systematic names. These are derived from the three basic 

skeletal structures of DTC products, along with the stereochemical descriptor assigned to the 

common labdadienyl+ diphosphate intermediate in the catalyzed reaction, as defined in Fig. 

1.
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3. Discussion

Combinatorial biosynthesis can be most readily envisioned with the availability of enzymes 

that exhibit significant substrate promiscuity. In this study, taking advantage of a previously 

developed modular metabolic engineering system, it was possible to demonstrate a striking 

degree of promiscuity for both the bacterial DTS, KgTS, and plant DTS, SsSS, which both 

reacted with all 12 bicyclic DTC products tested here (Fig. 3). This includes not only all 

three available stereoisomers of CPP (3 – 5), but also analogs with an alternative double 

bond (6) and where hydroxyl groups are present (7, 8 & 11), as well as rearranged 

backbones, both of the halimadane (10 & 14) or clerodane (9, 12 & 13) types in various 

configurations (Fig. 1). In addition, both will react with the upstream transoid acyclic 

precursor 1, with SsSS further capable of reacting to some extent with the acyclic cisoid 
analog 2, although neither DTS competes efficiently with the DTCs utilized here for 1. 

Hence, both SsSS and KgTS seem to readily react with C20 isoprenyl precursors with trans 
configuration of the carbon-carbon double bond allylic to the diphosphate ester linkage (Fig. 

5). Notably, their ability to do so has already proven useful in resolution of the 

stereochemistry of previously incompletely defined DTC products (i.e., 6 & 11), and it is 

expected that these will be useful for future characterization of DTCs that catalyze novel 

product outcome.

Notably, SsSS and KgTS are functionally distinct, predominantly producing different 

products from the same substrates. As with all terpene synthases in general, these two DTSs 

catalyze heterolytic cleavage of the allylic diphosphate ester bond in their substrate, forming 

an allylic carbocation that is localized to the tertiary position, whereupon their activity 

diverges, each representing one of the two primary means by which terpene synthases 

terminate their reactions. In particular, KgTS seems to almost invariably directly quench this 

13-yl+ intermediate by deprotonation, generally at the neighboring methyl group, yielding a 

product with a newly formed exo-methylene moiety. This is the prototypical olefin 

generating terpene synthase reaction. On the other hand, SsSS seems to invariably first add a 

water to the 13-yl+ intermediate before quenching the resulting oxacarbenium ion by 

deprotonation to yield a 13-hydroxy product. While less common, this type of reaction is 

catalyzed by a number of terpene synthases.

In order to carry out cyclization, terpene synthases must position a distal carbon-carbon 

double bond for addition to the allylic carbocation generated by lysis of the diphosphate 

ester bond in their substrate, which requires interaction beyond the proximal isoprenyl unit. 

By contrast, SsSS and KgTS generally do not catalyze cyclization, alleviating any such 

requirement for extended interaction with their substrate beyond the diphosphate and 

directly coupled isoprenyl unit (i.e., that shown in Fig. 5), which presumably underlies their 

extreme promiscuity. Conversely, this suggests that cyclases will be more constrained and 

exhibit less promiscuity. Indeed, previous investigations have shown only limited 

promiscuity for such DTSs, observing effective activity with at most two different 

stereoisomers of CPP (Morrone et al., 2011; Zhou et al., 2012), or 8-hydroxy-CPP with the 

same stereoconfiguration as their native substrate (Mafu et al., 2015).
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Perhaps more importantly, the distinct activity of SsSS and KgTS, coupled to their extreme 

promiscuity, provides access to two distinct derivatives of a wide range of DTC products 

(Fig. 6; see Table 2 for full listing with semi-systematic nomenclature). Of particular note, 

while the combined action of DTCs and DTSs prototypically produce highly hydrophobic 

diterpene olefins, use of SsSS in conjunction with a DTC that yields a hydroxylated bicycle 

(e.g., 7, 8 & 11), directly produces di-hydroxylated products (e.g., 19, 39 & 33, 

respectively), the spatially separated hydroxyl groups of which not only add hydrogen-

bonding capacity, but also significantly increase the solubility and, altogether, the 

corresponding potential for biological activity of the resulting diterpenoids.

Despite the lack of any substantial effort towards optimization of the DTC/DTS 

combinations examined here (e.g., balancing their expression levels), almost all pairings 

exhibited efficient production of the resulting diterpene, almost invariably >90% conversion 

of the DTC product, with yields of up to 15 mg/L. This enabled ready purification of enough 

of these compounds for structural determination by NMR analysis and optical rotation 

measurement, which enabled structural characterization of the 13 unknown products (i.e., 31 
– 43). In addition, these pairings further provide sufficient material for exploration of 

potential subsequently acting enzymes such as cytochrome P450 mono-oxygenases, which 

also can be incorporated into this modular metabolic engineering system (Kitaoka et al., 

2015). For example, it has recently been shown that the kaurene oxidase from gibberellin 

plant hormone biosynthesis in Arabidopsis thaliana exhibits a remarkable degree of 

promiscuity (Mafu et al., 2016), and the results reported here significantly expand the range 

of labdane-related diterpenes that can be explored in such studies.

1. Conclusions

In summary, the extreme promiscuity shown here for the functionally orthogonal SsSS and 

KgTS enables true combinatorial labdane-related diterpene biosynthesis (Figs. 5 & 6), with 

the production of at least two distinct diterpenes from any DTC product (i.e., the tertiary 

alcohol typically generated by SsSS and the exo-methylene olefin typically generated by 

KgTS). Notably, 5 of these products appear to be novel diterpenes that have not been 

previously observed (i.e., 34, 38, 40, 41, & 43). Moreover, this further provides a basis for 

biotechnological access to the diterpenes reported here, such cis-abienol and sclareol, which 

already have proven industrial value (Caniard et al., 2012; Sallaud et al., 2012; Schalk et al., 

2012; Zerbe et al., 2012), as well as those that can be generated by SsSS and KgTS from the 

range of potential DTC products for which relevant enzymes have yet to be discovered. 

Indeed, the results reported here already provided biosynthetic routes to 12 previously 

inaccessible diterpenes (i.e., 31 – 36 & 38 – 43), as well as 4 others for which efficient 

enzymatic production had not yet been reported (i.e., 27 – 30)2. In addition, the strong flux 

observed with these promiscuous DTSs not only provides immediate access to their 

2While this manuscript was under review, a study with some overlap to the results reported here was published (Andersen-Ranberg et 
al., 2016). In particular, the ability of SsSS to react with 7 DTC products (3 – 5, 7, 8, 11 & 12), with observation of the same products 
(21, 28, 29, 19, 39, 33 & 35, respectively), although 33 was not structurally characterized. Moreover, the promiscuity of SsSS was 
used to help characterize a novel DTC, aiding elucidation of its product as 12. In addition, while no work was reported with KgTS, the 
same ent-manoyl oxide (27) product from 8 was reported with another DTS.
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immediate products, but potentially also derived diterpenoid natural products, enabling 

investigation of their possible industrial uses.

5. Methods and Materials

5.1. General

Unless otherwise noted, chemicals were purchased from Fisher Scientific and molecular 

biology reagents, including synthetic genes, from Invitrogen. The vectors used here are 

described in Table S2. All constructs were verified by full sequencing of the inserted gene. 

Authentic standards were obtained for sclareol (Aldrich) and geranyllinalool [gift from Prof. 

Dorothea Tholl, Virginia Tech (Herde et al., 2008)]. Other diterpenes were identified by 

comparison to known products of other DTSs, which were also utilized here, as described 

below.

5.2. Recombinant constructs

The modularity of the metabolic system utilized here is based on the use of DEST cassettes 

that enable facile recombination via the Gateway cloning system (Invitrogen). Accordingly, 

all the DTCs and DTSs were first cloned into a pENTR/SD/D-TOPO vector. While genes for 

many of the DTCs were already available from previous work (see Table 1), in a number of 

cases (Haur_2145 and MvCPS1, as well as for SsSS as a pseudo-mature construct without 

the N-terminal plastid targeting sequence), these were obtained by gene synthesis, with 

codon optimization for expression in E. coli, and the corresponding gene sequences can be 

found in the Supplemental Information document. KgTS and KgTPS were cloned from 

Kitasatospora griseola, obtained from RIKEN-BRC, while the Rv3378c used for product 

identification was a previously described clone from Mycobacterium tuberculosis (Mann et 

al., 2009b). As previously reported (Cyr et al., 2007), the production of 1 relies on a GGPP 

synthase expressed from a pACYCDuet (Novagen) based expression vector, pGG, which 

also has been further modified with the addition of a DEST cassette, pGG-DEST, into which 

the DTCs utilized here were recombined from pENTR/SD/D-TOPO vectors. The DTSs were 

recombined into the compatible pDEST14 expression vector. Due to poor expression from 

the relevant pGG-DEST::DTC construct with the terpentedienyl diphosphate synthase 

(KgTPS), this DTC was recombined into pDEST14, with the DTSs then recombined into 

pGG-DEST instead. Production of 2 was accomplished with a previously reported NNPP 

synthase expression vector (Zi et al., 2014b), which was further modified by insertion of a 

DEST cassette into which SsSS and KgTS were recombined. To increase metabolic flux 

towards terpenoids, several key genes from the endogenous isoprenoid precursor pathway 

were over-expressed using the previously reported pIRS construct (Morrone et al., 2010), 

which also is compatible with all the vectors described above.

5.3. Metabolic Engineering

All metabolic engineering was carried out using the E. coli OverExpress C41 strain 

(Lucigen), and included pIRS as well as the relevant expression constructs (i.e., for the 

production of 1 or 2, and a DTC and/or DTS). For initial activity screening purpose, 

recombinant cultures were grown in 50 mL TB medium (pH = 7.0), with appropriate 

antibiotics, in 250 mL Erlenmeyer flasks. These cultures were first grown at 37 °C to mid-
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log phase (OD600 ~0.7), then the temperature dropped to 16 °C for 0.5 h prior to induction 

with 1 mM isopropylthiogalactoside (IPTG) and supplementation with 40 mM pyruvate and 

1 mM MgCl2. The induced cultures were grown for an additional 72 h before extraction with 

an equal volume of hexanes, with the organic phase then separated, and concentrated under 

N2 when necessary.

5.4. Diterpene product analysis by GC-MS chromatography

Gas chromatography with mass spectral detection was carried on a Varian 3900 GC with a 

Saturn 2100T ion trap mass spectrometer in electron ionization (70 eV) mode, using an 

Agilent HP-5MS column (Agilent, 19091S-433) with 1.2 mL/min helium flow rate. Samples 

(1 uL) were injected in splitless mode by an 8400 autosampler with the injection port at 

250 °C. The following temperature program was used: the column oven temperature initially 

started at 50 °C, which was maintained for 3 min, and then increased at a rate of 15 °C/min 

to 300 °C, where it was held for another 3 min. Mass spectrum was recorded by mass-to-

charge ratio (m/z) values in a range from 90 to 650, starting from 13 min after sample 

injection until the end of the run. As previously noted (Sallaud et al., 2012; Zerbe et al., 

2012), cis-abienol (29) is thermally labile, necessitating injection at a lower temperature 

(80 °C) and a slower temperature ramp for the column oven (starting at 40 °C, immediately 

rising 10 °C/min to 100 °C and then 3 °C/min to 240 °C, where it was held for 3 min), 

which were utilized for GC-MS analysis of this compound (i.e., Fig. 3 and S5).

5.5. Diterpene production and purification

To obtain sufficient amount of new enzymatic products for NMR analysis, the bacterial 

cultures described above were simply scaled up to 1 L in 2.8 L Fernbach flasks. All other 

procedures were identical except that the extraction was repeated twice to ensure full yield. 

The pooled separated organic phase was dried by rotary evaporation under vacuum, and the 

residue was re-suspended in 5 mL hexane for subsequent fractionation via flash 

chromatography over a 4 g-silica column (Grace) using a Grace Reveleris flash 

chromatography system with UV detection and automated injector and fraction collector, 

run at 15 mL/min. Briefly, the column was pre-equilibrated with hexanes and the sample 

injected, followed by 100% hexane (0–4 min), 0–100% acetone (4–5 min), 100% acetone 

(5–8 min), with peak-based fraction collection (15 mL maximum per tube). Generally, non-

oxygen containing products would come out in the 100% hexane fraction; otherwise, the 

products eluted in 100% acetone fractions. Fractions of interest were dried under N2, re-

suspended in 2 mL methanol, and filtered through 0.2 um cellulose filter (Thermo 

scientific). These fractions were further separated using an Agilent 1200 series HPLC 

instrument equipped with a diode array UV detector and automated injector and fraction 

collector, over a semi-preparative C-8 column (ZORBAX Eclipse XDB-C8, 25 × 0.94 cm) 

run at 4 mL/min. The column was pre-equilibrated with acetonitrile/water (1:1 for olefins, 

4:1 for oxygenated products), the sample injected, followed by washing (0–2 min) with 

same acetonitrile/water mix (i.e., depending on the targeted compound), then the percentage 

of acetonitrile increased to 100% (2–10 min), and final elution with 100% acetonitrile (10–

30 min), with collection of 0.5 mL fractions. Fractions were analyzed by GC-MS and, if 

necessary, compounds were further purified by another round of HPLC separation over an 

analytical C-8 column (Kromasil® C8, 50 × 4.6 mm) run at 0.5 mL/min, and using the same 
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elution program described above. Fractions containing pure compounds were dried under 

N2, and the compounds then dissolved in 0.5 mL deuterated solvents for NMR analysis.

5.6. Chemical structure identification by NMR analysis

Samples were dried under N2 and dissolved in 0.5 mL deuterated solvents, generally CDCl3 

(Aldrich), except with compounds 33 and 34, which were dissolved in C6D6 (Aldrich). 

NMR spectra were acquired on a Bruker AVIII-800 spectrometer equipped with a 5-mm 

HCN cryogenic probe, using TopSpin 3.2 software. Analysis was carried out at 25 °C except 

for compounds 40 and 41, for which the temperature was increased to 50 °C in order to 

increase peak resolution. Chemical shifts were calculated by reference to those known for 

CDCl3 (13C 77.23 ppm, 1H 7.24 ppm) or C6D6 (13C 128.39 ppm, 1H 7.16 ppm) signals 

offset from TMS. All spectra were acquired using standard programs from the TopSpin 3.2 

software, with collection of 1D 1H-NMR, and 2D double-quantum filtered correlation 

spectroscopy (DQF-COSY), heteronuclear single-quantum coherence (HSQC), 

heteronuclear multiple-bond correlation (HMBC), HMQC-COSY and NOESY (800 MHz), 

as well as 1D 13C-NMR (201 MHz) spectra. Observed HMBC correlations were used to 

propose a partial structure, while COSY correlations between protonated carbons were used 

to complete the structure, which was further verified by HSQC correlations. Observed 

correlations from NOESY spectrum were used to assign the relative stereochemistry of 

chiral carbons and also the configuration of double bonds, where applicable.

5.7. Chemical structure identification by optical rotation measurement

To investigate the absolute configuration of compounds 32 and 35, their optical rotations 

were measured in CHCl3 solvent on an AP-300 automatic polarimeter (ATAGO) at 25 °C. 

These measurements were carried out according to the instruction manual, in particular 

using mode 1 with tube E (50 mm). The instrument was blanked with pure solvent, and 5 

readings for each sample were recorded and the average value reported here.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Broad screening of class I diterpene synthase (DTS) activity towards a 

significant range of structurally diverse potential substrates, many produced 

by class II diterpene cyclases (DTCs).

2. Extreme promiscuity revealed for a bacterial and, surprisingly, also a plant 

DTS, enabling combinatorial biosynthesis with considerable yields, 

enabling structural elucidation of unknown and previously ambiguous 

structures.

3. Extension of the available diterpene library with the elucidation of 16 new 

diterpene synthase products.
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Fig. 1. 
Basic DTC products from bicyclization and subsequent rearrangement (PP = diphosphate). 

Also shown are known stereoisomers for the initial bicycle, and derived products for which 

DTCs are known are shown by superscript (nnormal, eent, ssyn).
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Fig. 2. 
SsSS and KgTS readily react with 1. (A) GC-MS chromatograms of extracts from E. coli 
engineered for production of GGPP (1) and expressing either KgTS or SsSS (numbers 

correspond to chemical structures defined in text, with prime’ notation used to indicate the 

dephosphorylated derivative, where relevant). (B) Reactions catalyzed by KgTS and SsSS 

with GGPP (1). The KgTS reaction arrow and products are shown in gray and boxed, with 

product ratio shown in parentheses, while the SsSS reaction arrow and product are shown in 

black.

Jia et al. Page 19

Metab Eng. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
GC-MS chromatograms of extracts from E. coli engineered for production of one of the 12 

distinct DTC products that are currently accessible (3 – 14) by introducing a relevant DTC 

(Table 1) into E. coli engineered to produce 1. The ability of KgTS and SsSS to react with 

these is demonstrated by their additional co-expression, as indicated in the corresponding 

chromatograms (numbers correspond to chemical structures defined in text, with prime’ 

notation used to indicate the dephosphorylated derivative, where relevant).
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Fig. 4. 
Scheme depicting cyclization of 1 to peregrinol diphosphate (11). With elucidation of the 

C8α-methyl conformation reported here, it can be appreciated that this derives from a pro-

chair-boat conformation of 1 that leads to an initial syn-labda-13E-en-8-yl+ intermediate, 

which undergoes a C9 → C8 hydride transfer and addition of water to the resulting 9-yl 

carbocation before terminating deprotonation.
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Fig. 5. 
Prototypical reactions catalyzed by KgTS (gray arrow and product) or SsSS (black arrow 

and product) with various diterpene precursors, either 1 or DTC products, via lysis/

ionization of the trans allylic diphosphate ester to a common tertiary carbocation 

intermediate.
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Fig. 6. 
Summary of the combinatorial biosynthesis enabled by the extreme promiscuity of KgTS 

and SsSS. Show are the 12 bicyclic DTC products (3–14), derived from the general 

diterpene precursor GGPP (1), and the subsequent reactions catalyzed by KgTS (grey arrows 

and products) and SsSS (black arrows and products), with product ratio shown in the 

parenthesis when multiple products were observed (numbering as in the text, with the 12 

unknown products boxed and the 5 for which only inefficient biosynthetic access was 

previously available circled).
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Table 1

Class II diterpene cyclases (DTCs) used in this study.

No.a DTCb Origin Productc Reference

3 AgAS:D621Ad Abies grandis Copalyl diphosphate (CPP) (Peters et al., 2000)

4 ZmCPS2/An2 Zea mays ent-CPP (Harris et al., 2005)

5 OsCPS4 Oryza sativa syn-CPP (Xu et al., 2004)

6 SmCPS/KSL1: D500A/D504Ad Selaginella moellendorffii endo-CPP (Mafu et al., 2011)

7 NgCLS Nicotiana glutinosa 8α-hydroxy-CPP (Criswell et al., 2012)

8 AtCPS:H263Ae Arabidopsis thaliana 8β-hydroxy-ent-CPP (Potter et al., 2014)

9 KgTPS Kitasatospora griseola terpentedienyl diphosphate (Hamano et al., 2002)

10 MtHPS Mycobacterium tuberculosis tuberculosinyl diphosphate (Mann et al., 2009a)

11 MvCPS1 Marrubium vulgare peregrinol diphosphate (Zerbe et al., 2014)

12 AtCPS:H263Yf Arabidopsis thaliana ent-kolavenyl diphosphate (Potter et al., 2016b)

13 Haur_2145 Herpetosiphon aurantiacus kolavenyl diphosphate (Nakano et al., 2015)

14 OsCPS4:H501Df Oryza sativa syn-halimadienyl diphosphate (Potter et al., 2016a)

a
Compound numbering used here.

b
Full names of these DTCs can be found in the abbreviation list.

c
Previously assigned common names.

d
Mutation(s) that blocks class I DTS activity of this bifunctional DTC/DTS.

e
Mutant with hydrolyase activity.

f
Mutant that yields rearranged product.
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Table 2

Overview of diterpene products from this study.

No.a Semi-systematicb Common namec DTS + Sd Identificatione

15 – β-springene KgTS + 1 Previous (Hamano et al., 2002)

16 – (Z)-α-springene KgTS + 1 Previous (Hamano et al., 2002)

17 – (E)-α-springene KgTS + 1 Previous (Hamano et al., 2002)

18 – geranyllinool SsSS + 1 Comparison (Herde et al., 2008)

19 (8R,9R,10S,13R)-labda-14-en-8,13-diol sclareol SsSS + 7 Previous (Ignea et al., 2015)

20 (5S,8R,9R,10S)-cleroda-3,13(16),14-triene terpentetriene KgTS + 9 Previous (Nakano et al., 2010)

21 (9S,10S,13R)-labda-8(17),14-dien-13-ol manool SsSS + 3 Previous (Ignea et al., 2015)

22 (9S,10S)-labda-8(17),13(16),14-triene sclarene KgTS + 3 Previous (Nakano et al., 2010)

23 (9R,10R)-labda-8(17),12Z,14-triene (Z)-biformene KgTS + 4 Previous (Nakano et al., 2010)

24 (9R,10S)-labda-8(17),13(16),14-triene griseolaene KgTS + 5 Previous (Nakano et al., 2010)

25 (8S,9R,10S)-halimada-5,13(16),14-triene tuberculosene KgTS + 10 Previous (Nakano et al., 2010)

26 (8R,9R,10S)-labda-12Z,14-dien-8-ol cis-abienol KgTS + 7 (35%) Comparison (Zerbe et al., 2012)

27 (8S,9S,10R,13S)-labda-8,13-epoxy-14-ene ent-manoyl oxide KgTS + 8 Comparison (Mafu et al., 2015)

28 (9R,10R,13S)-labda-8(17),14-dien-13-ol ent-manool SsSS + 4 Comparison (Nakano et al., 2010)

29 (9R,10S,13S)-labda-8(17)14-dien-13-ol vitexifolin A SsSS + 5 Comparison (Hoshino et al., 2011)

30 (8S,9R,10S,13S)-halimada-5,14-dien-13-ol isotuberculosinol/nosyberkol SsSS + 10 Comparison (Hoshino et al., 2011)

31 (9R,10S)-labda-7,14-dien-13-ol – SsSS + 6 This study (NMR)

32 (9R,10S)-labda-7,13(16),14-triene – KgTS + 6 This study (NMR)

33 (8R,9R,10S)-labda-14-en-9,13-diol viteagnusin D SsSS + 11 This study (NMR)

34 (8R,9R,10S)-labda-13(16),14-dien-9-ol – KgTS + 11 This study (NMR)

35 (5R,8R,9S,10R)-cleroda-3,14-dien-13-ol ent-kolavelool SsSS + 12 This study (NMR)

36 (5R,8R,9S,10R)-cleroda-3,13(16),14-triene – KgTS + 12 This study (NMR)

37 (5S,8S,9R,10S)-cleroda-3,14-dien-13-ol kolavelool SsSS + 13 This study (comparison to 
enantiomer, 35)

38 (5S,8S,9R,10S)-cleroda-3,13(16),14-triene – KgTS + 13 This study (comparison to 
enantiomer, 36)

39 (8S,9S,10R,13S)-labda-14-en-8,13-diol ent-sclareol SsSS + 8 This study (comparison to 
enantiomer, 19)

40 (8R,9R,10S)-halimada-5,14-dien-13-ol – SsSS + 14 This study (NMR)

41 (8R,9R,10S)-halimada-5,13(16),14-triene – KgTS + 14 This study (NMR)

42 (8R,9R,10S)-labda-13(16),14-dien-8-ol iso-abienol KgTS + 7 (65%) This study (NMR)

43 (5S,8R,9R,10S)-cleroda-3,14-dien-13-ol – SsSS + 9 This study (NMR)

a
Numbering used here.

b
Only applicable to the labdane-related diterpenoids (i.e., not applicable to 15 – 18, which are directly derived from 1). Note that the absolute 

configurations are only listed for assignable chiral centers.

c
Common names are those previously reported (“–” indicates that no name is available).

d
Substrate (DTC product), numbered as defined in Table 1.
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e
Products were identified based on either ‘previous’ reports for these enzymes or GC-MS based ‘comparison’ to other previously reported DTS 

products (with accompanying reference), or were determined in ‘this study’ by NMR based structural analysis (or comparison to the characterized 
enantiomer).
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