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Abstract

Background—Glycans, complex oligosaccharides, are directly involved in almost every 

biological process, have a fundamental role in the immune system and are probably involved in 

nearly every human disease. However, glycosylation has been greatly ignored in the area of 

allogeneic hematopoietic stem cell transplantation (alloHSCT) and graft versus host disease 

(GVHD). Both acute and chronic GVHD are multisystemic debilitating immunological 

disturbances arising after alloHSCT.

Scope of Review—In this paper we review the glycosylation research already done in the field 

of alloHSCT and GVHD, and evaluate further potential of glycan analysis in GVHD by looking 

into resembling inflammatory and autoimmune conditions.

Major Conclusions—Glycan research could bring significant improvement in alloHSCT 

procedure with reduction in following complications, such as GVHD. Identifying glycan patterns 

that induce self-tolerance and the ones that cause the auto- and allo-immune response could lead to 

innovative and tissue specific immunomodulative therapy instead of the current 

immunosuppressive treatment, enabling preservation of the graft-versus-tumor effect. Moreover, 
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improved glycan pattern analyses could offer a more complete assessment and greatly needed 

dynamic biomarkers for GVHD.

General Significance—This review is written with a goal to encourage glycan research in the 

field of alloHSCT and GVHD as a perspective tool leading to improved engraftment, discovery of 

much needed biomarkers for GVHD, enabling an appropriate therapy and improved monitoring of 

therapeutic response.
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1. Introduction

Glycans – complex oligosaccharides – are a major component of the cell: they exist on the 

surface of every cell and are a part of almost all membranes (attached to lipids and proteins) 

and secreted proteins [1]. Numerous cells, protein receptors and soluble mediators of the 

immune system, such as class I and class II major histocompatibility complex proteins, T 

and B cell receptors, chemokine and cytokine receptors, and antibodies, contain significant 

amounts of covalently attached glycans [2]. Glycans play important roles in major biological 

events (such as cell–cell interaction, protein folding and receptor binding) and are directly 

involved in almost every biological process [1]. They have already been associated to a 

number of inflammatory conditions [3], autoimmune diseases and hematological cancers 

[4,5]. In addition, it is suggested that glycans have a major role in nearly every human 

disease [1,6,7].

Recent advances in the field of glycan pattern analyses hold great promise for understanding 

various diseases mechanisms and for biomarkers research. In this review, we present current 

knowledge of glycosylation characteristics and its possible role and research potential in the 

field of graft versus host disease (GVHD) after allogeneic hematopoietic stem cell 

transplantation (alloHSCT).

2. Glycans: biology and analysis

Glycans are non-linear branched oligosaccharides, structurally extremely complex. Because 

of their molecular complexity, the absence of a direct genetic template and methodological 

difficulties, glycan research lagged behind genomics and proteomics. Recent studies showed 

that glycans are a product of both genetic and environmental factors [8], and that 

glycosylation is a tightly regulated process where different glycan attachments are of great 

biochemical importance [9,10].

Ten commonly found monosaccharide building blocks compose numerous diverse 

combinations of human oligosaccharides which vary in type, number, order and spatial 

relation of monosaccharide units. Number of possible variations grows even further since 

hydroxyl groups of different monosaccharides can become subject to phosphorylation, 

sulfation, methylation, O-acetylation, or fatty acylation.
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Glycoproteins are glycoconjugates in which glycans are covalently linked to a polypeptide 

backbone, usually via N- or O-linkages. Addition of complex oligosaccharides to 

polypeptide backbone is the most abundant and the most structurally diverse 

posttranslational modification of proteins. It greatly affects protein conformation and leads 

to changes in the protein behavior affecting its biological functions.

Recognition of glycans and transfer of information consisted in the sugar moiety is being 

done via glycan-binding proteins, which can be sorted in two classes: lectins and 

glycosaminoglycan-binding proteins. Lectins recognize N-glycans, O-glycans and 

glycosphingo-lipids, while glycosaminoglycan-binding proteins tend to bind different types 

of sulfated glycosaminoglycans [11]. Review of basic glycobiology terminology is given in 

Table 1.

Glycosylation analysis can be performed on whole serum N-glycan profile as well as on 

specific glycoproteins, such as immunoglobulin (Ig) G and A. One of the most analyzed 

glycoproteins is IgG, the most abundant class of antibody in the human plasma (around three 

quarter of serum Igs) [12]. IgG carries N-linked glycans at constant domain 2 (CH2, Asn 

297) of its Fc region, most of which are of a complex type with a biantennary heptameric 

core (three mannose and four N-acetyl-glucosamine residues) and possible additions of N-

acetylglucosamine, fucose, galactose and sialic acid residues (Figure 1.A). The attached 

sugar shows great variability with more than 30 identified different IgG glycosylation 

variants for any of the four different human IgG subclasses [13]. The IgG glycome 

composition is rather stable in healthy individuals, but inter-individual differences are very 

large [14,15], with both genetic, epigenetic and environmental factors contributing to these 

differences [4]. Despite significant heritability of the steady-state composition [16], IgG 

glycome composition can change rapidly in the state of proinflammatory response [17] 

(Figure 1.B.). The composition of the IgG N-glycan affects the protein conformation and 

subsequently its ability to bind to the FcγRs which can modulate ADCC [18,19], 

complement activation [20] and other immune responses. Minute changes in the IgG N-

glycan composition influence its FcR affinity. For example, lack of core fucose increases 

affinity for FcγRIIIa receptor leading to an improved effector function [21]. The addition of 

terminal sialic acid changes the conformation of the protein and initiates an anti-

inflammatory cascade by binding to an alternative class of receptors [22]. Differences in 

abundances of IgG glycan traits in patients with different autoimmune diseases sets them as 

a leading candidate for new biomarkers for various autoimmune diseases [23,24] (Figure 

1.C.).

3. Glycans in alloHSCT

Allogeneic HSCT is a potentially lifesaving procedure for a variety of hematological 

malignant and non-malignant disorders. Although there are areas of alloHSCT that could 

benefit from better understanding of glycosylation mechanisms involved, glycosylation 

analysis has been greatly ignored in alloHSCT.
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3.1. Engraftment and glycan research

A successful alloHSCT depends upon the ability of infused hematopoietic stem cells (HSCs) 

to home from blood to the bone marrow (BM) cavity to reestablish productive 

hematopoiesis. Such homing is a nonrandom process regulated by adhesive interactions 

between HSCs and BM endothelium. Marrow endothelial cells constitutively express E-

selectin [25], a member of selectin family of adhesion molecules that binds to 

sialofucosylated glycans expressed on glycoproteins or glycolipids of circulating cells. 

Engagement of E-selectin promotes homing of circulating HSCs to BM [26]. E-selectin on 

the BM vasculature is also known to directly induce HSC proliferation at the expense of 

HSC self renewal [27].

Integral membrane glycoprotein hematopoietic cell E-/L-selectin ligand (HCELL), a 

specialized glycoform of CD44, has been identified as the predominant E-selectin ligand on 

circulating human HSC [28]. Glycans of BM hematopoietic stem and progenitor cells are 

suggested to be remodeled by a remotely produced glycosyltransferase which mediates the 

formation of cell surface α2,6-linked sialic acids important for cell interaction with other 

cells and its surroundings [29]. Glycosylation manipulation of naïve CD44 on a cell unable 

to achieve tissue-specific migration could be custom modified into HCELL glycoform 

without affecting cell viability or native phenotype. The method is called 

‘glycosyltransferase-programmed stereosubstitution’ [30] and could potentially improve 

delivery of HSC into BM with a purpose of a more successful reconstitution of 

hematopoiesis. Glycoengineering is also considered as a solution to poorer engraftment 

results of cord blood transplantation, often limited by a low number of HSC contained in the 

graft. Ex vivo fucosylation of cord blood HSC using recombinant human fucosyltransferases 

is currently being tested as a promising method to improve the rate and magnitude of 

engraftment [31].

Glycans could also help to clarify some of the complex interactions between donor’s and 

host’s immunological systems after alloHSCT, including one of the more severe 

consequences–graft versus host disease. This post-transplant complication, occurrs in two 

distinct, clinically well characterized forms: acute and chronic.

3.2. Acute graft-versus-host disease (aGVHD)

There are two subcategories of aGVHD: (1) classic (presenting itself with typical aGVHD 

symptoms within 100 days of alloHSCT or donor lymphocyte infusion (DLI)) and (2) 

persistent, recurrent, or late-onset aGVHD with features of classic aGVHD occurring 

beyond 100 days after alloHSCT or DLI in a patient not meeting criteria for the diagnosis of 

chronic GVHD (cGVHD)[32,33]. Acute GVHD affects skin, gastrointestinal system and 

liver. Typical presentations include erythema and/or maculopapular rash on the palms and 

soles, secretory diarrhoea and cholestatic liver disease [34]. Incidence reaches up to 50% of 

patients receiving HLA-matched transplants from a related donor and up to 70% of those 

receiving transplants from an unrelated donor [35].

Studies emphasize the role of innate immunity in the initiation of aGVHD. Total body 

irradiation and chemotheraphy cause an injury of gastrointestinal mucosa allowing the 
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transit of commensal bacteria from the lumen. Host’s pattern recognition receptors 

recognize PAMPs and DAMPs, glycoproteins also known as alarmins, following the 

conditioning regimen and activate the innate immune system. This reaction is supported by 

inflammatory cytokines secreted by the damaged tissue which leads to recruitment of 

effector cells and enhances the recognition of host alloantigens by donor-derived T-cells 

[36,37]. The described process initiates a complex cascade of tissue destruction creating a 

pro-inflammatory milieu, which amplifies and perpetuates aGVHD. Since aGVHD mostly 

manifests itself in three locations – skin, liver and gut – it is obvious that immune cells are 

being navigated towards those organs. Glycans are crucial in cell communication and 

recognition, and highly involved in trafficking of immune cells. Hence, manipulation of 

immune cell trafficking and regional immunity seems like a promising area of research. 

Glycans are also well known as markers of acute systemic inflammation and could hopefully 

aid in clarifying GVHD pathogenesis. For example, it has been demonstrated that in a 

whole-body inflammatory reaction (such as a cardiovascular surgery) certain glycan groups 

of plasma proteins show rapid and uniform increase. Results from that research indicated 

that it is possible to predict the severity of acute inflammatory response and identify 

individuals with a higher mortality risk prior to an invasive procedure based on the level of 

fucosylation of IgG N-glycans [38]. Changes of serum glycans have also been described in 

other inflammatory conditions, such as sepsis and acute pancreatitis, early in the acute phase 

response [38,39]. Since glycan profiles in healthy serum are more or less constant, it is 

suggested they could have a valuable prognostic potential [17], which might also be 

exploitable in GVHD.

Another candidate in demystifying GVHD could be galectin-9 (Gal-9). This molecule is a 

member of the galectin family of carbohydrate-binding proteins (lectins), and it is often 

associated with modulation and homeostasis of T cells. Elevated expression of endogenous 

Gal-9 was found in the process of rejection of allografted solid organs, correlating with the 

progression of the process [40]. It has been found to promote differentiation of naïve T cells 

into regulatory T cells [41]. It also represses differentiation into T-helper 17 cells and 

induces apoptosis in mature CD4+ T cells, and CD8+ [42]. Recombinant Gal-9 has already 

been tested on a mouse model of aGVHD with promising results [43].

3.3. Chronic graft-versus-host disease (cGVHD)

Chronic GVHD is the major late complication following alloHSCT, associated with 

increased mortality, impaired physical and functional status and decreased quality of life 

[44]. It is a systemic alloimmune and autoimmune disease characterized by immune 

deregulation, immunodeficiency, and development of signs and symptoms of various 

autoimmune disorders targeting multiple organ systems (oral, digestive and genital mucosa, 

glandular tissue, skin, eyes, lungs, liver, and joints). Reported incidence rates of cGVHD 

range from 30–70% [45,46] according to recipient age, donor type, stem cell source and use 

of posttransplantation DLIs.

In 2005, the National Institutes of Health (NIH), USA, convened a cGVHD Consensus 

Conference defining the new conceptual understanding of cGVHD, with the new scoring 

system based on number of organs involved, severity, and functional disability [32,47–51]. 
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In June 2014, the second cGVHD consensus conference was held at the National Cancer 

Institute, NIH, USA. Updated recommendations about cGVHD diagnosis, staging, 

histopathology, biomarkers, response criteria, design of clinical trials, ancillary and 

supportive care resulted from that second cGVHD conference [33,52–56].

In spite of huge effort and progress in cGVHD after two NIH consensus meetings, there are 

still many unresolved questions regarding understanding of the pathophysiology and 

predicting occurrence of cGVHD, improving diagnosis and staging, measuring short-term 

responses to treatment and predicting long-term clinical benefit. Moreover, there is still no 

USA Food and Drug Administration or European Medicines Agency approved agent for 

cGVHD treatment or prevention, and the first line treatment with steroids has 50% failure 

rate with significant steroid toxicity. There is no standard second and subsequent line of 

therapy, and preventive and preemptive strategies to decrease incidence and severity of 

cGVHD are not standardized.

As we know today, cGVHD is a result of complex series of immune interactions that occur 

as the donor immune system develops in antigenically disparate recipient environment. 

Although it has been demonstrated that donor T cells transferred along with the allograft are 

the primary immunocompetent cells that induce GVHD [57], increased attention in this 

systemic immunological disturbance is being directed towards additional cell populations 

[58], especially B cells [59–62]. It is known that B-cell reconstitution in patients with 

cGVHD is delayed, and these patients have elevated plasma B-cell activating factor (BAFF)/

naïve B-cell ratio [63,64]. The unique post-alloHSCT surrounding with high levels of BAFF 

is known to promote the differentiation and survival of allo- and auto-reactive B cells [65]. 

Successful treatment with high-dose prednisone was associated with reduced BAFF levels in 

patients with active cGVHD, whereas lower concentration of BAFF were measured in 

patients who never developed cGVHD [66]. Involvement of B cells would also explain the 

partial success of rituximab (anti-CD20 monoclonal antibody), drug used both in 

prophylaxis [67,68] and as a second line of steroid refractory cGVHD [69]. New insights 

into the rituximab mechanism of action suggest that the partial response to the drug could be 

due to the polymorphism of FcγR. It has been reported that follicular lymphoma patients 

with higher affinity allelic variants of receptor FcγRIIIa have a better response than patients 

with low-affinity polymorphisms [70], which could be applicable to cGVHD. One of the 

possible resolutions of the incomplete response to rituximab may be Fc-glycoengineering in 

order to enhance ADCC either by reducing N-glycan core fucosylation or incorporation of 

bisecting sugar residue [71]. Although a recent study described that patients with long-

lasting cGVHD have a trend towards higher incidence of allo- and auto-antibodies (AAbs) 

[72], it has not been linked to the severity or activity of neither the disease, nor it has been 

elucidated whether these are pathogenic or represent a consequence of disturbed B-cell 

homeostasis.

Distortion of B cell homeostasis and production of AAbs common for cGVHD can be 

compared to autoimmune diseases, where the pathogenic role of AAbs has been confirmed 

[73–77]. Clinical observations also support the autoimmune nature of the disease, since 

cGVHD is well known for mimicking autoimmune disorders such as Sjögren syndrome 

Prenc et al. Page 6

Biochim Biophys Acta. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(SS), systemic lupus erythematosus (SLE), myositis, immune cytopenia, and others (Table 

2.).

4. Glycosylation patterns in various autoimmune diseases resembling 

cGVHD

Autoimmune-like features of cGVHD have already been reviewed on several occasions 

[78,79] and here are described in the light of glycosylation research potential.

Some of the more common symptoms of cGVHD are xerostomia and dry eyes, resembling 

SS, an autoimmune disease causing a functional impairment of salivary and lacrimal glands. 

It is considered that B cells are over-stimulated and produce excessive amounts of Igs and 

various AAbs in SS [74]. Elevated levels of asialylated IgG were detected in SS patients 

[80], and recent publications suggested altered glycosylation of salivary mucins which 

reduces lubricating properties and quality of the saliva [81]. This mechanism could explain 

the sensation of dry mouth even if the saliva volume and the glands remain intact and might 

be tested in cGVHD.

Development of AAbs and breakdown in B cell tolerance is characteristic of SLE [82], and 

glycosylation is also disturbed in this comprehensive immunological disorder. Increased 

glycan moiety in α2-macroglobulin and the significantly higher content of galactose in the 

glycan of the same protein was reported [83]. Recent extensive study of three independent 

cohorts of SLE patients also observed significant changes in glycome composition, which 

correlate to the symptom severity [24]. Changes of IgG sialylation have also been suggested 

as a novel biomarker for distinguishing patients with SLE from patients with other 

autoimmune diseases [84].

Gastrointestinal GVHD resembles inflammatory bowel disease (IBD), another autoimmune 

disorder. Inflammation in IBD is believed to be triggered by an aberrant immune response to 

gut microbiota in genetically susceptible individuals. Intestinal mucus of IBD patients shows 

decreased glycosylation which gives rise to increased bacterial contact with the epithelium 

and potentially triggers inflammation [85]. A recent research indicated a significantly 

increased inflammatory potential of IgG in IBD due to changes in its glycosylation. These 

changes are considered to contribute to the disease pathogenesis, and have been suggested as 

the biomarker of the disease onset and severity [23,86]. Dysregulation of T cell receptor N-

glycosylation is also believed to be a part of the mechanism of ulcerative colitis, a type of 

IBD. Patients with severe degree of the disease showed a defect in N-glycan branching in T 

cell receptor [87], which might be tested in GVHD patients.

Autoimmune hematological diseases are frequently reported to occur following HSCT 

[79,88]. Thrombocytopenia in cGVHD could be autoimmune mediated but may as well have 

multifactorial etiology, and it is one of the risk factors for poorer survival in cGVHD patients 

[89–91]. AAbs which are likely to contribute to the increased rate of platelet destruction 

may develop, as in immune thrombocytopenia (ITP) [33]. It has been shown that IgG N-

glycans are involved in the pathophysiology of ITP [92]. In vitro experiments demonstrated 

decreased phagocytic activity of monocytes mediated by deglycosylated AAbs compared to 
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native AAbs from ITP patiens. Cleavage of carbohydrates also interfered with Fc-mediated 

phagocytosis and complement activation and prolonged platelet survival in vivo.

Neurological manifestations, such as myasthenia gravis, myositis and immune-mediated 

neuropathies [93], have also been described as a part of the cGVHD clinical picture. 

Clinicians are often challenged in discriminating the damage caused by cGVHD from drug-

induced toxicities, long-term immunosuppression or opportunistic infections and glycans 

could represent a tool to resolve that dilemma. Myasthenia gravis is an antibody-mediated 

autoimmune disorder of the neuromuscular junction. N-glycosylation analysis of total IgG 

showed lower levels of IgG2 galactosylation in myasthenia gravis patients compared to 

controls, while there were no notable differences in the IgG core-fucosylation and the 

overall degree of sialylation remained similar [94]. Myositis patients had overall elevated 

amounts of IgG glycoforms lacking terminal galactose [95].

5. Conclusions and future considerations

Recent advances in technology of glycan analysis give hope of promising future research in 

alloHSCT and GVHD to better understand consequences of merging two immunological 

systems. Identifying glycan patterns that induce self-tolerance and the ones that cause the 

auto- and allo-immune response could lead to improved alloHSCT procedure. Some of the 

potential therapy ideas include remodeling of glycosylated proteins in vivo. Possibility of 

HSC manipulation and successful control of the engraftment process could result in further 

reducement of conditioning intensity, improved delivery of HSCs to their niche, cut down in 

number of graft rejections and enable transplatations with grafts limited with low HSC 

number, such is cord blood. This kind of innovative and tissue specific immunomodulative 

therapy could help us move past current immunosuppressive treatment with its toxic side-

effects, enabling preservation of the graft-versus-tumor effect. This technology could also 

enable us to interfere with lymphocyte homing to the site of inflammation or restructure 

glycoforms contributing to the rise of acute and/or chronic GHVD [96]. In addition to that, 

neglected glycans could possibly represent candidate biomarkers for GVHD, much needed 

to diagnose and monitor the disease, prognose its course and outcome, and characterize its 

activity. For example, anti-glycan antibodies profiling is a new and promising tool and such 

antibodies have already been suggested as biomarkers for multiple sclerosis and IBD [97]. 

Systematic screening of blood could lead to a timely discovery of glycoforms indicative of 

developing acute or chronic GVHD or biomarkers specific for the organ system endangered 

by GVHD - enabling an appropriate therapy and monitoring of therapeutic response. To 

conclude, it is likely to expect that future research of glycans in the field of alloHSCT and 

GVHD would improve outcome of those patients.
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Highlights

• Glycans are involved in almost every biological process

• Glycans are associated with immunological disturbances and autoimmune 

diseases

• GVHD is alloimmune and autoimmune disorder following alloHSCT

• Glycans have a great research potential in clarifying events after alloHSCT 

and GVHD

• Glycan research could lead to improved therapy and discovery of 

biomarkers
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Figure 1. 
A) Three mannose and four N-acetyl-glucosamine residues comprise a biantennary 

heptameric core (highlighted in grey) of IgG glycans. Possible additions of N-

acetylglucosamine, fucose, galactose and sialic acid residues make up to 30 possible 

glycosylation variants. The sugar moiety is attached to the Asn 297 of constant Fc region of 

IgG. B) Minute changes in structure of the IgG N-glycan modulate the inflammatory activity 

of IgG (depiction according to Maverakis et al., 2015(7)). C) Differences in abundances of 

IgG glycan traits in patients with different autoimmune diseases (depiction according to data 

published in I. Trbojevic Akmacic et al., 2015 and F. Vuckovic et al., 2015(23,24)).

G0 total – total agalactosylated glycans; G2 total – total digalactosylated glycans; B total – 

total glycans with bisecting GlcNAc; S total – total sialylated glycans; F total – total 

fucosylated glycans; SLE1-3 – Latin America, Trinidad and Chinese cohorts of patients with 

systemic lupus erythematosus; RA – Chinese cohort of patients with rheumatoid arthritis; 

CD – UK cohort of patients with Chron’s disease; UC – UK cohort of patients with 

ulcerative colitis.
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Table 1

Glossary and review of glycobiology terminology mentioned in the article (according to Varki et al. [11]).

ADCC Antibody dependent cell-mediated cytotoxicity.

Alarmins Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), 
glycoproteins also known as alarmins.

DAMPs See Alarmins.

Fab The fragment antigen binding region, see Immunoglobulin.

Fc The fragment crystallisable region, see Immunoglobulin.

FcR Fc receptor, see Immunoglobulin.

Galectin
S-type (sulphydryl-dependent) β-galactoside-binding lectins, usually occurring in a soluble form, expressed by a 
wide variety of animal cell types and distinguishable by the amino acid sequence of their carbohydrate-recognition 
domains.

Glycan A generic term for any sugar or assembly of sugars, in free form or attached to another molecule, used 
interchangeably with saccharide or carbohydrate.

Glycan-binding proteins Proteins that recognize and bind to specific glycans and mediate their biological function. Sorted in two classes: 
lectins and glycosaminoglycan-binding protein.

Glycoconjugate A molecule in which one or more glycan units are covalently linked to a noncarbohydrate entity.

Glycoform Different molecular forms of a glycoprotein, resulting from variable glycan structure and/or glycan attachment site 
occupancy.

Glycoprotein A protein with one or more covalently bound glycans.

Glycosaminoglycans Polysaccharide side chains of proteoglycans or free complex polysaccharides composed of linear disaccharide 
repeating units, each composed of a hexosamine and a hexose or a hexuronic acid.

Glycosylation
The enzyme-catalyzed covalent attachment of a carbohydrate to a polypeptide, lipid, polynucleotide, carbohydrate, 
or other organic compound, generally catalyzed by glycosyltransferases, utilizing specific sugar nucleotide donor 
substrates.

Glycosyltransferase Enzyme that catalyzes transfer of a sugar from a sugar nucleotide donor to a substrate.

Immunoglobulin (Ig)

Part of the adaptive immune system, produced by B cells and plasma cells. It consists of two heavy and two light 
chains. Five types of heavy chains (γ, α, μ, δ and ε) exist in mammals and the type of the heavy chain defines the 
class of the Ig molecule. The ‘arms’ of the Ig consisting of both the heavy and the light chains, contain the Fab 
region that recognizes and binds to the antigen. The Fc region binds to the corresponding FcR of immune cells and 
participates in the regulation of their activity.

Lectin A protein that specifically recognizes and binds to glycans without catalyzing a modification of the glycan.

Monosaccharide

Carbohydrate that cannot be hydrolyzed into a simpler carbohydrate. It is the building block of oligosaccharides and 
polysaccharides. Commonly found monosaccharide building blocks: D-glucose (Glc), D-galactose (Gal), D-
mannose (Man), D-glucuronic acid (GlcA), N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-galactosamine 
(GalNAc), L-fucose (Fuc), D-xylose (Xyl), D-ribose (Rib) and N-acetylneuraminic acid (Neu5Ac or NeuAc).

Mucin
Large glycoprotein with a high content of serine, threonine, and proline residues and numerous O-GalNAc-linked 
saccharides, often occurring in clusters on the polypeptide. Secreted by epithelial surfaces such as gastrointestinal, 
genitourinary and respiratory tracts.

N-(linked)glycan Glycan covalently linked to an asparagine residue of a polypeptide chain in the consensus sequence: -Asn-X-Ser/
Thr.

O-(linked)glycan A glycan glycosidically linked to the hydroxyl group of the amino acids serine, threonine, tyrosine, or 
hydroxylysine. Glycoproteins rich in O-glycans are often called mucins.

Oligosaccharide Linear or branched chain of monosaccharides attached to one another via glycosidic linkages. The number of 
monosaccharide units can vary.

PAMPs See Alarmins.

Polysaccharide Glycan composed of repeating monosaccharides, generally greater than ten monosaccharide units in length.

Saccharide A generic term for any carbohydrate or assembly of carbohydrates, in free form or attached to another molecule, 
used interchangeably with carbohydrate and glycan.
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Selectin
A C-type (Ca++-dependent) lectin expressed by cells in the vasculature and bloodstream. The three known selectins 
are L-selectin/CD62L (expressed by most leukocytes), E-selectin/CD62E (expressed by cytokine-activated 
endothelial cells), and P-selectin/CD62P (expressed by activated endothelial cells and platelets).
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Table 2

Glycosylation research in autoimmune diseases mimicked by cGVHD.

Author reference/year Disease* Key findings of the study

Dry mouth and eye disorders

P. Youinou et al80/1992 Sjögren’s syndrome Elevated levels of asialylated IgG.

I. Castro et al81/2013 Sjögren’s syndrome Altered salivary mucins.

Gastrointestinal disorders

J. M. H. Larsson et al85/2011 IBD Reduced glycosylation of gastrointestinal mucins.

A. M. Dias et al87/2013 IBD Aberrant N-glycosylation of T cell receptor.

I. Trbojevic Akmacic et al23/2015 IBD Reduced immunosuppressive potential of IgG in IBD.

Hematological disorders

T. Bakchoul et al92/2013 ITP N-glycosylation of AAbs suggested to be prerequisite for platelet phagocytosis in 
vitro and in vivo.

Neurological and muscular disorders

M. H. J. Selman et al94/2011 Myasthenia gravis Lower levels of IgG2 galactosylation.

I. Perdivara et al95/2011 Myositis Lower levels of IgG galactosylation.

Other

C. Panzironi et al83/1997 SLE ‘Incresead carbohydrate moiety’ and higher concentration of galactose in α2-
macroglobulin.

X.-X. Chen et al84/2015 SLE Reduced IgG sialylation.

F. Vuckovic et al24/2015 SLE Reduced immunosuppressive potential of IgG.

*
IBD=inflammatory bowel disease; ITP= immune thrombocytopenia; SLE= systemic lupus erythematosus
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