Skip to main content
. 2016 Jun 2;98(6):1181–1192. doi: 10.1016/j.ajhg.2016.04.016

Table 1.

Benchmarks

Dataset Running Time
GCTA pylmm ALBI (0.001) ALBI (0.01)
GTEx: 100 random samples 1.05 min 3.94 s 0.27 s 0.04 s
LURIC: 100 random samples 3.98 min 5.7 s 1.27 s 0.12 s
NFBC: 100 random samples >4 hr 18.03 s 2.79 s 0.34 s
GTEx: 1,000 random samples 4.68 min 37.9 s 1.9 s 0.27 s
LURIC: 1,000 random samples 54.6 min 54.15 s 8.85 s 0.73 s
NFBC: 1,000 random samples >1 day 2.30 min 25.82 s 3.21 s

Running times of ALBI and other brute-force methods. We compare the computational costs of ALBI to those of pylmm42 and GCTA41 (see Material and Methods). We generated the estimator distribution for h2 = 0.5. For ALBI, we estimated the distributions at a precision of 0.01 and 0.001 by using 100 and 1,000 random samples. For pylmm and GCTA, we generated 100 and 1,000 random phenotypes. GCTA did not converge for ∼7% of the random samples. Running times are reported for the GTEx (185 individuals), LURIC (867 individuals), and NFBC (2,520 individuals) datasets.