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Abstract The increasing ageing of our societies is accompanied by a pandemic of obesity
and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue
is increasingly recognized as an important hallmark of the ageing process, which in turn
contributes to metabolic alterations, multi-organ damage and a systemic pro-inflammatory state
(‘inflammageing’). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares
numerous biological similarities with the normal ageing process such as chronic inflammation and
multi-system alterations. Accordingly, understanding the interplay between accelerated ageing
related to obesity and adipose tissue dysfunction is critical to gain insight into the ageing process
in general as well as into the pathophysiology of obesity and other related conditions. Here we
postulate the concept of ‘adipaging’ to illustrate the common links between ageing and obesity
and the fact that, to a great extent, obese adults are prematurely aged individuals.
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Abstract figure legend Schematic representation of the interplay between a pathological state, obesity, and a physiological
process, ageing: a new concept, ‘adipaging’, postulates a common soil for the two conditions.

Abbreviations ASC, adipose-derived mesenchymal stem cell; BAT, brown adipose tissue; BDNF, brain-derived
neurotrophic factor; BMI, body mass index; CKD, chronic kidney disease; CVD, cardiovascular disease; ER, end-
oplasmic reticulum; IGF, insulin-like growth factor; IL, interleukin; MHO, metabolically healthy obese; NF-κB, nuclear
factor κ-light-chain-enhancer of activated B cells; p53, tumour protein 53; PPAR-γ, peroxisome proliferator activated
receptor-γ; PVAT, perivascular adipose tissue; RAAS, renin–angiotensin–aldosterone system; ROS, reactive oxygen
species; SIRT1, sirtuin 1; SNS, sympathetic nervous system; TNF, tumour necrosis factor; Wnt, wingless-type MMTV
integration site.
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Introduction

White adipose tissue (here referred to as ‘adipose tissue’)
plays a key role in energy storage as well as in other
vital functions such as metabolic regulation, immunity,
response to injury, and production of hormones,
inflammatory cytokines and chemokines (Ouchi et al.
2011). This tissue is divided into two main depots that
differ in gene expression profile (Gerhard et al. 2014) and
embryonic origin (Berry et al. 2013; Chau et al. 2014):
visceral (also termed ‘internal’) and subcutaneous fat.
The subcutaneous reservoir has mainly beneficial roles,
including storage of lipids, and secretion of adipokines,
e.g. leptin and adiponectin (see the section ‘Endocrine
dysfunction in ageing and obesity’ for more information)
with beneficial metabolic effects such as lipid oxidation,
increased insulin action and anti-inflammatory functions
(Ma et al. 2015). In contrast, visceral fat is associated
with metabolic syndrome, insulin resistance and related
cardiometabolic complications (Mathieu et al. 2010). The
beneficial vs. detrimental effects of subcutaneous and
visceral fat, respectively, are exemplified by the features
of the human immunodeficiency virus (HIV)-associated
lipodystrophy, a syndrome that was originally described
as loss of fat wasting of the face, limbs and upper
trunk, as well as hyperlipidaemia and insulin resistance
in patients receiving highly active antiretroviral therapy
(Carr et al. 1998). This syndrome, which is usually
characterized by loss of subcutaneous fact (‘lipoatrophy’)
with increased visceral fat (‘lipohypertrophy’) (Alves
et al. 2014) is associated with increased risk of cardio-
vascular disease (CVD) and diabetes (Bevilacqua et al.
2009; Finkelstein et al. 2015). Of note, the beneficial
function of subcutaneous fat is typically disrupted in obese
people, in whom excessive subcutaneous fat mass occurs
together with tissue dysfunction, adipocyte hypertrophy,
and decreased adipogenesis and angiogenesis (Patel &
Abate, 2013).

The adipose tissue is mainly composed of adipocytes
and, to a lesser extent, a stromal vascular fraction that
includes preadipocytes, pericytes or multipotent stem
cells, vascular wall and endothelial cells, macrophages
(Eto et al. 2013), lymphocytes (Lolmede et al.
2011), eosinophils (Schipper et al. 2012), neutrophils
(Elgazar-Carmon et al. 2008), mast cells (Anderson et al.
2010), and haematopoietic progenitor cells (De Toni et al.
2011). The capacity of the adipose tissue to expand
or shrink relies mostly on adipocytes, preadipocytes
and stem cells with a regenerative capacity (Baptista
et al. 2015). Importantly, the macrophage population
can switch phenotypes between non-inflammatory and
inflammatory states (Lumeng et al. 2007).

Other types of fat, such as the brown adipose tissue
(BAT), are also involved in maintaining metabolic homeo-
stasis. Particularly abundant in newborns, the BAT is a

highly vascularized tissue rich in mitochondria with a
high content of uncoupling protein-1 (UCP-1), a molecule
that produces heat by uncoupling the respiratory chain
(Shimizu et al. 2015). Besides its thermogenic function,
BAT contributes to systemic metabolism by virtue of
its high-energy expenditure ratio (Shimizu et al. 2015).
Thus, BAT has basically antagonistic functions to white
adipose tissue, i.e. it is specialized in the production of
heat (thermogenesis) whilst white adipose tissue stores
excess energy as triglycerides (Saely et al. 2012). High
amounts of BAT are related to lower body weight and are
present in a considerable proportion of adults, whereas
ageing decreases BAT and increases body weight (Saely
et al. 2012). Importantly, the functional activity of BAT is
decreased not only in ageing, but also in obesity as well as
in certain cardiometabolic conditions (Peng et al. 2015).

The ageing adipose tissue

In general, as we age, adiposity and especially percentage
body fat increase whereas lean mass and bone mineral
density decrease. Another major change is that fat mass
tends to be preferentially distributed in the abdominal
region, a phenomenon that has been reported in both
sexes (Enzi et al. 1986) and has been associated with
insulin resistance (Kohrt & Holloszy, 1995; Barzilai &
Gupta, 1999a), and higher risk of CVD, diabetes (St-Onge,
2005) and cancer (Sanchis-Gomar et al. 2015). Ageing also
promotes fat redistribution outside normal adipose tissue
reservoirs, with ectopic lipid accumulation occurring
not only in visceral depots but also in bone marrow
or muscle, among other tissues (Tchkonia et al. 2013).
This phenomenon is linked to higher risk of cardio-
metabolic disorders (Shimizu et al. 2015). The ageing
process is associated with an increased accumulation of
senescent cells in the adipose tissue, with causative factors
being cytokines, metabolic stress, and reduced removal of
these cells, which lose the ability to respond efficiently to
chemokine signalling (see ‘Stem cell populations’ section).
The aged adipose tissue is also characterized by reduced
adipocyte size, tissue fibrosis, endothelial dysfunction, and
reduced vascularization and angiogenic capacity (Donato
et al. 2014). In addition, major metabolic alterations
in this tissue occur with age, notably increased insulin
resistance or altered lipolysis (Das et al. 2004). In fact,
alterations in fatty acid metabolism cause an excessive
free fatty acid release into plasma with subsequent
lipotoxicity (Yang & Li, 2012) and insulin resistance (Basu
et al. 2003).

Adipose tissue mass is determined by the energetic
balance between net fat storage in adipocytes (of lipids
originating from dietary (exogenous) or from non-lipid
precursors, mainly carbohydrates) on one hand, and total
fat oxidation on the other (Schutz, 2004). Of note, the
measurement of fat balance (fat input minus fat output)
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involves the accurate estimation of both metabolizable fat
intake and total fat oxidation, which is possible mostly
under laboratory conditions; in free living conditions,
the fat retention/mobilization ratio can be estimated
with accurate sequential body composition measurements
(Schutz, 2004). The balance between fat storage and fat
oxidation is progressively disrupted during ageing, with
the capacity of tissues to oxidize fat gradually decreasing.
Increases in adiposity with age may also be due, at least
partly, to a chronic positive energy balance throughout
life, associated with decreased physical activity and basal
metabolic rate that are not accompanied by proportional
decreases in energy intake (Enzi et al. 1986). Decline
with age of sirtuin 1 (SIRT1), a nicotinamide adenine
dinucleotide (NAD+)-dependent protein deacetylase that
is highly evolutionarily conserved in mammals (Schwer &
Verdin, 2008), might play a pivotal role in the dysfunction
of the adipose tissue as well as in other chronic conditions
associated with the normal ageing process.

SIRT1 and metabolic dysfunction. By virtue of deacety-
lation of numerous substrates such as peroxisome
proliferator-activated receptor-1α (PGC-1α), forkhead
box O3 (FOXO3), tumour protein p53 (p53) or the nuclear
factor κ-light-chain-enhancer of activated B cells (NF-κB),
SIRT1 modulates mitochondrial function, apoptosis and
inflammation (Canto et al. 2009; Poulose & Raju, 2015). It
also modulates epigenetic changes (Vaquero et al. 2007),
regulates circadian rhythm at the peripheral and central
nervous system level (Chang & Guarente, 2013), and
acts as a key regulatory sensor. SIRT1 is increased by
caloric restriction and reduced by overfeeding, and in
turn it increases leptin and insulin sensitivity (Sasaki,
2015). It also plays an important role in adipocyte
metabolism. In white adipocytes, SIRT1 increases fat
mobilization by repressing the transcriptional activity of
peroxisome proliferator activated receptor-γ (PPAR-γ;
Picard et al. 2004) and protects cells from tumour necrosis
factor (TNF)-α-induced insulin resistance (Yoshizaki et al.
2009). SIRT1 also acts as a nutrient-dependent modulator
of obesity-associated inflammation in the adipose tissue
(Kotas et al. 2013). A recent report showed an inverse
relationship between SIRT1 levels in adipose tissue and
inflammation in this tissue (Gillum et al. 2011), so
that suppression of SIRT1 led to inflammation and
macrophage infiltration, whilst overexpression of SIRT1
prevented these changes, thereby suggesting that SIRT1 is
a key regulator of adipose tissue macrophage content in
conditions of obesity and overnutrition; further, genetic
ablation of SIRT1 specifically from adipose tissue resulted
in increased adiposity and predisposition to metabolic
dysfunction, with gene expression studies showing that
SIRT1 activity is necessary to protect adipose tissue from
transcriptional changes that lead to obesity and insulin
resistance (Gillum et al. 2011). In addition, a high-fat

diet induces the cleavage of SIRT1 in adipose tissue by
the inflammation-activated caspase-1, providing a link
between excess nutrient intake and predisposition to
metabolic dysfunction (Chalkiadaki & Guarente, 2012).

On the other hand, ageing is characterized by a
pseudo-hypoxic state leading to declining NAD+ and low
SIRT1 activity (Poulose & Raju, 2015), particularly at
the hypothalamic level, which in turn promotes leptin
resistance and increased adiposity (Sasaki, 2015), whereas
caloric restriction and exercise stimulate SIRT1 activity
(Warolin et al. 2014). Importantly, SIRT1 activators
improve the health and extend the lifespan of mice fed
either a high-calorie (Baur et al. 2006; Minor et al. 2011)
or normal diet (Mitchell et al. 2014).

Ageing and obesity share numerous disease
phenotypes

It is well established that the risk of obesity increases
with age (Villareal et al. 2005; Canning et al. 2014). In
turn, obesity and obesity-related metabolic disturbances
can accelerate the rate of ageing and lead to early
mortality (Ahima et al. 2000; Tzanetakou et al. 2012).
Both conditions, obesity and ageing, are associated with
increased risk of CVD, diabetes, dyslipidaemia, hyper-
tension and mortality (North & Sinclair, 2012; Chen
& Tseng, 2013). They also share an association with
low-grade inflammation, insulin resistance, increased
levels of chemotactic and pro-coagulant proteins at
the local-tissue and systemic level, as well as the
abovementioned ectopic lipid deposition with subsequent
lipotoxicity (Xu et al. 2003). Although the underlying
mechanism(s) remains to be elucidated, progressive BAT
dysfunction or ‘whitening’ is also linked to both ageing
and obesity/insulin resistance (Shimizu et al. 2015).

Several reports have indicated a link between central
obesity or high body mass index (BMI, weight (kg)/height2

(m2)) at mid- or late-life, and higher risk of dementia
(Gustafson et al. 2003, 2009; Kivipelto et al. 2005; Whitmer
et al. 2005a, 2007, 2008; Hayden et al. 2006; Fitzpatrick
et al. 2009; Emmerzaal et al. 2015) –see also the ‘Central
nervous system’ section. Recent provocative data have,
however, indicated a negative association between higher
BMI and risk of dementia in an impressive cohort of
�2 million adults (median age at baseline of 55 years)
followed for a median of 9 years (Qizilbash et al. 2015),
supporting the notion that higher BMI might actually
play a certain protective role in late life (Emmerzaal
et al. 2015). Controversy in the field might be due to the
fact that BMI is not necessarily a surrogate of regional
adiposity, which would also explain, at least partly, the
so-called ‘obesity paradox’, i.e. the fact that a high BMI
at late life might be associated with lower mortality
compared with normal weight (Dorner & Rieder, 2012;
Hainer & Aldhoon-Hainerova, 2013): because BMI is
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not necessarily a good proxy of regional adiposity and
individuals with CVD and abdominal obesity die earlier,
a relatively high proportion of old people with high
BMI due to lower-body obesity might survive. Further,
many elders show late-onset obesity, with the short
duration of this condition precluding manifestation of
other related cardiometabolic comorbidities (Hainer &
Aldhoon-Hainerova, 2013).

The abovementioned associations suggest that a
physiological condition, ageing, and a pathological
state, obesity, might share several common causative
mechanisms that, in turn, might be largely linked to
a dysfunctional adipose tissue, including (i) metabolic
dysfunction, (ii) multi-organ damage, (iii) endocrine
disruption, (iv) impaired immune function, and (v)
chronic inflammation. Thus, understanding the interplay
between accelerated ageing related to obesity and adipose
tissue dysfunction is critical to gain insight into the ageing
process in general as well as into the pathophysiology of
obesity and other related conditions.

A striking phenomenon: the metabolically healthy
obese phenotype

Although there is not a standard definition, metabolically
healthy obese (MHO) people are individuals who, despite
their excess adiposity, are insulin sensitive, normotensive,
have a favourable lipid profile and have less visceral fat than
the typical individual with obesity-related comorbidities
(Karelis, 2008; Wildman et al. 2008; Kuk & Ardern, 2009a;
Camhi & Katzmarzyk, 2014). However, a true MHO
phenotype, i.e. absence of clinical as well as subclinical
metabolic risk factors, is rare, possibly representing �6%
of all obese adults or �1.3% of the US population (Kuk
& Ardern, 2009a). The underlying mechanisms of the
MHO phenotype remain to be clearly elucidated (Brown
& Kuk, 2015). Although there is no unanimity (Brown &
Kuk, 2015), one factor that might potentially differentiate
MHO from unhealthy obese people, together with pre-
served insulin sensitivity, is higher levels of physical
activity and physical fitness (Hayes et al. 2010; Ortega
et al. 2013; Poelkens et al. 2014). Indeed, regular physical
activity has a ‘polypill-like’ effect that confers a powerful,
independent protective effect against cardiometabolic
conditions across the human lifespan; it attenuates not
only ‘traditional’ CVD risk factors but also age- and
obesity-related alterations such as hyperactivity of the
sympathetic nervous system – see the ‘Cardiovascular
system’ section and Fiuza-Luces et al. (2013) for an in
depth-review.

Some authors have found that MHO adults are not at an
elevated risk for CVD (Calori et al. 2011; Ogorodnikova
et al. 2012) or myocardial infarction (Morkedal et al.
2014) and do not have excess mortality risk compared
with metabolically healthy normal weight adults (Calori

et al. 2011; Kuk et al. 2011; Hamer & Stamatakis, 2012).
In contrast, others have reported that MHO individuals
are still at a higher risk for premature mortality (Kuk &
Ardern, 2009a; Kramer et al. 2013) as well as type 2 diabetes
(Bell et al. 2014; Hinnouho et al. 2015), heart failure
(Morkedal et al. 2014) and subclinical atherosclerosis
(Chang et al. 2014), suggesting that being an MHO is
not really a harmless condition.

On the other hand, several studies have reported
that following weight loss, MHO individuals significantly
improved body composition and cardiometabolic risk
factors (Janiszewski & Ross, 2010; Sesti et al. 2011), as
well as physical fitness (when the weight loss intervention
was combined with intense exercise training) (Dalzill et al.
2014). In obese women with no other pre-existing illness
(n = 28,388), intentional weight loss of � 9.1 kg that
occurred within the previous year was associated with a
reduction of �25% in all-cause mortality (Williamson
et al. 1995). These findings are in contrast to those
observed by other authors who, despite a significant
loss of body weight in HMO adults, failed to show
significant benefits on metabolic risk factors (Shin et al.
2006; Kantartzis et al. 2011) or cardiovascular mortality
(Williamson et al. 1999), and in fact reported increases
in diabetes-associated mortality (Williamson et al. 1999),
decreases in insulin sensitivity (Karelis et al. 2008), or a
higher mortality risk compared with those who remained
weight stable (Sorensen et al. 2005).

In summary, although there is evidence of an MHO
phenotype, it may represent a minor proportion of
obese individuals. More research is undoubtedly needed
to elucidate the mechanisms underlying the MHO
phenotype as well as the effect of weight loss on
cardiometabolic health and mortality in this population
segment.

An overlapping biological hallmark in ageing
and obesity: inflammation

Ageing and obesity share numerous alterations from the
organ to the molecular level. First, ageing is characterized
by a progressive organ dysfunction that complicates the
maintenance of homeostatic processes (Barzilai et al.
2012), with obesity inducing a comparable effect (Shapiro
et al. 2011). A major deleterious effect of ageing,
linked to adipose tissue dysfunction, is the insulin
resistance syndrome, whose main complications include
diabetes mellitus, hypertension and CVD. Two common
contributors to both ageing and obesity are oxidative
stress due to the reactive oxygen species (ROS) generated
by biological oxidations and chronic inflammation.
Besides activating the p53 tumour suppressor gene, ROS
cause telomere damage (Jurk et al. 2014) and produce
cumulative oxidative damage to macromolecules, thereby
inducing cellular dysfunction and eventually cell death

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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(Lee & Wei, 2007). Obesity accelerates the ageing of
adipose tissue, a process only now beginning to come
to light at the molecular level, with experiments in mice
suggesting that obesity increases the formation of ROS in
adipocytes, shortens telomeres, and ultimately results in
the activation of the tumour suppressor p53, inflammation
and promotion of insulin resistance (Ahima, 2009).
Remarkably, a recent study showed that excessive calorie
intake led to the accumulation of oxidative stress in
the adipose tissue of mice with type 2 diabetes-like
disease and promoted senescence-like changes, along with
increased expression of p53 and increased production
of pro-inflammatory cytokines (Minamino et al. 2009).
Conversely, inhibition of p53 activity in adipose tissue
markedly ameliorated these senescence-like changes,
whereas upregulating p53 levels caused an inflammatory
response that led to insulin resistance.

Obesity is not only caused by lipid accumulation, but
is highly linked to an inflammatory state characterized by
increased concentrations of inflammatory cytokines and
macrophage infiltration in subcutaneous adipose tissue
(Hotamisligil et al. 1993; Weisberg et al. 2003; Xu et al.
2003; Lasselin et al. 2014). In obese old adults, higher
levels of adiposity are associated with higher blood levels of
inflammatory markers such as interleukin (IL)-1 receptor
antagonist (IL-1RA), IL-6, TNF-α and the acute phase
reactant, C-reactive protein (Lisko et al. 2012; Aguirre
et al. 2014). Although the role of ROS in ageing is under
reconsideration (Ristow & Schmeisser, 2011; Lopez-Otin
et al. 2013), a major hallmark of this natural process is an
altered intercellular communication or ‘inflammageing’,
i.e. a pro-inflammatory phenotype that accompanies
ageing in mammals (Salminen et al. 2012) and may
result from multiple causes, including accumulation of
pro-inflammatory tissue damage, a dysfunctional immune
system unable to effectively combat pathogens, the
propensity of senescent cells to secrete pro-inflammatory
cytokines, increased NF-κB activation and decreased auto-
phagy (Salminen et al. 2012; Lopez-Otin et al. 2013).

Further research might elucidate other common
biological alterations linking ageing and obesity. Notably,
recent data connect mitochondrial dynamics and
architecture with the balance between energy demand and
nutrient supply, with excess nutrient intake and obesity
leading to the progressive mitochondrial alterations that
are common to major age-related diseases (Liesa &
Shirihai, 2013).

Multi-organ common damage in ageing and obesity

Although the pattern of organ-specific deterioration
associated with obesity differs from that induced by the
normal ageing process, the actual decline in organ function
induced by both conditions is remarkably similar (Barness
et al. 2007; Tzanetakou et al. 2012; Lopez-Otin et al. 2013;

Romacho et al. 2014). To a certain extent, being obese also
implies being prematurely aged (as explained below and
summarized in Fig. 1).

Cardiovascular system. Ageing and obesity might share
important similarities in the way they alter the cardio-
vascular system. The age decline in cardiac function
is associated with decreases in cardiomyocyte number,
left-ventricular hypertrophy, and cardiac fibrosis and
accumulation of collagen (Olivetti et al. 1991). Ageing
structural changes involve the myocardium as well as the
cardiac conduction system and endocardium. There is
also a progressive tissue degeneration, including a loss of
elasticity, together with fibrotic changes and calcification
of cardiac valves (Hinton & Yutzey, 2011), and amyloid
infiltration (Maurer, 2015), with subsequent impairment
of the cardiac pumping capacity. The elasticity, and thus
the functionality of arterial vessels, declines with ageing,
owing to a wall thickening and stiffening due to increased
collagen and reduced elastin, together with vessel wall
calcification.

Paradoxically, a protective mechanism to prevent
excessive adiposity during ageing, that is, tonic activation
of the sympathetic nervous system (SNS) to stimulate
thermogenesis, has several deleterious consequences on
the cardiovascular system that, in turn, increase CVD
risk, i.e. reduced leg blood flow, increased arterial blood
pressure, impaired baroreflex function and hypertrophy of
large arteries (Seals & Dinenno, 2004). Chronic reductions
in peripheral blood flow due to such increased SNS activity
also contribute to the aetiology of the metabolic syndrome,
by increasing glucose intolerance and insulin resistance
(Baron et al. 1990; Lind & Lithell, 1993). Further, excessive
lipolysis associated with high SNS activity increases ROS
production and activates p53 signalling in the adipose
tissue, potentially leading to inflammation of this tissue
(Shimizu et al. 2015). Indeed, although p53 is a trans-
criptional factor involved in preservation of genomic
stability and inhibition of tumorigenesis, it also has
some deleterious effects related to age-associated cardio-
vascular disorders, e.g. activation of p53 signalling is
found in aged vessels or failing hearts (Minamino &
Komuro, 2007; Sano et al. 2007; Minamino & Komuro,
2008). In contrast, inhibition of lipolysis by sympathetic
denervation or through a treatment with a lipase inhibitor
significantly down-regulates adipose tissue p53 expression
and inflammation, thereby improving not only insulin
resistance but also cardiac function in conditions of
chronic pressure overload (Shimizu et al. 2012).

The SNS is also exceedingly active in obese adults
and plays a key role in the development of insulin
resistance (Thorp & Schlaich, 2015). Obesity increases
the risk of coronary heart disease, atrial fibrillation
and heart failure through a variety of mechanisms,
including the aforementioned SNS hyperactivity, systemic
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inflammation, hypercoagulability, and activation of the
renin–angiotensin–aldosterone system (RAAS) (Zalesin
et al. 2011). In lean individuals, perivascular adipose tissue
(PVAT) has beneficial vasodilatory and anti-inflammatory
functions; however, obesity results in PVAT dysfunction
and inflammation, characterized by an imbalance
between anti- and pro-inflammatory cells as well as
pro-inflammatory adipocytokines (see the section ‘End-
ocrine dysfunction in ageing and disease’ for further
information), leading to impaired vasodilatation and
vascular remodelling (Gu & Xu, 2013; Lastra & Manrique,
2015). In fact, both ageing and obesity may affect PVAT
in a comparable manner, causing inflammatory infiltrate,
inducing imbalance of PVAT-derived growth factors and
inhibitors, and leading to the development of proliferative
vascular diseases such as atherosclerosis, restenosis and
hypertension (Miao & Li, 2012). General and central
adiposity in later midlife are strong independent pre-
dictors of aortic stiffening (Brunner et al. 2015). Excess
weight gain, especially when associated with high visceral
adiposity, is indeed a major cause of hypertension (Hall

et al. 2015) and obesity. Moreover, it is associated with
a markedly increased prevalence of vascular fibrosis and
stiffness due to RAAS activation, reduced bioavailable
nitric oxide, increased vascular extracellular matrix and
extracellular matrix remodelling (Jia et al. 2015), as well
as with renovascular disease (Zhang & Lerman, 2015) –see
also ‘Kidney’ section.

Central nervous system. Cognitive dysfunction is a
natural consequence of ageing. Although cognitive
dysfunction is a diffuse concept, it can be described as
a significant decline in the cognitive function compared
with the previous mental performance that primarily
affects learning, memory, perception and problem solving
(Petersen, 2011). The next stage in the cognitive
dysfunction process is ‘mild cognitive impairment’ (MCI),
which is considered as an intermediate step between
the expected cognitive decline of normal ageing and the
more aggravated decline of dementia (Petersen, 2011).
Dementia can be caused by both neurodegenerative
(Alzheimer’s disease, frontotemporal dementia and

Obesity

Obesity-related dementia?

Glomerulopathy

Cardiovascular:
• Coronary heart disease
• Vascular dysfunction
• SNS hyperactivation

Stem cell population:
• Impaired regenerative capacity

Bone alteration:
• Increased fracture risk

Skeletal muscle:
• Metabolic alteration
Altered muscle fibre composition

Ageing

Ageing neurodegeneration:
• Cognitive decline
• Higher dementia risk

Cardiovascular ageing:
• Myocardium defects
• Vascular alteration
• SNS hyperactivation

Stem cell population:
• Impaired regenerative capacity
• Stem cell exhaustion

Bone loss:
• Increased fracture risk

Skeletal muscle:
• Loss of muscle
• Muscle fibre replacement

Structural and renal changes

Chronic inflammation
Altered immune system function

Inflammageing
Immune system senescence

Figure 1. Main multi-organ alterations common to obesity and ageing
Abbreviation: SNS, sympathetic nervous system.
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dementia with Lewy body) and non-neurodegenerative
conditions (vascular dementia and abnormal pressure
hydrocephalus) (Burns & Iliffe, 2009). Alzheimer’s
disease is considered the most prevalent chronic neuro-
degenerative disease reaching 35 million people worldwide
and 5.5 million in the United States (Querfurth & LaFerla,
2010). It accounts for 50–56% of all dementias with
13–17% of all cases of Alzheimer’s disease characterized
by the presence of other cerebrovascular disorders (i.e.
‘mixed dementia’) (Querfurth & LaFerla, 2010). Age is the
main risk factor for Alzheimer’s disease, with the incidence
of this disorder doubling every 5 years in people aged
65+ years (Hirtz et al. 2007).

There are several factors related to overweight
and obesity that increase dementia risk, i.e. physical
inactivity, high fat diet, hypertension, diabetes, hyper-
cholesterolaemia and metabolic syndrome (Hirtz et al.
2007). Prospective studies suggest a U-shaped relationship
between body weight and the risk of cognitive impairment
and Alzheimer’s disease (Razay & Vreugdenhil, 2005;
Stewart et al. 2005; Gustafson et al. 2009) that is
dependent on age (Whitmer et al. 2008). Different
factors intrinsic to central adiposity increase risk of
dementia including the lifetime exposure to an altered
metabolic and inflammatory state induced by high visceral
adiposity (Whitmer et al. 2008). The visceral adipose is
a metabolically active endocrine tissue secreting several
inflammatory cytokines and hormones collectively known
as ‘adipokines’ (see ‘Endocrine dysfunction in ageing and
obesity’ section for more details). Some adipokines such
as leptin and IL-6 are associated with greater cognitive
decline (Yaffe et al. 2003). High amounts of adipokines
and pro-inflammatory factors released by adipocytes, e.g.
IL-6 and TNF-α, are advocated in the potential link
between obesity and dementia, through a toxic effect at
the brain level, i.e. impairments in neurogenesis, synaptic
plasticity, memory and learning processes (Gustafson,
2010; Arnoldussen et al. 2014; Kiliaan et al. 2014). Leptin
crosses the blood–brain barrier and plays a role in neuro-
degeneration (Funahashi et al. 2003; Harvey, 2003) and
could be implicated in the amyloid-β (Aβ) deposition
(Fewlass et al. 2004), the main component of the senile
plaques, not only in Alzheimer’s disease but also in
the cognitive decline that is commonly associated with
ageing. Evidence has shown that obese middle-aged adults
have decreased brain volume compared with normal
weight individuals (Ward et al. 2005), whereas high
central obesity in elderly is associated with decreased
hippocampal brain volume and greater brain atrophy
(Jagust et al. 2005).

Other obesity-related alterations, especially hyper-
tension and type 2 diabetes, promote cognitive
dysfunction (Klein & Waxman, 2003; Craft & Watson,
2004; Stranahan, 2015). Although there is controversy,
blood pressure in late life has been related to cognitive

decline and dementia (Kivipelto et al. 2001; Whitmer et al.
2005b). Hypertension increases the risk of Alzheimer’s
disease through an effect on the vascular integrity of
the blood–brain barrier (Kalaria, 2010). The resultant
protein extravasation into the brain tissue may produce
cell damage, impaired neuronal or synaptic function,
apoptosis and an increase in Aβ deposition leading to
cognitive alterations (Deane et al. 2004). Type 2 diabetes
has been found to double the risk of Alzheimer’s disease
(Leibson et al. 1997; Luchsinger et al. 2001). Although
the biological mechanisms are unclear, dyslipidaemia and
hyperinsulinaemia can be also associated with higher
risk of dementia. Insulin in the brain increases Aβ

accumulation and tau protein hyperphosphorylation
(Park, 2001). In effect, peripheral insulin infusion in
elderly has been demonstrated to increase Aβ levels in the
cerebrospinal fluid (Watson et al. 2003). Finally, a decrease
in the brain-derived neurotrophic factor (BDNF) levels
has been extensively associated with cognitive dysfunction
and dementia (Phillips et al. 1991; Holsinger et al.
2000; Yamada et al. 2002; Binder & Scharfman, 2004;
Komulainen et al. 2008; Cunha et al. 2010; Autry &
Monteggia, 2012; Weinstein et al. 2014). In this regard, as
reviewed by Vaynman & Gomez-Pinilla (2006), disorders
of energy metabolism such as obesity, hyperglycaemia
and insulin insensitivity are associated with diminished
BDNF levels in animal models (Lyons et al. 1999; Kernie
et al. 2000; Rios et al. 2001). In humans, impaired glucose
metabolism is also associated with low levels of BDNF
(Krabbe et al. 2007). In addition, a functional loss of one
copy of the BDNF gene is associated with severe obesity
and impaired cognitive function (Gray et al. 2006).

Skeletal muscle. One of the major problems associated
with ageing is sarcopenia (from Greek σάρξ sarx, ‘flesh’
and πενία penia, ‘poverty’), or the loss of muscle mass
and function that occurs as we age (Morley et al.
2001). Sarcopenia is characterized by a reduction in
the number and size of muscle fibres, and is caused
by progressive muscular denervation, reduced quantities
and functions of satellite cells, reduced protein synthesis,
decline in anabolic hormone levels, increased levels of
pro-inflammatory cytokines, oxidative stress, and physical
inactivity (Garatachea et al. 2015). Altered mitochondrial
activity is also involved in the ageing decline of muscle
function (Johannsen et al. 2012; Peterson et al. 2012;
Sanchis-Gomar & Derbre, 2014; Sanchis-Gomar et al.
2014) with oxidative damage to mitochondrial DNA
increasing with age and affecting its replication and
transcription machinery, which in turn, impairs res-
piratory chain complex proteins (Lopez-Otin et al. 2013).

There is also accumulating data supporting that
the maintenance of muscle mitochondrial function is
impaired in obesity and related conditions, i.e. insulin
resistance and type 2 diabetes (Jheng et al. 2015).
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(Of note, ‘deficiency’ of mitochondria in muscle does not
cause insulin resistance per se in this tissue; Holloszy,
2013). Data from human (Stuart et al. 2013) and
animal research show that increased adipose tissue levels
drive fundamental changes in muscle fibre composition,
towards a less oxidative phenotype leading to impaired
metabolic function (Denies et al. 2014).

Bone tissue. Bone is a heterogeneous tissue made up
of various components, whose proportions vary with
age, sex and disease states (Boskey & Coleman, 2010).
Bone remodelling occurs constantly and simultaneously
in several parts of the skeleton and thus the physio-
logical energy demands of the skeleton are notable
(Confavreux et al. 2009). Several energy-associated
hormones (notably insulin, leptin, adiponectin and
adrenaline/noradrenaline) are involved in the fine
regulation of bone turnover in response to energy
availability or needs (Lombardi et al. 2016). In turn,
bone regulates energy metabolism by communicating its
energetic needs based on loading by releasing osteocalcin
(in both its carboxylated and undercarboxylated forms),
which, among other functions, acts as a true hormone
modulating glucose and energy metabolism (Lombardi
et al. 2015). The relationship between bone and energy
metabolisms is reflected by the fact that metabolic
dysfunctions, including metabolic syndrome, diabetes
and obesity, are frequently associated with osteoporosis
(Confavreux et al. 2009).

Since adipocytes and osteoblasts are derived from a
common mesenchymal stem cell precursor, molecules that
lead to osteoblastogenesis inhibit adipogenesis and vice
versa. Two examples of molecules that regulate adipocyte
and osteoblast differentiation are PPAR-γ and the
wingless-type MMTV integration site (Wnt) (Colaianni
et al. 2014). In turn, sclerostin, the product of the SOST
gene, is a secreted glycoprotein antagonist of Wnt through
blockage of Wnt/β-catenin signalling that is responsible
for osteoprogenitor expansion and reduced apoptosis
rate in mature osteoblasts. Inactivating mutations of the
SOST gene cause disorders associated with high bone
mass (Li et al. 2008) whereas sclerostin concentrations
directly correlate with age, BMI and bone mineral content
and negatively with bone formation markers (Schwab &
Scalapino, 2011; Cheung & Giangregorio, 2012).

Overall, both men and women lose bone mass as they
age, a process called osteoporosis, due to reductions in the
levels of several hormones such as mainly sex hormones
(androgens, oestrogens) and insulin-like growth factor
(IGF)-1, as well as to an imbalance between proteins
involved in bone turnover like osteoprotegerin and
receptor activated NF-κB ligand (RANK) (Banu, 2013).
With ageing, the composition of bone marrow shifts to
favour the presence of adipocytes, which further increases
the risk of fracture in the aged population (Wehrli et al.

2000). In addition, osteoclast activity increases while
osteoblast function declines, resulting in osteoporosis
(Rosen & Bouxsein, 2006).

Although obesity has been traditionally thought to
be beneficial to bone health thereby protecting against
osteoporosis owing to the positive effect on bone
formation conferred by mechanical loading imposed by
weight bearing (Cao, 2011), this belief has recently been
questioned (Migliaccio et al. 2014). A high proportion
of fractures among postmenopausal women occur in
those who are obese (Compston, 2015), and high-fat
mass might be a risk factor for osteoporosis and fragility
fractures (Migliaccio et al. 2014). There is growing
evidence of a cross-talk between adipose tissue, muscle
and bone, with different components such as myokines
and adipocytokines released by muscle and fat tissue,
respectively, regulating skeletal health and thus being
involved in the risk of developing osteoporosis (Migliaccio
et al. 2014). Further, several cardiometabolic phenotypes
as well as body fat are correlated with bone turnover
markers and bone mineral density (Nava-Gonzalez
et al. 2014).

Inflammation might be a main link explaining loss of
bone mass in both conditions, ageing and obesity. Indeed,
there seems to exist a vicious cycle in which inflammation
induces adipogenesis and increased adiposity induces
inflammation: the net result is bone loss (osteopenia) and,
possibly, muscle loss (sarcopenia) (Tchkonia et al. 2010).
In this view, osteopenia, sarcopenia and obesity, either
combined or alone, appear as different presentations of
the same pathological condition, i.e. a pro-inflammatory
state (Ilich et al. 2014; Ormsbee et al. 2014).

Kidney. Ageing is associated with structural and
functional renal changes (Zhou et al. 2008). The normal
kidney loses �20–25% of its mass during ageing
(McLachlan & Wasserman, 1981), with this phenomenon
affecting glomerular, tubular and endocrine functions.
In turn, there is a rapidly increasing prevalence of
overweight/obese patients with chronic kidney disease
(CKD) (Flegal et al. 2002), and obesity is emerging
as an independent risk factor for CKD, starting in
childhood (Ding et al. 2015). Obesity is associated
with glomerular hyperfiltration and hypertension (Ding
et al. 2015) and obesity-related glomerulopathy is
characterized by moderate proteinuria, minimal oedema,
lower serum cholesterol and higher serum albumin
(Srivastava, 2006). In brief, the main pathways involved
in the association between obesity/metabolic syndrome
and increased progression of CKD are proteinuria due
to obesity-related glomerulopathy, hypertension due to
decreased nitric oxide production, albuminuria and renal
cytotoxicity caused by insulin resistance, increased levels
of pro-inflammatory cytokines, and higher RAAS activity
(Ding et al. 2015).
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Stem cell populations. The decline in the regenerative
potential of tissues due to functional attrition of stem cells
is one of the major hallmarks of ageing (Lopez-Otin et al.
2013). Stem cell exhaustion affects virtually all adult stem
cell compartments (Lopez-Otin et al. 2013), including
adipose-derived mesenchymal stem cells (ASCs) (Beane
et al. 2014). Mechanisms involved in age-related stem cell
loss and dysfunction entail factors inside stem cells, such
as accumulation of ROS, aggregates of damaged proteins,
mitochondrial dysfunction, epigenetic alterations (Oh
et al. 2014), DNA damage (Rossi et al. 2008) and
overexpression of cell-cycle inhibitory proteins such as
p16INK4a (also known as cyclin-dependent kinase inhibitor
2A, multiple tumour suppressor 1) (Janzen et al. 2006), e.g.
telomere shortening in haematopoietic stem cells (Flores
et al. 2005; Sharpless & DePinho, 2007); or factors that
affect the interaction between stem cells and their niche
such as exhaustion of supportive cells, certain circulatory
factors (Wnt, chemokine (C-C motif) ligand 1 (CCL11),
oxytocin), chronic inflammation (Oh et al. 2014) and
increase in fibroblast growth factor 2 (FGF2) (Chakkalakal
et al. 2012).

Obesity also has a negative impact on adult
stem cell properties, particularly ASCs (Perez et al.
2015). Oñate et al. showed a reduced ASC reservoir,
impaired adipogenic and angiogenic differentiation, and
up-regulated inflammatory genes in ASCs of obese
subjects (Onate et al. 2012, 2013). Metabolic analysis
has demonstrated that both mitochondrial content and
function are also impaired in obese-derived ASCs (Perez
et al. 2015). Of note, ASCs, particularly in the sub-
cutaneous adipose tissue, play an important homeo-
static/defensive role aiming to reduce tissue damage,
particularly when exposed to an inflammatory milieu,
by increasing their cytokine secretion and increasing
dedifferentiation (in an attempt to create a new ACS
reservoir) and migration processes (Shoshani & Zipori,
2015). In contrast, obesity-induced inflammatory cyto-
kine secretion by non-healthy ASCs reflects a failure
to evade stress (Baptista et al. 2015). Thus, another
common feature of obesity and ageing is the shift
of ASCs in the subcutaneous adipose tissue towards
a non-healthy pro-inflammatory phenotype, which
ultimately exacerbates the systemic chronic inflammation
that characterizes both conditions.

Endocrine dysfunction in ageing and obesity

The adipose tissue acts as an endocrine organ, by virtue
of releasing a variety of bioactive peptides, the so-called
‘adipocytokines’ (or ‘adipokines’), which act at local and
systemic levels (Kershaw & Flier, 2004). It produces, among
others, adiponectin (the most abundant adipokine, which
has an anti-inflammatory function and increases insulin
sensitivity, fatty acid oxidation and energy expenditure,

whilst it reduces the production of glucose by the
liver), leptin (which regulates whole-body metabolism
by stimulating energy expenditure, restraining food
intake and maintaining normal glycaemia), complement
components, plasminogen activator inhibitor-1, proteins
of the RAAS and resistin, and also activates other
hormones secreted elsewhere such as glucocorticoids or
sex steroids (Tilg & Moschen, 2006; Ouchi et al. 2011).

Progressive deregulation of the endocrine nutrient-
sensing system, which comprises the growth hormone,
and the IGF-1 and insulin signalling pathway, is a major
characteristic of the normal ageing process in mammals
(Lopez-Otin et al. 2013) and is also associated with
leptin resistance (Sasaki, 2015). Increased adiponectin
levels can be a distinctive feature of some of the
most long-lived individuals (centenarians) but are also
associated with mortality in younger old people and
CVD patients (Bik & Baranowska, 2009; Gulcelik et al.
2013). Less controversial are the data obtained in obese
people, with adiponectin likely to be the only adipokine
whose production really decreases with obesity (Letra
et al. 2014; Poonpet & Honsawek, 2014). Although
leptin increases with adiposity, its biological effects are
limited by leptin resistance in the vast majority of
obesity cases (Galic et al. 2010). The effects of ageing
or obesity on other adipokines like resistin or retinol
binding protein-4 are less described, but their expression
levels seem to be positively correlated with adiposity,
being implicated in insulin resistance processes (Galic
et al. 2010).

Immune dysfunction and its link with inflammation

An important element for the secretory function of
adipose tissue is macrophages (Galic et al. 2010). These
cells are a major source of inflammatory cytokines,
such as TNF-α, IL-6 and IL-1β, which contribute
to the chronic low-grade inflammatory state that is
associated with both ageing and obesity (Galic et al.
2010). Ageing is linked with immune senescence (Gruver
et al. 2007), notably with T-lymphocyte dysfunction
(Salam et al. 2013), a phenomenon that also leads to
systemic increases in TNF-α and IL-6, and acute phase
proteins such as C-reactive protein and serum amyloid
A (Bruunsgaard & Pedersen, 2003). In addition, multiple
complex mechanisms contribute to the interplay between
age-related inflammation and immune senescence. The
so-called ‘redox stress hypothesis’ postulates that the
functional losses associated with ageing are mainly caused
by a cellular pro-oxidizing status, which leads to disruption
of the redox-regulated signalling mechanisms (Sohal &
Orr, 2012). Hence, the age-related redox imbalance would
activate numerous pro-inflammatory signalling pathways,
including those dependent on NF-κB, thereby leading
to major ageing conditions such as ‘inflammageing’
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of tissues, including the adipose tissue, and immune
deregulation (Chung et al. 2009).

Obesity is also linked with conditions associated with
immune dysfunction, such as increased susceptibility
to infection or bacteraemia (Matarese et al. 2005).
Similarly to ageing, T-lymphocyte subpopulations and
their functions are impaired in obese people (Tanaka
et al. 2001). Yet these immune abnormalities are reversed
with energy restriction (with subsequent decreases in
leptin levels) in both humans and animals (Lamas et al.
2004). The low-grade chronic inflammation of the adipose
tissue that characterizes excess fat storage leads to ‘stress
reactions’ within its adipocytes and immune cells, with
a subsequent release of pro-inflammatory factors from
both sources (Ghigliotti et al. 2014). Stress reactions
are mainly oxidative stress, and cellular and organelle
hypertrophy (Monteiro & Azevedo, 2010). Regarding
the latter, the metabolic stress to which adipose tissue
is subjected in obesity results in organelle dysfunction,
particularly of the endoplasmic reticulum (ER), which is
the organelle where triacylglycerol droplet formation takes
places and which participates in the regulation of lipid,
glucose, cholesterol and protein metabolism (Gregor &
Hotamisligil, 2007). The adipocyte may be particularly
challenged by excess nutrient intake, because it is forced
to secrete large amounts of substances and synthesize
lipids. Under such conditions, the ER function may be
impaired, leading to the accumulation of misfolded or
unfolded proteins in its lumen (Monteiro & Azevedo,
2010). In order to cope with it, the stressed ER engages
the unfolded protein response which, if not relieved, may
induce cell death via apoptosis (Mori, 2000; Zhao &
Ackerman, 2006; Monteiro & Azevedo, 2010). As in other
metabolically active tissues undergoing increased demand,
there is usually relative hypoxia together with the increased
need for nutrient oxidation, which results in unusually
high amounts of ROS, activating in turn kinases like JUN
N-terminal kinase 1 (JNK1), JNK, p38 mitogen-activated
protein kinase (MAPK) or inhibitor of NFκB kinase (IKK),
thereby interfering with insulin signalling either directly or
indirectly (via induction of NFκB and increased cytokine
production) (Qatanani & Lazar, 2007).

Obesity also induces accumulation of macrophages in
the adipose tissue, which further increases the secretion
of pro-inflammatory mediators (Weisberg et al. 2003;
Xu et al. 2003), with insulin resistance promoting
macrophage activation through NF-κB or activator
protein-1 (AP-1) signalling (Olefsky & Glass, 2010).
Finally, the pro-inflammatory cytokines (TNF-α, IL-1β

and IL-6) secreted by the macrophages accumulated in
the ‘obese’ adipose tissue also stimulate adipocytes to
further secrete leptin and pro-inflammatory cytokines
such as TNF-α (Mantzoros et al. 1997; Papathanassoglou
et al. 2001). Of note, although IL-6 has been
traditionally considered as a pro-inflammatory cytokine,

its link with obesity-associated inflammation is more
controversial, with recent mechanistic research actually
indicating an unexpected anti-inflammatory role of IL-6,
which limits pro-inflammatory gene expression and
augments IL-4 responsiveness in macrophages, thereby
attenuating the typical shift of macrophage populations
towards a pro-inflammatory (M1) phenotype (Mauer
et al. 2014).

Epigenetic alterations in ageing and obesity

Epigenetic modifications are heritable changes, such
as DNA methylation, post-translational modification of
histones, chromatin remodelling or noncoding RNA
expression that occur over life and affect gene expression
without actually changing the DNA sequence (Holliday
& Pugh, 1975; Wolffe & Guschin, 2000). Many of these
epigenetic changes are necessary for normal cellular
development and differentiation, involving stem cells,
but abnormalities may also occur due to inappropriate
epigenetic signalling (Tollervey & Lunyak, 2011, 2012).
Epigenetic changes are induced by physiological and
pathological conditions as well as environmental (Aguilera
et al. 2010; Ling & Ronn, 2014; Pareja-Galeano
et al. 2014) or nutritional-related factors, e.g. the
phytochemicals resveratrol and curcumin act as epigenetic
modifiers that can potentially delay ageing (Huffman,
2012; Martin et al. 2013). The systems in charge of
generation and maintenance of epigenetic patterns include
DNA methyltransferases, histone acetylases, deacetylases,
methylases and demethylases, and the protein complex
involved in chromatin remodelling (Lopez-Otin et al.
2013; Sanchis-Gomar et al. 2014).

Major age-induced epigenetic marks are increased
histone H4K16 acetylation, H4K20/H3K4/H3K27
trimethylation and decreased H3K9 methylation (Fraga
& Esteller, 2007; Han & Brunet, 2012). Ageing is also
accompanied by a dramatic change in the distribution
of 5-methylcytosine across the genome, resulting in a
decrease in global DNA methylation (Li et al. 2011).
Epigenetic deregulation with age is tissue dependent, e.g.
animal research suggests significant differences in DNA
methylation with age in the liver and visceral adipose
tissue (Thompson et al. 2010). In the adipose tissue,
senescence is associated with chromatin dysregulation
(Stransky et al. 2012). Other epigenetic alterations in
the aged adipose tissue involve RNA splicing, mRNA
metabolism, and plasma membrane and mitochondrial
metabolism, and differ between adipocytes and stromal
vascular fractions (Stransky et al. 2012).

Epigenetic alterations are also involved in obesity.
A high BMI relates to accelerated DNA methylation
in a tissue-specific manner; thus, obese individuals
show increased epigenetic age of liver (Horvath et al.
2014). The subcutaneous adipose tissue of obese women
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is characterized by changes in DNA methylation and
expression of genes linked to generation, distribution
and metabolic function of fat cells (Arner et al.
2015). Differential methylation of the gene (LPL)
encoding lipoprotein lipase (which hydrolyses circulating
triglyceride-rich lipoproteins with subsequent fatty acid
uptake into the adipose tissue) might be linked to
obesity and regional fat distribution (Drogan et al. 2015).
Finally, obesity-induced inflammation induces a specific
miRNA pattern in adipocytes and macrophages (Ortega
et al. 2015). Further research might elucidate common
epigenetic signatures of ageing and obesity, especially in
genes modulating adipose tissue function.

Additional mechanistic evidence in support of the link
between ageing and obesity: implications of caloric
restriction and loss of adiposity in the ageing process

Cigarette smoking was the major risk for environmentally
related death in the United States at the end of the
20th century whereas it is now the epidemic of obesity,
suggesting that calorie intake contributes to human ageing
and lifespan (Barzilai & Bartke, 2009). Indeed, obesity
leads to reduced lifespan and clinical consequences similar
to those common in ageing (Ahima, 2009; Tchkonia
et al. 2010), whilst caloric restriction has an opposite
effect, reducing ageing and improving glucose homeo-
stasis. As reviewed by Barzilai & Bartke (2009), (i)
caloric restriction experiments in rodents have proven
reliable in showing an overall dose–response benefit on
lifespan; (ii) such an effect has been corroborated in
other mammalian species including dogs and rabbits,
and preliminary results in rhesus monkeys would also
indicate that this intervention can increase longevity; and
(iii) calorie-restricted animals seem robust until a late
age, that is, they have not only a longer lifespan but also
a longer ‘health span’, and the most consistent physio-
logical effects of caloric restriction are reduced body
weight and temperature. Importantly, a main effect of a
lifespan-extending intervention such as caloric restriction
is reduction of visceral fat (Barzilai & Gupta, 1999b;
Masoro, 2006). Further, lifespan is also extended: (i) in
fat cell insulin receptor, insulin receptor substrate-1 and
S6 kinase-1 deficient (knockout) mice (each of which has
limited fat development; Bluher et al. 2003; Um et al. 2004;
Selman et al. 2008; Selman et al. 2009); (ii) in growth
hormone receptor knockout (GHRKO) mice (which have
delayed increase in the ratio of visceral to subcutaneous
and reduced fat cell progenitor turnover; Berryman et al.
2008); (iii) with rapamycin treatment (which limits fat
tissue development; Chang et al. 2009; Harrison et al.
2009); and (iv) after surgical removal of visceral fat in
rats (Muzumdar et al. 2008).

In humans, overall and abdominal obesity are associated
with greater mortality risk in adults aged<65 years and the

association seems stronger with measures of abdominal
obesity than with measures of overall obesity or fat-free
mass (Kuk & Ardern, 2009b). In 116,564 middle-aged
women (30–55 years) free of known CVD and cancer,
even a modest weight gain during adulthood, independent
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Figure 2. Schematic representation of potential mechanisms
explaining the link between obesity and ageing
Abbreviations: BAT, brown adipose tissue; FFA, free fatty acids; PVAT,
perivascular adipose tissue; ROS, reactive oxygen species; SIRT1,
sirtuin 1. Symbols: →, stimulation; �, inhibition.
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of physical activity, was associated with a higher risk of
death (Hu et al. 2004). Finally, in obese adults, intentional
weight loss may be associated with an �15% reduction
in all-cause mortality as shown in a recent meta-analysis
of 15 randomized controlled trials that included a total of
17,186 participants (53% female) with an average age of
52 years at baseline (Kritchevsky et al. 2015).

Conclusions

The last decades have been exciting for clinicians and
researchers interested in understanding the broader
health consequences of excess adiposity. There is now
consistent evidence that obesity, a worldwide health
concern, may be linked not only to a number of
age-related disorders, but also to ageing itself. However,
our knowledge of the molecular mechanisms through
which obesity may promote accelerated senescence
remains only partial. Evidence indicates that accumulation
of a dysfunctional adipose tissue promotes SIRT1
hypo-expression, inflammation and epigenetic patterns,
among other alterations, which might explain a
mechanistic link between ageing and obesity (see Fig. 2
for a summary of the potential mechanistic links
between obesity and ageing). From the point of view
of basic research, the development of high-throughput
technologies will allow the collection of large amounts
of data concerning the commonalities and dissimilarities
between the pathophysiological underpinnings of obesity
and ageing. From an epidemiological perspective, the
potential links between obesity and ageing under the new
‘adipaging’ framework (postulating a common soil for the
two conditions) should prompt future studies aimed at
investigating whether interventions that may reduce the
burden of obesity may also promote ‘well-ageing’ at the
population level.
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