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Abstract

Congenital disorders of glycosylation (CDG) arise from pathogenic mutations in over one hundred 

genes leading to impaired protein or lipid glycosylation. ALG1 encodes a β1,4 

mannosyltransferase that catalyzes the addition of the first of nine mannose moieties to form a 

dolichol-lipid linked oligosaccharide intermediate (DLO) required for proper N-linked 

glycosylation. ALG1 mutations cause a rare autosomal recessive disorder termed ALG1-CDG. To 

date thirteen mutations in eighteen patients from fourteen families have been described with 

varying degrees of clinical severity. We identified and characterized thirty-nine previously 

unreported cases of ALG1-CDG from thirty-two families and add twenty-six new mutations. 

Pathogenicity of each mutation was confirmed based on its inability to rescue impaired growth or 

hypoglycosylation of a standard biomarker in an alg1-deficient yeast strain. Using this approach 

we could not establish a rank order comparison of biomarker glycosylation and patient phenotype, 

but we identified mutations with a lethal outcome in the first two years of life. The recently 

identified protein-linked xeno-tetrasaccharide biomarker, NeuAc-Gal-GlcNAc2, was seen in all 

twenty-seven patients tested. Our study triples the number of known patients and expands the 

molecular and clinical correlates of this disorder.
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INTRODUCTION

Congenital disorders of glycosylation (CDG) are a group of predominantly autosomal 

recessive diseases characterized by broad multisystem defects; nearly all have neurological 

involvement [Freeze et al., 2012; Freeze et al., 2015]. Disruption of the N-linked 

glycosylation pathway can cause more than fifty genetic disorders, but screening can be 

easily accomplished by analyzing the glycosylation status of the abundant serum 

glycoprotein, transferrin (Tf; MIM# 190000) [Freeze et al., 2014; Freeze et al., 2015]. An 

abnormal serum sialotransferrin pattern provides clues as to which portion of the pathway is 
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affected, but it typically cannot pinpoint the specific gene defect. Type I CDG’s involve 

defects in either the synthesis or transfer of a dolichol lipid-linked oligosaccharide (DLO) 

[Dolichol-P-P GlcNAc2Man9Glc3 (2 N-acetylglucosamine (GlcNAc), 9 mannose (Man) and 

3 glucose (Glc)] to nascent proteins in the endoplasmic reticulum (ER) [Freeze and 

Schachter, 2009]. An inability to efficiently synthesize or transfer full-sized DLO results in 

under-occupied glycosylation sites [Freeze and Schachter, 2009]. Defects in Golgi-

dependent processing of the protein bound oligosaccharide or in Golgi-associated 

multifunctional protein complexes can result in type II CDG’s [Freeze and Schachter, 2009]. 

Abnormal glycosylation of serum Tf is the most convenient indicator of deficient N-

glycosylation in CDG patients, but some with confirmed CDG can have normal Tf [Freeze 

et al., 2012; Freeze et al., 2015].

By far the most common CDG type involving the N-linked pathway is PMM2-CDG (MIM# 

212065) with >800 (reported and unreported) affected individuals [Freeze et al., 2012]. 

However, in the vast majority of N-linked disorders, fewer than a dozen cases have been 

identified [Freeze et al., 2012].

Asparagine-linked glycosylation protein 1 homolog (ALG1; MIM# 605907) encodes an ER 

localized β1,4 mannosyltransferase that catalyzes the transfer of the first of nine Man 

moieties onto the growing DLO [Huffaker and Robbins, 1982] (Figure 1a). Mutations in 

ALG1 cause a rare autosomal recessive disorder termed ALG1-CDG (formerly CDG-Ik; 

MIM# 608540) originally described by three independent groups who characterized four 

unrelated individuals [Grubenmann et al., 2004; Kranz et al., 2004; Schwarz et al., 2004]. 

Since then, an additional fourteen cases in ten families have been described with a broad 

clinical spectrum ranging from mild intellectual disability to death within the first few weeks 

of life [Dupre et al., 2010; Morava et al., 2012; Snow et al., 2012; Rohlfing et al., 2014]. 

Here we present an additional thirty-nine previously unreported cases of ALG1-CDG from 

thirty-two families highlighting twenty-six new pathogenic mutations.

MATERIALS and METHODS

Subjects and clinical information

Families included in this research study provided written consent under an approved Sanford 

Burnham Prebys Medical Discovery Institute IRB protocol. Inclusion criteria for this study 

required at least one of the following: (1) the occurrence of at least one abnormal 

carbohydrate deficient transferrin (CDT) test result indicating a type I CDG, or (2) 

molecular findings showing the presence of homozygous or compound heterozygous 

variants in ALG1. Several individuals appeared to have similar facial characteristics and 

consent was provided for including pictures from these and other affected individuals (Supp. 

Figure S1).

Molecular analysis of ALG1

Mutation analysis for ALG1 (NM_019109.4, ENST00000262374) was performed at 

multiple centers by either direct gene sequencing of all thirteen coding exons, including the 

exon-intron boundaries or in the instances where NGS panels or exome sequencing 
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identified potential variants, only those exons were Sanger-confirmed. All primers were 

designed to exclude ALG1 pseudogenes. All variants have been deposited in the LOVD3.0 

(https://grenada.lumc.nl/LOVD2/mendelian_genes/home.php?select_db=ALG1).

Yeast Complementation Assay

Human ALG1 cDNA (RC206343 - Origene) was cloned into the yeast expression construct 

pYES2.1 (Thermo Fisher) to generate pYES2.1-hALG1. Before proceeding with 

complementation studies, all non-synonymous SNPs within the expression construct were 

removed so that only the human reference sequence (NM_019109.4) was used. 

Subsequently, all patient-relevant missense mutations were generated using QuickChange 

Lightening (Agilent Technologies). Growth complementation and CPY glycosylation 

analysis of the alg1 deficient yeast strain was previously described [Grubenmann et al, 2004; 

Schwarz et al., 2004]. All yeast assays were replicated independently on three different 

occasions.

Analysis of Xeno-tetrasaccharide

As previously described [Bengtson et al., 2015; Zhang et al., 2015]. Biological samples 

tested for the Xeno-tetrasaccharide included serum and/or plasma and primary fibroblast.

RESULTS

Mutation analysis

We utilized a combination of exome sequencing, targeted gene panels, and Sanger 

sequencing to identify a total of thirty-one potential mutations in thirty-nine affected 

individuals of which 26/31 (84%) were not previously reported to cause ALG1-CDG (Figure 

1b and Table 1). The five known mutations were p.Ser150Arg, p.Ser258Leu, p.Arg276Trp, 

p.Ser359Leu and p.Arg438Trp. We searched the Exome Aggregation Consortium (ExAC) 

database (http://exac.broadinstitute.org) [v0.3 accessed 10.11.2015] of 60,706 unrelated 

individuals and found that 9/31 (35%) of these variants occurred at very low frequencies in 

heterozygous carriers, but 22/31 (65%) had not been reported previously (Supp. Table S1). 

The most frequently observed mutation, in both the homozygous and compound 

heterozygous state (17/39, 44%) (Table 1) was c.773C>T, which encodes a known 

pathogenic mutation p.Ser258Leu (rs28939378) and has been suggested to be a possible 

founder mutation [Dupre et al., 2010]. All six individuals homozygous for the p.Ser258Leu 

died before six months of age.

Complementation of the Δ alg1 growth and CPY glycosylation defects by hALG1 mutations

We determined the pathogenicity of unreported mutations using a temperature-sensitive (TS) 

alg1-deficient yeast strain [Grubenmann et al, 2004]. When grown at 26°C, this strain 

exhibits normal growth and appropriate glycosylation of an endogenous yeast glycoprotein, 

carboxypeptidase Y (CPY) [Grubenmann et al, 2004]. However, when grown at 37°C, this 

mutant expresses a p.Trp434X mutation leading to a C-terminal truncation of sixteen amino 

acids. This results in growth suppression and CPY hypoglycosylation lacking between 1–4 

of its N-glycan chains [Couto et al., 1984; Gao et al., 2004; Grubenmann et al., 2004]. In 

total, we tested thirty missense variants, including eleven reported disease-causing missense 
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mutations and an additional nineteen unreported variants. In silico pathogenicity prediction 

programs, Polyphen2 (http://genetics.bwh.harvard.edu/pph2/) and SIFT (http://sift.jcvi.org) 

gave mixed results for both novel and known mutations, despite nearly all our mutations 

occurring at highly conserved amino acids (Supp. Table S1). We also applied a third 

prediction method to score the impact of our variants: Combined Annotation Dependent 

Depletion (CADD) (http://cadd.gs.washington.edu/) integrates multiple annotations into a 

single metric to predict and prioritize disease causing variants [Kircher et al., 2014]. These 

three programs were used as a guide for prioritizing which variants should be tested in our 

yeast model. However, since Polyphen2 and SIFT gave a number of conflicting results, we 

opted to test all the identified variants. Transformation of the mutant strain with each of the 

thirty individual missense variants followed by plating serial dilutions of the initial inoculum 

showed that none was able to fully rescue growth at the restrictive temperature when 

compared to wild-type ALG1, suggesting that each variant was, in fact, a pathogenic 

mutation (Figure 2). At low dilutions on agar plates all mutants supported some growth, but 

differences were evident when 800 cells were spotted. (Figure 2). The visible growth 

suggests that either the mutant ALG1 protein retained residual activity or perhaps there was 

still endogenous yeast alg1 residual activity remaining in a small subset of cells. However, at 

lower cell densities (160 and 30 cells) most showed no growth. A small set of mutations 

(H74L, G145D) were listed as benign or tolerated yet didn’t support growth, where as one 

mutant (L114F) was listed as probably damaging/damaging but only had a mild growth 

defect. Based on these results, CADD was superior to to Polyphen2 or SIFT in predicting 

the impact of ALG1 variants

CPY is used to monitor hypoglycosylation since it has 4 occupied glycosylation sites. 

Hypoglycosylation can result in the absence of 1–4 glycans and each glycan-deficient band 

is clearly visible in western blots. alg1-deficient complemented with different hALG1 

variants were initially grown at 26°C and transferred to 37°C. before analysis by western 

blotting. None of the mutants fully corrected CPY hypoglycosylation (Figure 2), while wild-

type hALG1 cDNA fully restored both normal growth and full CPY glycosylation (Figure 

2). We included a common polymorphism (p.Ser267Asn) (Figure 2) to show our assay can 

differentiate pathogenic and benign variants. The hypoglycosylation patterns varied among 

the different mutants and we tried to rank order the degree of CPY hypoglycosylation using 

a weighted scale based on the proportion of molecules lacking the most N-glycans, e.g., 

Y353D would be most severe, P388S least. Neither growth nor weighted CPY 

hypoglycosylation analysis allowed a rank order of which mutations are most damaging.

There was also no correlation between patient clinical severity and the degree of CPY 

hypoglycosylation (data not shown). Furthermore, we know that in humans, homozygosity 

for p.Ser258Leu is always lethal within the first several months of life, yet it was not the 

most severe mutation in either yeast assays. For these reasons we feel the yeast model 

should be used as a tool for determining pathogenicity, not clinical severity of potential 

mutants.
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Clinical Summary

In total, we studied thirty-nine patients (17 male / 22 female) from thirty-two unrelated 

families. Each of the thirty-nine patients had at least one confirmed abnormal carbohydrate 

deficient transferrin (CDT) test result. CDT is a general term used to describe a number of 

methods for analyzing serum Tf glycosylation status; methods used in this study included 

electrospray ionization mass spectrometry (ESI-MS) and isoelectric focusing (IEF).

Patients had variable degree of neurodevelopmental deficiencies including developmental 

delay 37/37 (100%), hypotonia 37/39 (95%), seizures /epilepsy 36/38 (95%), microcephaly 

27/37 (73%), abnormal brain imaging 25/37 (68%) which consisted primarily of cerebral or 

cerebellar atrophy 11/25 (44%) and for those who could be evaluated, intellectual disability 

21/22 (95%) (Figure 3, Supp. Table S2). These findings are consistent with previously 

reported cases. Ocular abnormalities that mainly involved strabismus 10/27 (37%) and 

nystagmus 6/27 (22%) were found in 27/36 (75%) (Figure 3, Supp. Table S2). We also 

report a substantial number of patients with dysmorphic facial features 24/39 (62%), 

hematological defects 18/34 (53%), gastrointestinal problems 20/38 (53%), skeletal 

abnormalities 13/39 (33%) and hypoalbuminemia 12/39 (31%) (Figure 3, Supp. Table S2). 

Hypoalbuminemia is noteworthy because all twelve of these individuals died at an average 

age of 6.75 months. Within this group protein losing enteropathy (PLE) was documented in 

two individuals while three had renal disease. Furthermore, 6/12 individuals presenting with 

hypoalbuminemia were homozygous for the p.Ser258Leu. Specifically, gastrointestinal 

manifestations were most often chronic diarrhea (7/20) and/or PLE (5/20) (Supp. Table S2). 

Skeletal abnormalities consisted of scoliosis (5/13), kyphosis (2/13) or joint contractures 

(3/13) (Supp. Table S2). The phenotypes seen in ALG1-CDG individuals is not unique to 

this CDG type. Nearly all can be found in PMM2-CDG cases; whereas other characteristics 

such as PLE are more commonly seen in MPI-CDG, ALG6-CDG and ALG8-CDG (Freeze 

et al., 2014).

Premature death occurred in 17/39 (44%) cases (Figure 3) for a number of reasons including 

respiratory or renal failure and in several instances various infections leading to sepsis. The 

age distribution for those individuals who died ranged from < 12 months of age in 11/17 

(65%) to >12 months of age in 6/17 (35%) (Figure 3, Supp. Table S2). Kaplan-Meier 

estimator curves show that individuals homozygous for p.Ser258Leu, or compound 

heterozygous for the p.Gln50Arg are very likely to have lethal outcomes (Figure 4). 

Premature death was previously reported in 8/18 (44%) carrying seven different mutations 

[Grubenmann et al., 2004; Kranz et al., 2004; Schwarz et al., 2004; Dupre et al., 2010; 

Morava et al., 2012; Snow et al., 2012; Rohlfing et al., 2014].

All six individuals homozygous for the p.Ser258Leu mutation died within the first five 

months of life. Two previously reported cases homozygous for this mutation died at two and 

eleven weeks of life [Kranz et al., 2004; Schwarz et al., 2004]. These individuals had 

characteristic dysmorphic facial features (Supp. Figure S1). Four of the five individuals who 

were compound heterozygous for the p.Gln50Arg allele died between 5–28 months of age, 

irrespective of the second mutation. These four individuals also had similar facial features 

compared to other ALG1-CDG individuals with different genotypes (Supp. Figure S1). One 
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individual who is compound heterozygous for the p.Gln50Arg remains alive at nine months 

of age.

DISCUSSION

We report thirty-nine individuals from thirty-two unrelated families with ALG1-CDG, more 

than tripling the number of known patients. To better characterize this disorder, we 

attempted to create an ALG1-deficient human cell line utilizing CRISPR/CAS9 technology 

to test pathogenicity of the variants. However, we were unable to generate a cell line 

carrying a homozygous INDEL despite targeting four different exons (data not shown). This 

suggests that this gene is essential for viability.

Because we were unable to generate a null human cell line for complementation studies, we 

used a temperature-sensitive alg1 mutant yeast strain. At the restrictive temperature, this 

mutant not only accumulates DLO containing dolichol-PP-GlcNAc2, but the GlcNAc2 can 

be transferred to yeast glycoproteins such as exoglucanase [Cueva et al., 1998]. Various 

human cell lines grown under glucose-deprived conditions or siRNA knockdown of ALG1, 

as well as the yeast alg1 mutant, all accumulated proteins with GlcNAc2 (Isono, 2011). This 

suggests that severely truncated oligosaccharides from ALG1-deficient cells can still be 

transferred to nascent proteins. It remains unclear if the majority of glycoproteins from 

ALG1-deficient cells bear this unusual glycan or if it only affects selected glycoproteins.

These observations in a model system have become more important because ALG1-CDG 

patients are known to accumulate a novel N-linked xeno-tetrasaccharide NeuAc-Gal-

GlcNAc2 [2 N-acetylglucosamine (GlcNAc), 1 galactose (Gal), 1 sialic acid (NeuAc)] on 

both total serum glycoproteins and on ~2–8% of purified serum Tf [Bengtson et al., 2015; 

Zhang et al., 2015]. The presence of this tetrasaccharide shows that Dol-PP-GlcNAc2 is 

flipped from the cytoplasmic face into the luminal face of the ER and subsequently 

transferred to proteins via the oligosaccharyltransferase complex (OST). Once transferred, 

modified proteins enter the Golgi where GlcNAc2 serves as an acceptor substrate for β1,4 

galactosyltransferase (MIM# 137060). Finally, Gal-GlcNAc2 is capped with a NeuAc added 

by 2,6 sialyltransferase to form the final product NeuAc2,6-Gal β1,4GlcNAc β1,4GlcNAcβ 

[Bengtson et al., 2015; Zhang et al., 2015] (Supp. Figure S2). Importantly, since this 

tetrasaccharide does not normally occur in mammals and is primarily detected in ALG1-

CDG cases (trace amounts are detected in PMM2-CDG and MPI-CDG cases), it serves as a 

biomarker for either detecting or confirming a diagnosis of ALG1-CDG [Bengtson et al., 

2015; Zhang et al., 2015]. We tested a limited number of type I CDG samples and cannot 

exclude the possibility that other type I’s could have this tetrasaccharide. Yet, 

mechanistically it seems unlikely subsequent steps to ALG1 would have this specific glycan. 

In fact, of the thirty-nine affected individuals enrolled into our study, twenty-seven were 

tested and all had this novel tetrasaccharide present on either serum or fibroblast 

glycoproteins (Supp. Table S3). Of the twelve not tested, three were homozygous for the 

lethal p.Ser258Leu, four had previously reported mutations, and three were affected sibling 

pairs of tested patients. Two patients with novel mutations were not tested for the 

tetrasaccharide. We can confidently claim that this marker is associated with ALG1-CDG.
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As seen with many glycosylation-related disorders; the clinical phenotype of ALG1-CDG 

varies dramatically between affected individuals (Figure 3, Supp. Table S2). While all 

ALG1-CDG patients do have substantial neurological involvement, other systems are 

variably affected (Figure 3, Supp. Table S2). This may be attributed to several factors 

including how ALG1 mutations affect residual mannosyltransferase activity or GDP-Man 

binding efficiency, complex formations with other proteins, tissue specific expression or 

even protein stability. For example, several ALG1 mutations including the p.Ser258Leu are 

highly unstable, resulting in near absence of protein expression in patient fibroblasts, while 

other mutations have no effect on stability (data not shown).

ALG1 is thought to form multiple protein complexes in yeast. Gao et al. show that ALG1 

forms homo-oligomer structures and also interacts with subsequent α-mannosyltransferases, 

ALG2 (MIM# 607905) and ALG11 (MIM# 613666). Together they add all four mannosyl-

residues to the DLO on the cytoplasmic face of the ER [Gao et al., 2004]. With the discovery 

that mutations in DPAGT1 (MIM#s 608093, 191350) and ALG2 (MIM#s 607906, 616228) 

[Belaya et al., 2012; Cossins et al., 2013] can cause a CDG phenotype as well as a 

congenital myasthenic syndrome (CMS), it is conceivable that specific ALG1 mutations 

could also cause a mild CMS-like phenotype. Furthermore, traditional CDT testing could 

potentially miss such ALG1 cases given individuals with DPAGT1-CMS or ALG2-CMS had 

normal CDT testing [Belaya et al, 2012; Cossins et al., 2013].

We identified one case suspected of having ALG-CDG because of developmental delay, 

intellectual disability, hypotonia, epilepsy and skeletal abnormalities. This individual was 

homozygous for a variant of unknown significance (VUS) (p.Thr64Asn) in ALG1 which 

failed to rescue yeast growth or CPY glycosylation, suggesting it was deleterious. However, 

Tf glycosylation was normal and no tetrasaccharide was detected. Thus, she was excluded 

from our study. This finding shows the limitations of the yeast model and highlights the 

importance of having multiple methods to assess the pathogenicity of questionable variants.

In conclusion, we present molecular, clinical and biochemical findings in the largest 

collection of ALG1-CDG cases ever reported at a single time with thirty-nine cases, 

bringing the total number of known ALG1-CDG to fifty-seven. This ranks it the third most 

common CDG type behind PMM2-CDG and ALG6-CDG [Freeze et al., 2012]. In addition, 

we identify highly lethal genotypes and confirm the presence of a unique xeno-

tetrasaccharide in ALG1-CDG patients, thus showing it to be a biomarker for this disorder.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pathway showing the enzymatic step requiring ALG1 mannosyltransferase activity and 

schematic showing mutations identified within ALG1. (A) Schematic showing only the early 

N-linked glycosylation pathway on the cytoplasmic facing side of the ER with the ALG1-

dependent step highlighted with a red (X) over the arrow. (B) Schematic showing exon 

location of all the ALG1 mutations identified in this study. The mutations identified in this 

study are highlighted in red. For splicing mutations, nucleotide numbering for cDNA uses 

+1 as the A of the ATG translation initiation codon in the reference sequence.
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Figure 2. 
Yeast complementation assay using the Δ alg1 deficient yeast strain. The alg1 deficient yeast 

strain was transformed with the indicated pYES2.1 construct expressing either human wild-

type ALG1 or the indicated missense variants and allowed to grow for 96 hours at both 

permissive (26°C) and restrictive temperatures (37°C). Western blot analysis of 

carboxypeptidase Y (CPY) glycosylation was performed as previously described 

[Grubenmann et al., 2004]. Both CPY glycosylation and growth complementation were 

performed in triplicate with representative data presented.
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Figure 3. 
Phenotype summary from the thirty-nine ALG1-CDG cases. Phenotypic data were provided 

for each individual and summarized as a percentage of patients affected. The number of 

deceased individuals is further broken down by the age at which the individual passed away. 

(*) Indicates that not all individuals could be assessed for intellectual disability, due to early 

death or young age.
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Figure 4. Kaplan-Meier survival curves for ALG1-CDG patients
(A) Probability of survival for all thirty-nine ALG1-CDG cases “Group 1”. (B) Probability 

of survival for all thirty-nine ALG1-CDG cases separated by genotype. Group 2 are 

individuals homozygous for the p.Ser258Leu (n=6), Group 3 are individuals compound 

heterozygous for the p.Gln50Arg (n=5) and Group 4 comprises the remaining individuals 

(n=28). In order to see the effect of the p.Ser258Leu and p.Gln50Arg we made the time 

scale limit 100 months, however it should be noted that several individuals survived pass 100 

months and this is denoted using ( ).
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