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A Common Variant at the 14q32 Endometrial Cancer Risk
Locus Activates AKT1 through YY1 Binding

Jodie N. Painter,1 Susanne Kaufmann,1 Tracy A. O’Mara,1 Kristine M. Hillman,1 Haran Sivakumaran,1

Hatef Darabi,2 Timothy H.T. Cheng,3 John Pearson,1 Stephen Kazakoff,1 Nicola Waddell,1

Erling A. Hoivik,4,5 Ellen L. Goode,6 Rodney J. Scott,7,8,9,10 Ian Tomlinson,3 Alison M. Dunning,11

Douglas F. Easton,11,12 Juliet D. French,1 Helga B. Salvesen,4,5 Pamela M. Pollock,13

Deborah J. Thompson,12 Amanda B. Spurdle,1 and Stacey L. Edwards1,*

A recent meta-analysis of multiple genome-wide association and follow-up endometrial cancer case-control datasets identified a novel

genetic risk locus for this disease at chromosome 14q32.33. To prioritize the functional SNP(s) and target gene(s) at this locus, we

employed an in silico fine-mapping approach using genotyped and imputed SNP data for 6,608 endometrial cancer cases and 37,925

controls of European ancestry. Association and functional analyses provide evidence that the best candidate causal SNP is rs2494737.

Multiple experimental analyses show that SNP rs2494737 maps to a silencer element located within AKT1, a member of the PI3K/

AKT/MTOR intracellular signaling pathway activated in endometrial tumors. The rs2494737 risk A allele creates a YY1 transcription fac-

tor-binding site and abrogates the silencer activity in luciferase assays, an effect mimicked by transfection of YY1 siRNA. Our findings

suggest YY1 is a positive regulator of AKT1, mediating the stimulatory effects of rs2494737 increasing endometrial cancer risk. Identi-

fication of an endometrial cancer risk allele within a member of the PI3K/AKT signaling pathway, more commonly activated in tumors

by somatic alterations, raises the possibility that well tolerated inhibitors targeting this pathway could be candidates for evaluation as

chemopreventive agents in individuals at high risk of developing endometrial cancer.
Introduction

Endometrial cancer (MIM: 608089) (cancer of the lining of

the uterine corpus) is the fourth most diagnosed cancer in

women in Europe and North America.1,2 To date, analyses

of multiple genome-wide association study (GWAS) and

follow-up datasets, comprising up to 7,737 endometrial

cancer cases and 37,144 controls, have identified seven

risk loci at genome-wide significance for this disease,

including HNF1B (MIM: 189907),3,4 CYP19A1 (MIM:

107910),5 and novel loci on chromosomes 13q22.1,

6q22.31, 8q24.21, 15q15.1, and 14q32.33.6 The lead SNP

at the 14q32.33 locus, rs2498796, represents a single asso-

ciation signal located in the region of the AKT1 (MIM:

164730) oncogene.6 AKT1 is a member of the P13K/AKT/

MTOR intracellular signaling pathway affecting cell sur-

vival and proliferation.7 This gene is of particular interest

for endometrial cancer as increased PI3K/AKT/MTOR

signaling is a common occurrence in endometrial tumors,

and in aggressive subtypes in particular.8 Somatic alter-

ations in one or more members of the PI3K/AKT/MTOR

signaling pathway are common, with PTEN (MIM:

601728) as the most frequently altered gene.9 Moreover,
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high PIK3CA (MIM: 171834) copy number and elevated

levels of phosphorylated AKT have been associated with

aggressive disease.8,10,11 Our previous bioinformatic anal-

ysis indicated that rs2498796 and other SNPs in high link-

age disequilibrium (LD) with this SNP might also regulate

other nearby genes SIVA1 (MIM: 605567), ZBTB42

(MIM: 613915), ADSSL1 (MIM: 612498), and INF2 (MIM:

610982).6 Here, we detail in silico fine-mapping and bio-

informatic investigation of an expanded set of genotyped

and imputed SNPs at 14q32.33, derived from the meta-

analysis dataset described above, and multiple laboratory

analyses to identify the functional SNP(s) and target

gene(s) increasing endometrial cancer risk at this locus.
Material and Methods

Previously, meta-analysis of data for 7,737 endometrial cancer

cases and 37,144 controls of European ancestry from three

GWAS datasets (ANECS, SEARCH, and NSECG) and two follow-

up datasets (iCOGs and NSECG Phase 2) identified rs2498796

(OR ¼ 1.12 for the minor A allele, 95% CI:1.07–1.17, p value ¼
3.553 10�8) as the top SNP representing a single association signal

at the 14q32.33 endometrial cancer risk locus.6 For the current
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study we employed an in silico fine-mapping approach12 previ-

ously used to fine-map other endometrial cancer risk loci,4,5,13,14

focussing on the 1Mb region surrounding rs2498796 (bases

104,743,220-105,743,220; NCBI build 37/hg19 assembly). The

current analysis utilized genotyped and imputed SNP data for

the three GWAS (ANECS, SEARCH, and NSECG) and the iCOGs

follow-up datasets and included a total of 6,608 endometrial can-

cer cases and 37,925 controls (details of these datasets can be

found in4,5). The Cheng et al. analysis had included a total of

420 genotyped and imputed SNPs with minor allele frequencies

(MAF) R1% and information scores R0.9 per dataset within

the focal region.6 To expand the search for potentially functional

SNPs, we considered all genotyped and imputed SNPs (N ¼ 2,922)

with MAF R1% and information scores R0.4 per dataset. As

described previously4, regional imputation to the 1,000 Genomes

v3 2012 release was conducted separately for each of the four

datasets, based on inference panels of SNPs typed for each dataset,

using IMPUTE v2.15 Association testing was performed separately

for each dataset using frequentist tests with a logistic regression

model in SNPTEST v2.16, and standard fixed effects meta-analysis

using the beta estimates and standard errors per dataset conducted

using METAL.17 The regional association plot was created using

LocusZoom.18 Log-likelihood tests were used to determine the

most likely causal SNPs by comparing the log-likelihoods obtained

from the meta-analysis of our top SNPs (p < 10-6) with that of

the most significantly associated SNP. SNPs with odds of 100:1

or better of being the top SNP were prioritized as potential causal

candidates for bioinformatic and functional analyses.4,19,20 LD be-

tween SNPs was calculated from European Phase 3 1000 Genomes

data and accessed from the National Cancer Institute LDlink

tool.21
Bioinformatic Analysis
Bioinformatic analyses on SNPs prioritized by the log-likelihood

tests were performed using publically available datasets from

ENCODE22, which includes information such as the location of

promoter and enhancer histone marks, open chromatin, bound

proteins and altered motifs for the Ishikawa endometrial cancer

cell line. Data from Hnisz et al.23 and PreSTIGE24 was accessed to

identify the location of likely enhancers and their gene targets

in a cell-specific context.
Expression Analyses
Expression quantitative trait locus (eQTL) analyses were conduct-

ed using uterine tissue-specific data (N ¼ 70) generated by the Ge-

notype-Tissue Expression Project (GTEx)25, and SNP (Affymetrix

6.0 arrays), RNA-seq and copy number (CNV) data for endometrial

carcinoma samples (N ¼ 526) and normal tissue samples adjacent

to endometrial carcinoma (N ¼ 29) obtained from restricted (SNP

and RNA-Seq) and public (CNV) data portals of The Cancer

Genome Atlas (TCGA).26 For the TCGA data, to investigate the

expression of all AKT1 isoforms, including unannotated tran-

scripts, unprocessed RNA-Seq FASTQ files were adapter trimmed

using cutadapt (v1.8.1) and aligned to the Ensembl27 GRCh37

reference (version 70) using STAR28 (v2.4.2a). RNA-SeQC29

(v1.1.8.1) was used to assess sequencing quality for all aligned

data. Gene and transcript counts were estimated using RSEM30

(v1.2.22). Genotypes for AKT1 region SNPs present in the 1000

Genomes v3 2012 dataset which were not present on the Affyme-

trix 6.0 arrays were imputed using MaCH31,32 and minimac33,34

software. eQTL analyses were performed on transcripts expressed
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in >80% of samples using Kruskal-Wallis tests adjusting for copy

number and sequencing method, with Bonferroni corrected

p values < 0.006 (0.05/8 transcripts per SNP) considered statisti-

cally significant.
Cell Lines
Endometrial cancer cell lines Ishikawa and EN-1078D (both het-

erozygous for the SNPs under investigation) were grown in

DMEM medium with 10% FCS and antibiotics. Cell lines were

maintained under standard conditions, routinely tested for

Mycoplasma and short tandem repeat (STR) profiled to confirm

cell line identity.
Chromatin Conformation Capture
Chromatin conformation capture (3C) libraries were generated us-

ing NcoI as described previously.35 3C interactions were quanti-

tated by real-time PCR (qPCR) using primers designed within

restriction fragments (Table S1). All qPCR was performed on a

RotorGene 6000 using MyTaq HS DNA polymerase (Bioline)

with the addition of 5 mM of Syto9, annealing temperature of

66�C and extension of 30 s. 3C analyses were performed in three

independent 3C libraries from each cell line with each experiment

quantified in duplicate. BAC clones covering the 14q32 region

were used to create artificial libraries of ligation products in order

to normalize for PCR efficiency. Data were normalized to the signal

from the BAC clone library and, between cell lines, by reference to

a region within GAPDH (MIM: 138400).35 All qPCR products were

electrophoresed on 2% agarose gels, gel purified, and sequenced to

verify the 3C product.
Electromobility Shift Assays
Gel shift assays were performed with Ishikawa and EN-1078D nu-

clear lysates and biotinylated oligonucleotide duplexes (Table S2).

Nuclear lysates were prepared using the NE-PER nuclear and cyto-

plasmic extraction reagents (Thermo Fisher Scientific) as per the

manufacturer’s instructions. Total protein concentrations in nu-

clear lysates were determined by Bradford’s method. Duplexes

were prepared by combining sense and antisense oligonucleotides

in NEBuffer2 (New England Biolabs) and heat annealing at 80�C
for 10 min and slow cooling to 25�C for 1 hr. Binding reactions

were performed in binding buffer (10% [vol/vol] glycerol,

20 mM HEPES [pH 7.4], 1 mM DTT, protease inhibitor cocktail

[Roche], 0.75 mg poly[dI:dC] [Sigma-Aldrich]) with 7.5 mg of nu-

clear lysate. For competition assays, binding reactions were pre-

incubated with 1 pmol of competitor duplex (Table S3) at 25�C
for 10 min before the addition of 10 fmol of biotinylated oligo

duplex and a further incubation at 25�C for 15 min. For gel-super-

shift assays, 5 mg of rabbit polyclonal YY1 antibody (Santa Cruz

H-414) or C/EBP antibody (Santa Cruz sc-150) was added immedi-

ately before probe addition. The rabbit pre-immune IgG (Santa

Cruz sc-2027) was used as a negative control. Reactions were sepa-

rated on 10% (WT/vol) Tris-Borate-EDTA (TBE) polyacrylamide

gels (Bio-Rad) in TBE buffer at 160 V for 40 min. Duplex-bound

complexes were transferred onto Zeta-Probe positively-charged

nylon membranes (Bio-Rad) by semi-dry transfer at 25 V for

20 min then cross-linked onto the membranes under 254 nm

ultra-violet light for 10 min. Membranes were processed with

the LightShift Chemiluminescent EMSA kit (Thermo Fisher Scien-

tific) as per the manufacturer’s instructions. Chemiluminescent

signals were visualized with the C-DiGit blot scanner (LI-COR).
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Table 1. Association of the Top Candidate Causal SNPs at Chromosome 14q32.33 with Endometrial Cancer Risk

SNP Position (Build 19) Minor allele Common allele MAFa OR (95% CI)b p value r2 to rs2498796 Likelihood ratioc

rs2498794 105245251 G A 0.48 1.13 (1.09–1.17) 8.7 3 10�9 0.43 1

rs2494737 105246325 A T 0.30 1.13 (1.08–1.17) 2.5 3 10�7 0.83 26

rs2498796 105243220 A G 0.30 1.11 (1.07–1.16) 1.2 3 10�6 – 120

aMinor (risk-increasing) allele frequency.
bOR for the effect allele.
cRatio of the likelihood of rs2498794 to the likelihood of this SNP.
Plasmid Construction and Reporter Assays
Promoter-driven luciferase reporter constructs were generated by

the insertion of PCR amplified fragments containing AKT1 canon-

ical (can), AKT1 alternative (alt), or ZBTB42 promoters into the

MluI and BglII sites of pGL3-Basic. A 2537 bp fragment containing

a putative regulatory element (PRE) identified by bioinformatic

analysis was generated by PCR and cloned into BamHI and SalI

sites of themodified pGL3-promoter constructs (Table S4). Themi-

nor (risk-increasing) alleles of individual SNPs were introduced

into the PRE sequences by overlap extension PCR or gBlocks (Inte-

grated DNATechnologies). Sequencing of all constructs confirmed

variant incorporation (Australian Genome Research Facility).

Ishikawa and EN-1078D cells were transfected with equimolar

amounts of luciferase reporter plasmids and 50 ng of pRL-SV40

transfection control plasmid with Lipofectamine 2000. The total

amount of transfected DNA was kept constant at 600 ng for

each construct by the addition of pUC19 as a carrier plasmid.

Luciferase activity was measured 24 hr post-transfection by the

Dual-Glo Luciferase Assay System. To correct for any differences

in transfection efficiency or cell lysate preparation, we normalized

Firefly luciferase activity to Renilla luciferase and measured the ac-

tivity of each construct relative to the promoter alone construct,

which had a defined activity of 1. Statistical significance was tested

by log transforming the data and performing two-way ANOVA,

followed by Dunnett’s multiple comparisons test in GraphPad

Prism.
siRNA Silencing for Reporter Assays
Two Silencer Select siRNAs against YY1 (siYY1; s224779) and a

Silencer Select nontargeting siRNA (siCON; 4390843) were pur-

chased from Life Technologies (Thermo Fisher Scientific). For

silencing, Ishikawa cells were co-transfected with the relevant

luciferase reporter plasmids and 100 nM of either YY1 or non-tar-

geting siRNAs with Lipofectamine 2000. Luciferase assays were

performed as described above after 72 hr. qPCR was performed

as described previously36 to validate YY1 knockdown.
Chromatin Immunoprecipitation
Ishikawa cells were cross-linked with 1% formaldehyde at 37�C for

10 min, rinsed once with ice-cold PBS containing 5% BSA and

once with PBS, and harvested in PBS containing 1X protease in-

hibitor cocktail (Roche). Harvested cells were centrifuged for

2 min at 3,000 rpm. Cell pellets were resuspended in 0.35 mL of

lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1, 1X

protease inhibitor cocktail) and sonicated 3 times for 15 sec at

70% duty cycle (Branson SLPt) followed by centrifugation at

13,000 rpm for 15 min. Supernatants were collected and diluted

in dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl,

20 mM Tris-HCl, pH 8.1). Two micrograms of antibody was pre-
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bound for 6 hr to protein G Dynabeads (Life Technologies) and

then added to the diluted chromatin for overnight immuno-

precipitation. The magnetic bead-chromatin complexes were

collected and washed six times in RIPA buffer (50 mM HEPES

[pH 7.6], 1 mM EDTA, 0.7% Na deoxycholate, 1% NP-40, 0.5 M

LiCl), then twice with TE buffer. To reverse the cross-linking, the

magnetic bead complexes were incubated overnight at 65�C in

elution buffer (1% SDS, 0.1 M NaHCO3). DNA fragments were pu-

rified using a QIAquick Spin Kit (Qiagen). For qPCR, 2.0 uL from a

100 uL immunoprecipitated chromatin extraction and 40 cycles of

amplification were used. All PCR products were sequenced by

Sanger sequencing (AGRF). Antibodies used were anti-NFkB p50

(06-886), anti-YY1 (sc-1703-X), and control IgG (sc-2027). ChIP

primers are listed in Table S5.
Results

Association and Likelihood Testing at the 14q32.33

Endometrial Cancer Risk Locus Prioritizes Three SNPs

for Follow-Up

A total of 2,922 SNPs with MAF R1% and information

scores R0.4 per endometrial cancer dataset were included

in the fine-mapping analysis, representing 76.6% of the

SNPs with a MAF R1% in the 1000 Genomes 2012 refer-

ence panel in this region (hg19 chr14: 104,743,220-

105,743,220; Table S6). Considering SNPs correlated

(r2 > 0.2) with rs2498796, the previously reported top

endometrial cancer risk SNP at this locus,6 coverage was

good, with >94% of correlated SNPs in the same 1000

Genomes reference panel represented in each dataset.

Association and log-likelihood tests prioritized two SNPs

for bioinformatic and functional follow-up: rs2498794

(OR ¼ 1.13, 95% CI 1.09–1.17, p value 8.7 3 10-9) and

rs2494737 (OR ¼ 1.13, 95% CI 1.08–1.17, p value 2.5 3

10-7; Table 1 and Table S7). No other SNP was significant

at p < 1 3 10-4 in analyses conditioning on rs2498794 or

rs2494737 (r2 to each other 0.54, Table S7), confirming

the single association signal at this locus (Figure 1). As

SNP rs2498796 (p value 1.2 3 10-6 in the current analysis,

r2 to rs2498794 0.43, and to rs2494737 0.83; Table 1) was

the original endometrial cancer risk SNP reported for

this locus, it was also included in the bioinformatic and

functional analyses detailed below. Neither rs2498794

nor rs2494737 had been reported in our previous

genome-wide analysis because of the more stringent impu-

tation threshold used in that study.
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Figure 1. Regional Association Plot for the 14q32.33 Endome-
trial Cancer Risk Locus
The location (Build 19) and –log10 p value of the original top SNP
at this locus, rs2498796,6 is shown in purple; all other SNPs are
shown in colors corresponding to their r2 (linkage disequilibrium)
value with rs2498796.
The Top Candidate SNPs Fall within a Putative

Regulatory Element that Frequently Interacts with

AKT1 and ZBTB42 Promoter Regions

Analysis of cis enhancer-gene interactions using data from

Hnisz et al.23 and PreSTIGE24 identified AKT1, ZBTB42,
Figure 2. Regulatory Landscape at the 14q32.33 Endometrial Can
(A) The location of the candidate SNPs are represented by black ticks,
with exons (vertical boxes) joined by introns (lines). The subset of en
the candidate causal SNPs are shown as colored bars, where the colorm
(H3K4Me1, indicative of regulatory regions; H3K4Me3, indicative of
hypersensitivity (indicative of open chromatin, with darker shading
(TF) binding in multiple ENCODE cell lines are indicated at the bott
(B) Zoomed-in view of the location of candidate SNPs, PRE, and nea
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SIVA1, ADSSL1, and INF2 as potential candidate target

genes of a PRE located in the region containing the top

candidate SNPs (Figure 2). To determine the target gene(s)

of the PRE, we performed chromosome conformation cap-

ture (3C) using an anchor primer within the PRE and

primers within restriction fragments spanning all protein

coding gene promoters within 2Mb of the PRE. The results

showed that the PRE frequently interacted with a canoni-

cal and alternative promoter of AKT1 and the ZBTB42 pro-

moter in both Ishikawa and EN-1078D endometrial cancer

cells (Figures 3A and 3B). To assess any potential impact

of SNP rs2494737 on chromatin looping, we performed

allele-specific 3C in heterozygous Ishikawa cell lines.

A primer was designed to incorporate the rs2494737 into

the 3C PCR products, which were then Sanger sequenced.

The sequence profiles indicate that the cancer risk- and

non-risk-associated rs2494737 alleles form loops with

the AKT1 and ZBTB42 promoters with equal efficiencies

(Figure S1). No significant interactions were detected be-

tween the PRE and other flanking genes including SIVA1,

ADSSL1, INF2, and CEPB170B (Figure 3A and Figure S2).
SNP rs2494737 Affects the Regulatory Capability of

the PRE on AKT1 Promoter Regions

The regulatory capability of the PRE, combined with the

effects of candidate SNPs, was examined in luciferase
cer Risk Locus
and the PRE is shown as a black box. Gene structures are depicted
hancers predicted in Hnisz et al.23 and PreSTIGE24 which overlap
atches its predicted gene target. Regions showing histone binding
promoters; and H3K27Ac, indicative of active enhancers), DNAseI
indicating stronger experimental signal) and transcription factor
om of the panel.
rby gene promoter regions.

2, 2016



Figure 3. Candidate Causal SNPs Are
Located within a PRE that Interacts with
the AKT1 and ZBTB42 Promoter Regions
(A) 3C interaction profiles between the PRE
and local genes in Ishikawa and EN-1078D
endometrial cancer cell lines. The 3C an-
chor (which contains the PRE) is shown
as a grey box and significant interactions
are outlined.
(B) Zoomed-in view of significant interac-
tions. AKT1 Can and AKT1 Alt denote a
canonical and alternative AKT1 promoter
(prom) region, respectively. 3C libraries
were generatedwithNcoI. Graphs represent
three biological replicates. Error bars repre-
sent SD. Regions cloned into reporter gene
constructs are shown as grey horizontal
boxes.
reporter assays in Ishikawa and EN-1078D cell lines. PRE

constructs containing the reference (common, protective)

alleles of the three candidate SNPs significantly reduced

their associated target gene promoter activities, suggesting

that the PRE can act as a transcriptional silencer (Figure 4

and Figure S3). Inclusion of the minor (risk-increasing)

allele of rs2494737 significantly increased the canonical

and alternative AKT1 promoter activities in both cell

lines, but had no effect on the ZBTB42 promoter. In

contrast, inclusion of the minor (risk-increasing) alleles

of SNPs rs2498796 and rs2498794 had no significant ef-

fects on AKT1 or ZBTB42 promoter activities (Figure 4

and Figure S3).

The Risk Allele of SNP rs2494737 Binds the YY1

Transcription Factor

We used bioinformatic analyses and functional studies to

examine DNA-protein interactions for the three candidate

SNPs. In silico prediction tools including HaploReg37

and Alibaba238 predicted all three SNPs to alter transcrip-

tion factor (TF) binding (Table S8 and Figure S4). We per-

formed electrophoretic mobility shift assays (EMSAs)

to assess binding of TFs to the common (protective) and

minor (risk-increasing) alleles of each of these SNPs and

showed allele-specific protein binding for rs2494737 and

rs2498796 (Figure 5A and Figure S5). Competition with

TF binding sites suggested that YY1 binds to the minor

(risk-increasing) allele of rs2494737 and NF-kB binds to

the common allele of rs2498796 (Figure 5B and Figure S5).

No other predicted TFs were able to compete for binding at

either site, including CEBPA, AP2, and CREB (Figure S5).

Supershift assays using anti-YY1 antiserum indicated that

the protein binding the minor allele of rs2494737 is likely

to be YY1 (Figure S6). Chromatin immunoprecipitation

(ChIP) in heterozygous Ishikawa cells confirmed occu-

pancy of YY1 binding in vivo and showed it is preferen-

tially recruited to the minor A (risk-increasing) allele of
The Americ
rs2494737 (Figures 5C and 5D and Figure S7). The impor-

tance of YY1 binding was confirmed in cotransfection as-

says that showed that two independent siRNAs against

YY1 repressed the promoter activation in the presence

of the minor A allele of rs2494737 (Figure 5E and

Figure S8). We found no evidence of CEBPA binding to

the rs2494737 site or NF-kB binding to the rs2498796

site in vivo.
Gene-Expression Analysis in Uterine Tissue

Association between SNPs in the AKT1 region and AKT1

mRNA expression was investigated in both normal and

endometrial tumor tissue. In the GTEx dataset, with the

three candidate SNPs as input, rs2497896 was associated

with increased AKT1 expression in normal uterine tissue

(sample N ¼ 70, p ¼ 0.01, Figure S9), but no eQTL effect

was detected for rs2494737 or rs2498794, suggesting a

stochastic effect due to the reasonably small sample size

as these SNPs are in moderate to high LD with each other.

Performing an eQTL search for AKT1 in uterine tissue

returned no results. However, including all GTEx tissues re-

vealed all three candidate SNPs, and others in moderate to

high LD, to be highly significantly associated with AKT1

expression in thyroid tissue (N ¼ 278; rs2494737 ¼ 3.6 3

10�14, rs2498796 ¼ 5.10310�25, and rs2498794¼6.1 3

10�19; Table S7), indicating these SNPs are eQTLs for

AKT1 in some cellular contexts. In the TCGA datasets, no

SNP in the AKT1 region was associated with differential

AKT1 expression of any isoform in normal endometrial

tissue (N ¼ 29) or in endometrial tumors (N ¼ 526;

Figure S10).
Discussion

In the largest association study for endometrial cancer to

date, a recent meta-analysis of five GWAS and follow-up
an Journal of Human Genetics 98, 1159–1169, June 2, 2016 1163



Figure 4. The Risk Allele of SNP rs2494737 Enhances AKT1 Pro-
moter Activity
Luciferase reporter assays following transient transfection of Ishi-
kawa endometrial cancer cell lines. The putative regulatory
element (PRE) containing the major SNP alleles were cloned
downstream of target gene promoter-driven luciferase constructs.
AKT1 can and AKT1 alt denote a canonical and alternative AKT1
promoter (prom) region, respectively. Minor (risk-increasing)
SNP alleles were engineered into the constructs and are designated
by the rs ID of the corresponding SNP. Haplotype denotes a
construct that contains the minor alleles of rs2498796 and
rs2494737. Error bars denote 95% confidence intervals from three
independent experiments performed in duplicate. P values were
determined by 2-way ANOVA followed by Dunnett’s multiple
comparisons test (**p < 0.01, ****p < 0.0001).
datasets revealed the presence of one multi-variant haplo-

type at the 14q32.33 chromosomal locus associated with

the risk of this cancer.6 In consideration of the fact that

our genotyping platforms were not specifically designed

for fine-mapping of this region, we conducted in silico

fine-mapping of the 14q32 region using SNPs with imputa-

tion scores down to 0.4. We identified two SNPs as most

likely to be the causal SNPs increasing endometrial cancer

risk in this region: SNPs rs2498794 and rs2494737, inmod-

erate and high LD, respectively, with the original hit at

this locus rs2498796.6 Multiple laboratory analyses then

confirmed that rs2494737 has a functional impact on the

AKT1 oncogene, a gene of potential biological relevance

to endometrial cancer risk as other PI3K pathway muta-

tions have been detected in precursor lesions of complex

atypical endometrial hyperplasia.39

Our fine-mapping, together with multiple lines of

bioinformatic and experimental evidence indicate that

rs2494737 is the functional SNP most likely to be relevant

for endometrial cancer at the 14q32 risk locus. However,

additional bioinformatic analyses indicated multiple regu-

latory elements across the region that contained several
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less significantly risk-associated SNPs. Additionally, our

SNP coverage of the region was not complete, although

~98% of SNPs in at least moderate LD (r2 > 0.2), and

100% of SNPs in high LD (r2 > 0.8), with rs2498796 in

the 1000 Genomes 2012 panel were also present in our

datasets, and imputed to high quality scores (>0.71).

Therefore, we cannot rule out the possibility that addi-

tional SNPs exert effects on AKT1 expression via alterna-

tive mechanisms. For example, at the well-characterized

8q24 risk locus, multiple risk-associated enhancers interact

with MYC in a tissue-specific manner.40 Furthermore, a

few recent studies have indicated that risk-associated

SNPs might also influence epigenetic features,41,42 adding

yet another layer of complexity to the control of gene

expression.

Publicly available enhancer data frommultiple cell types

indicate that the region harboring rs2494737 might target

a number of genes in the 14q32 region, some of which are

highly plausible endometrial cancer candidate genes. Our

3C analyses show that in endometrial tumor cells the

rs2494737 region specifically targets AKT1 and ZBTB42,

while luciferase assays showed that the rs2494737 minor

A (risk-increasing) allele affects only AKT1, increasing

the activity of both the canonical and an alternative pro-

moter. Therefore, we expect the causal risk allele to result

in increased expression of one or more AKT1 isoforms

in vivo. Although we observed no significant effect of the

rs2494737 minor allele on overall or isoform-specific

AKT1 expression in normal uterine or endometrial tumor

tissue, there are multiple possible explanations. One

reason could be that the risk allele affects AKT1 expression

in endometrial epithelial cells that represent only a frac-

tion of the total cells in a normal uterine sample, which

is composed of substantially more endometrial stromal

cells as well as underlying myometrium. Any effect on

expression might also occur only in specific cellular con-

texts. Further, the lack of association in the normal tissue

sample sets examined might also be due to low power,

with only 47% and 23% power to detect an effect of a

SNP (MAF 0.3) explaining even 5% of the variance in

AKT1 expression in the GTEx and TCGA datasets, respec-

tively. We had 99.9% power to detect the same effect in

the larger (N ¼ 526) endometrial tumor dataset, although

here any eQTL effect might be difficult to detect due to

the overall increase in AKT1 expression seen in endome-

trial tumor cells in general. The apparent discrepancy be-

tween eQTL results and our in vitro findings is not unprec-

edented: functional SNPs in CCND1 (MIM: 168461)36 and

MYC (MIM: 190080)43 show no association with gene

expression in human tumor cells, although one MYC re-

gion SNP (rs6983267) has been demonstrated to have a

functional effect in vivo.43

AKT1, a serine/threonine kinase highly expressed in the

endometrium,44 regulates many processes including cell

metabolism, proliferation, survival, growth, and angiogen-

esis45 and is already of considerable interest as a potential

therapeutic target for endometrial cancer.9,46 Activation
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Figure 5. The Risk Allele of rs2494737
Demonstrates Allele-Specific YY1 Binding
(A) EMSAs to detect allele-specific binding
of nuclear proteins. Oligonucleotides were
incubated with Ishikawa nuclear extracts.
Red arrowheads show bands of different
mobility detected between the common (C)
and minor (risk-increasing) (m) alleles for
the candidate causal SNPs.
(B) Oligonucleotides for SNP rs2494737 were
incubated with Ishikawa nuclear extracts.
Red arrowhead indicates the band that was
competed for complex formation on the mi-
nor (m) allele. Competitor oligonucleotides
are listed above each panel and were used
at 100-fold molar excess: (�) no competitor;
(Neg) a non-specific competitor; (YY1)
consensus binding site; (YY1m) an identical
oligonucleotide but with a mutated binding
site.
(C) ChIP–qPCR on SNP rs2494737 in hetero-
zygous Ishikawa cell lines. ChIP assays were
performed with YY1 antibody or non-im-
mune IgG, a region 3.2kb upstream of the
predicted YY1-binding site served as a
negative control (Control). Graphs represent
two biological replicates. Error bars denote
SD. P-values were determined with a two-
tailed t-test (**p < 0.01).

(D) Sanger sequencing of the PCR fragment generated using primers flanking SNP rs2494737 following YY1 ChIP-qPCR and the input
DNA controls.
(E) Luciferase assays in Ishikawa cells shows the effect of YY1 siRNA silencing on the activity of the AKT1 canonical (can) and alternative
(alt) promoter regions with the PRE containing the reference T allele (canþPRE; altþPRE) or the risk A allele (rs2494737). Error bars
denote 95% confidence intervals from three independent experiments performed in duplicate. P values were determined by two-way
ANOVA followed by Dunnett’s multiple comparisons test (**p < 0.01, ***p < 0.001). The level of YY1 silencing is shown in Figure S8.
of the PI3K/AKT/mTOR intracellular signaling pathway, of

which AKT1 is a member, occurs in numerous cancers9,45

and up to 80% of endometrial tumors.47 This pathway acti-

vation has been linked to somatic mutations and copy-

number alterations in various PI3K/AKT/mTOR pathway

genes, including inactivating mutations and deletion of

the PTEN tumor-suppressor gene and activating mutations

or amplifications in the PIK3R1 (MIM: 171833) and/or

PIK3CA genes.48 AKT1 mutations are rare, with an onco-

genic c.49G>A (p.Glu17Lys) (NM_005163.2) mutation

occurring in only ~2%of endometrial tumors,10,11 and acti-

vation is thought to result from the concomitant loss or

activation of upstream pathway proteins.48

Our results indicate a possible additional mechanism

whereby the presence of a common SNP allele results in

increased AKT1 transcriptional activity mediated through

YY1 and results in an increased risk of endometrial cancer.

YY1 is found at elevated levels in numerous cancers,

including breast (MIM: 114480), prostate (MIM: 176807),

and cervical cancers (MIM: 603956),49 and was recently

demonstrated to be over-expressed particularly in early

stage (I and II) endometrial tumors, indicating this tran-

scription factor could be a molecular marker of early tumor

development.50 Of note, YY1 knockdown using small

inferring RNA (siRNA) and small hairpin RNA (shRNA)

reduced YY1 protein levels, decreased cell proliferation

and reduced cell motility of the AN3CA endometrial can-

cer cell line, while siYY1 injected directly into xenograft tu-
The Americ
mors in mice delayed endometrial tumor growth.50

Although these data would suggest YY1 is a potential

therapeutic target, transcription factors are notoriously

hard to target with small molecules. The data presented

here suggests that elevated levels of YY1 are oncogenic

in part through upregulation of AKT1 expression, which

is a signaling pathway that is more amenable to drug

targeting.51

Activation of AKT1 requires translocation to the plasma

membrane followed by phosphorylation of the Thr308

and Ser473 residues: high levels of p-AKT1 are a marker of

poor prognosis in endometrial and other cancers.8,52,53 A

large number of inhibitors targeting mTOR and/or PI3K

have been tested in early clinical trials in multiple tumor

types, however, toxicity issues have complicated their

ongoing development and many have not been taken for-

ward into large phase III trials. Several AKT inhibitors are

also in development, and initial clinical activity recently re-

ported in several different solid tumor types including

breast, lung, and gynaecological tumors carrying the

AKT1 c.49G>A (p.Glu17Lys) hotspot mutation.54,55 There

is a current emphasis on reducing systemic toxicities by

optimizing scheduling as well as evaluating nanoparticles

to target these agents to tumors and reduce systemic

exposure,56 nonetheless it is unlikely that AKT inhibitors

developed for treatment of metastatic disease will have an

acceptable toxicity profile to be used as chemopreventive

agents.
an Journal of Human Genetics 98, 1159–1169, June 2, 2016 1165



A promising alternative might be the re-positioning

of the type 2 diabetes drug metformin. This drug has

multiple mechanisms of action targeting both meta-

bolism, by decreasing circulating glucose levels, as well as

altering intracellular signaling by activating AMPK.57

Activation of AMPK has been shown to inhibit mTOR, a

downstream effector of PI3K/AKT signaling. Metformin is

currently being evaluated in the adjuvant treatment of

endometrial cancer58 as well as large chemoprevention tri-

als (e.g. the Diabetes Prevention Program Outcomes

Study). It would be interesting to determine the out-

come analyses from these large-scale chemoprevention tri-

als if patients were genotyped and retrospectively stratified

based on their germline AKT1 risk alleles. Perhaps the abil-

ity of metformin to blunt mTOR signaling would

be reflected in a greater decrease in endometrial cancer

incidence in the AKT1 SNP carriers treated with

metformin.

Although our data indicate that AKT1 is the likely target

gene, it is possible that these SNPs also exert functional ef-

fects through long-range control of other genes under

different conditions of cell activation or in other cell

types, including nearby SIVA1, ZBTB42, ADSSL1, and

INF2. Notably, SIVA1 is reported to activate and suppress

apoptosis, a process dysregulated in cancer. Among other

roles, SIVA1 can inhibit p53 tumor suppressor functions

and is mutated in up to 90% of aggressive endometrial

tumors.26,59 ZBTB42 (zinc finger and BTB domain contain-

ing 42) is a poorly characterized member of the C2H2

zinc finger protein family60. It is highly expressed in

subsynaptic nuclei in skeletal muscles underlying the

neuromuscular junctions,60 and might be involved in

muscle development.61 ADSSL1 (Adenylosuccinate Syn-

thase Like 1) is a muscle isozyme that is selectively deleted

in carcinogen-induced mouse lung adenocarcinomas.62

While INF2 (Inverted Formin 2) encodes a member of the

diaphanous-related formin family, which is involved in

remodelling the actin and microtubule cytoskeltons.63

Mutations in this gene are reported to cause a form of auto-

somal-dominant focal and segmental glomerulosclerosis

and Charcot-Marie-Tooth disease.64,65

In conclusion, we have identified a common SNP allele

associated with endometrial cancer risk that functions to

increase AKT1 expression through YY1-mediated tran-

scription. Identification of an endometrial cancer risk allele

within amember of the PI3K/AKT signaling pathway, more

commonly activated in tumors by somatic alterations, rai-

ses the possibility that well-tolerated inhibitors targeting

this pathway could be candidates for evaluation as chemo-

preventive agents in individuals at high risk of developing

endometrial cancer.
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