
ARTICLE

Mutations in GANAB, Encoding the Glucosidase IIa
Subunit, Cause Autosomal-Dominant Polycystic Kidney
and Liver Disease

Binu Porath,1,16 Vladimir G. Gainullin,1,16 Emilie Cornec-Le Gall,1,2,3 Elizabeth K. Dillinger,4

Christina M. Heyer,1 Katharina Hopp,1,5 Marie E. Edwards,1 Charles D. Madsen,1 Sarah R. Mauritz,1

Carly J. Banks,1 Saurabh Baheti,6 Bharathi Reddy,7 José Ignacio Herrero,8,9,10 Jesús M. Bañales,11

Marie C. Hogan,1 Velibor Tasic,12 Terry J. Watnick,13 Arlene B. Chapman,7 Cécile Vigneau,14

Frédéric Lavainne,15 Marie-Pierre Audrézet,2 Claude Ferec,2 Yannick Le Meur,3 Vicente E. Torres,1

Genkyst Study Group, HALT Progression of Polycystic Kidney Disease Group, Consortium for
Radiologic Imaging Studies of Polycystic Kidney Disease, and Peter C. Harris1,4,*

Autosomal-dominant polycystic kidney disease (ADPKD) is a common, progressive, adult-onset disease that is an important cause of

end-stage renal disease (ESRD), which requires transplantation or dialysis. Mutations in PKD1 or PKD2 (~85% and ~15% of resolved

cases, respectively) are the known causes of ADPKD. Extrarenal manifestations include an increased level of intracranial aneurysms

and polycystic liver disease (PLD), which can be severe and associated with significant morbidity. Autosomal-dominant PLD (ADPLD)

with no or very few renal cysts is a separate disorder caused by PRKCSH, SEC63, or LRP5 mutations. After screening, 7%–10% of

ADPKD-affected and ~50% of ADPLD-affected families were genetically unresolved (GUR), suggesting further genetic heterogeneity

of both disorders. Whole-exome sequencing of six GUR ADPKD-affected families identified one with a missense mutation in GANAB,

encoding glucosidase II subunit a (GIIa). Because PRKCSH encodes GIIb, GANAB is a strong ADPKD and ADPLD candidate gene. Sanger

screening of 321 additional GUR families identified eight further likely mutations (six truncating), and a total of 20 affected individuals

were identified in seven ADPKD- and two ADPLD-affected families. The phenotype was mild PKD and variable, including severe, PLD.

Analysis of GANAB-null cells showed an absolute requirement of GIIa for maturation and surface and ciliary localization of the ADPKD

proteins (PC1 and PC2), and reducedmature PC1was seen inGANABþ/� cells. PC1 surface localization inGANAB�/� cells was rescued by

wild-type, but not mutant, GIIa. Overall, we show that GANAB mutations cause ADPKD and ADPLD and that the cystogenesis is most

likely driven by defects in PC1 maturation.
Introduction

Autosomal-dominant polycystic kidney disease (ADPKD)

is one of the most common inherited disorders—it affects

~1/1,000 individuals worldwide—and is characterized by

progressive cyst development and expansion in the kid-

neys.1,2 In ~50% of affected individuals, ADPKD results

in end-stage renal disease (ESRD), and 4%–10% of ESRD

worldwide is due to ADPKD (see GeneReviews in Web

Resources). ADPKD is caused by mutations in PKD1

(MIM: 601313) or PKD2 (MIM: 173910) (~85% and ~15%

of mutation-resolved families, respectively).3–6 Genotype-

phenotype studies indicate an average age of 55.6 years

for ESRD associated with truncating PKD1 mutations,

67.9 years for non-truncating PKD1 mutations, and 79.7

years for polycystic kidney disease 2 (PKD2 [MIM:
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613095]).7 Larger kidneys (measured by the height-

adjusted, MRI-determined total kidney volume [htTKV])

and an earlier decline in renal function (measured by

the estimated glomerular filtration rate [eGFR]) are also

associated with PKD1 (MIM: 173900).5,8 The PKD1- and

PKD2-associated proteins, polycystin 1 (PC1) and 2

(PC2), respectively, are membrane glycoproteins with

the primary cilium as a likely functional site.9 PC1 is

cleaved at the G-protein-coupled receptor proteolytic

site (GPS), and this cleavage is essential for its func-

tion.10,11 PC1 consists of two glycoforms of the N- and

C-terminal (NT and CT, respectively) GPS-cleaved prod-

ucts: (1) mature, endoglycosidase H (EndoH) resistant

(NTR and CTR) and (2) immature, EndoH sensitive (NTS

and CTS).12–14 The level of the mature glycoforms is

associated with disease severity, and forming a complex
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with PC2 is critical for PC1 maturation and surface and

ciliary localization.12,15,16

In a number of comprehensive studies of the genes

mutated in ADPKD, 7%–10% of families are genetically

unresolved (GUR).5–7,17 The typical finding of mild kidney

disease in GUR cases5 suggests that few such families are

explained by missed, fully penetrant mutations at the

complex, segmentally duplicated PKD1 locus.3,18 However,

hypomorphic mutations at the existing loci—including

those due to mosaicism,19,20 phenocopies associated with

autosomal-dominant tubulointerstitial kidney disease

(ADTKD) loci,21,22 and phenotypic and screening mis-

takes—most likely explain some unlinked and GUR fam-

ilies.23 Nevertheless, additional genetic heterogeneity

seems possible.

Subjects affected by ADPKD have a ~53 higher risk of

developing intracranial aneurysms (ICAs).24 However,

polycystic liver disease (PLD) is the most frequent extra-

renal complication in ADPKD; a minority of mainly

females develop severe PLD that requires surgical interven-

tion.25,26 Unlike severe PKD, severe PLD is not associated

with a particular genic or PKD1 allelic type.25 Isolated,

autosomal-dominant PLD (ADPLD [MIM: 174050]) is a

separate inherited disorder where severe PLD can also

occur, but renal cysts are absent or very rare.27 ADPLD is

caused by mutations in PRKCSH (MIM: 177060), SEC63

(MIM: 608648), or LRP5.28–31 PRKCSH encodes the b sub-

unit of glucosidase II (GIIb);32,33 GII is an endoplasmic-

reticulum (ER)-resident enzyme that catalyzes hydrolysis

of the middle and innermost glucose residues of peptide-

bound oligosaccharides, and it triggers quality-control

assessment of glycoprotein folding through the calnexin

and calreticulin cycle.34–39 SEC63 facilitates the transloca-

tion of secreted or membrane proteins across the ER

membrane.40–43 Induced loss of Prkcsh or Sec63 in mouse

kidneys results in PKD, and an interactive PC1-PC2

network with PC1 as the rate-limiting component has

been proposed to maintain tubular differentiation.13 This

suggests that PRKCSH mutations might act through PC1

depletion, although PC2 reduction has also been noted

with Prkcsh depletion or loss.44,45 There is strong evidence

of further genetic heterogeneity in ADPLD, given that only

~50% of cases have been explained by the known genes

mutated in this disease.27,46

In this study, we employed global and focused screening

of GUR ADPKD- and ADPLD-affected families to identify a

gene mutated in these disorders. Characterization of cells

null for this gene links the pathogenesis to the maturation

and localization of PC1 and PC2.
Subjects and Methods

Sample and Data Collection and Clinical Analysis
The relevant institutional review boards and ethics committees

approved all studies, and participants gave informed consent.

Blood samples for DNA isolation were collected from the proband
1194 The American Journal of Human Genetics 98, 1193–1207, June
and all available family members and were isolated by standard

methods by the Mayo Biospecimens Accessioning and Processing

Core or the Genkyst study. Clinical and imaging data were ob-

tained by review of clinical records. Total kidney volume (TKV)

and total liver volume (TLV) were measured from clinical MRI

and computed-tomography (CT) imaging at the Mayo Transla-

tional PKD Center, which employed the stereology method with

Analyze software or a semi-automated approach,47 and were

adjusted for height (htTKV or htTLV). Enlarged kidneys or livers

were defined as the mean þ 2 SDs of the normal htTKV or htTLV

adjusted for average height.26,48 Kidney function was calculated

from clinical serum creatinine measurements with the Chronic

Kidney Disease Epidemiology Collaboration (CKD-EPI) formula

in adults49 and the Schwarz formula in the pediatric individual50

and expressed as mL/min/1.73 m2. Age at onset of high blood

pressure was defined as when the affected individual started anti-

hypertensive medication.
Whole-Exome Sequencing and Bioinformatics

Analysis
Families were defined as GUR when no mutations were detected

from Sanger sequencing or multiplex ligation-dependent probe

amplification of PKD1 and PKD2. In addition, the Genkyst cohort,

including families PK20016, PK20017, and P1174, were screened

for HNF1B (MIM: 189907) mutations, and families with a possible

ADPLD diagnosis, including P1073, M472, and M656, were

screened for PRKCSH and SEC63 mutations.

Total genomic DNAwas quantified with a Qubit 2.0 fluorometer

(dsDNA BR Assay Kit, Thermo Fisher Scientific) and quality

checked with a NanoDrop. Subsequently, 250 ng or 1 mg of DNA

was sheared by sonication (Covaris E210, 150–200 bp) and puri-

fied by AMPure XP beads (Agencourt). The shearing efficiency

was checked on a Agilent Bioanalyzer 2100 (DNA1000 assay).

Whole-exome capture and Illumina library preparation were per-

formed with the Agilent SureSelectXT Human All Exon V5þUTRs

Kit on an Agilent Bravo workstation. The enriched library was

sequenced with 101 bp paired-end reads on an Illumina HiSeq

2000 in the Mayo Medical Genome Facility. On average, three

to four exomes per lane were multiplexed. Genome_GPS v.3.0.1

(Mayo Bioinformatics Core) was employed as a comprehensive

secondary analysis pipeline for variant calling. In short, FASTQ

files were aligned to the hg19 reference genome (UCSC Genome

Browser) with Novoalign (V2.08.01) with the options -hdrhd off

-v 120 -c 4 -i PE 425,80 -x 5 -r Random, and realignment and

recalibration were performed with the Genome Analysis Toolkit

(GATK) (3.3-0) Best Practices v.3 for each family separately. Over-

all, 75.6% of mapped reads aligned to the captured region, and

98.9% of the captured region was covered at 103 read depth.

Multi-sample variant calling was performed with the GATK

(3.3-0) Haplotype Caller, and variants were filtered with Variant

Quality Score Recalibration for both SNVs and indels. Variant

mining was performed with Golden Helix SNP & Variation Suite

v.8 (SVS). All families were analyzed independently with the

following filters: (1) quality filter of read depth R 103 and geno-

type qualityR 20, (2) selection according to autosomal-dominant

sample genotype pattern, (3) removal of Exome Aggregation

Consortium (ExAC) Browser variants with a minor allele fre-

quency > 0.1%, and (4) characterization of coding and non-cod-

ing SNVs within 14 bp of the splice site and subsequent removal

of SNPs predicted to be neutral by one or more of six dbNSFP

tools (SIFT, PolyPhen-2 HVAR, MutationTaster, Mutation Assessor,
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FATHMM, and FATHMM MKL) and dbscSNV (removal of SNVs

with Ada and RF scores < 0.6). Table S1 lists the variants that re-

mained after the SVS analysis.

Sanger Sequencing and Mutation Validation
Primers to amplify the 25 exons of GANAB (GenBank:

NM_198335.3), plus ~100 bp of flanking intervening sequences

(IVSs), were designed with MacVector 12.0.6, and 50 ng of

genomic DNA was used for PCR amplification (primers and PCR

conditions are available upon request). Sanger sequencing was

performed at Beckman Coulter Genomics according to standard

approaches, and variants were identified with Mutation Surveyor

software (SoftGenetics) and designated on the 25 exon GANAB

isoform and corresponding protein (GenBank: NP_938149.2).

When samples were available, segregation analysis was performed

by sequence analysis of the mutated exonic fragment. Amino acid

changes detected by Sanger sequencing were evaluated with the

programs SIFT and Align GVGD, and the atypical splicing change

in family M656 was evaluated with NNSPLICE 0.9 (Berkeley

Drosophila Genome Project). The families affected by GANAB mu-

tations originate from the US (M263, M641, 290100, M656, and

M472), France (PK20016 and PK20017), Macedonia (P1174), and

Spain (P1073). One family came from the HALT Progression of

Polycystic Kidney Disease (HALT-PKD) cohort, two came from

Genkyst, and the remainder came from the Mayo PKD Center

population.

Using CRISPR/Cas9 to Generate Targeted

GANAB-Mutated Cell Lines
Guide RNAs predicted to have the lowest off-targeting effect were

cloned into pX330 (SpCas9) and verified by sequencing (see Table

S2 for sequences). GANAB ex11-IVS12 was amplified by PCR

(primer sequences are available on request), and the 550 bp

genomic product was cloned into pCAG-EGxxFP51 with restric-

tion sites BamHI and EcoRI. Each gRNA was then co-transfected

with p-CAG-EG-GANAB(11-IVS-12)-FP in renal cortical tubular

epithelial (RCTE) cells and scored after 24 hr for EGFP-positive

cells. gRNA4 was selected as the most efficient cutter and used

for generating cell lines. pX330-gRNA4 was transfected into

wild-type (WT) RCTE cells by electroporation, and the cells were

allowed to recover for 36 hr prior to splitting and re-seeding as sin-

gle-cell suspensions in a 96-well plate. Cells were grown for

10 days for the establishment of single clone cell colonies, split

in half, and re-seeded for screening. Screening was performed

with genomic DNA extraction followed by amplification using

GANAB ex11-IVS12 primers and a subsequent T7 mismatch assay.

For this assay, PCR amplicons were denatured at 95�C for 2 min

and cooled gradually to 25�C at a rate of �2�C per second. The

reaction mixture was then subjected to T7 endonuclease (T7E1,

New England BioLabs) for 20 min at 37�C and visualized in 2%

agarose gels. Clones were additionally screened by western blot-

ting (WB) for the a subunit of glucosidase II (GIIa) and Sanger

sequencing.

Generating FLAG-GIIa Constructs with Missense

Variants
C-terminal Myc-DDK-tagged GIIa (isoform 3 [GenBank:

NM_198335.3]) was obtained from OriGene. Missense mutations

were introduced by site-directed mutagenesis with Q5 high-fidel-

ity polymerase (New England BioLabs); primer sequences are

shown in Table S3.
The Americ
WB Studies, Glycosylation Analysis, and

Immunoprecipitation
For purification of crude membrane protein, cells were grown to

confluence, washed with Dulbecco’s PBS (DPBS), scraped and re-

constituted in LIS buffer (10 mM Tris HCl [pH 7.4], 2.5 mM

MgCl2, and 1mM EDTA) plus protease inhibitors (Complete,

Roche), and incubated on ice for 15 min. Homogenized total

membrane lysates were prepared by repeated passage through a

25.5G needle and centrifugation at 4,600 RPM for 5 min. All pro-

cedures employed pre-chilled containers and were performed in

the cold room to minimize protein loss to degradation. For immu-

noprecipitation (IP), the pellet of crudemembrane protein (75mg)

was solubilized in IP buffer, and samples were pre-cleared with

blank A/G agarose for 2 hr. Antibodies to the C terminus of PC1

(PC1-CT) or PC2 (YCE2) were added overnight and then incubated

with 50 mL of packed washed A/G Agarose (Thermo) for 2 hr. The

agarose was washed three times in IP buffer and once in ice-cold

H2O, and the protein was eluted in either lithium dodecyl sulfate

(LDS) plus tris(2-carboxyethyl)phosphine (TCEP) or agarose, split

into three equal parts (untreated, EndoH, and PNGaseF), and sub-

jected to deglycosylation analyses. Purifiedmembrane protein and

IP eluates were deglycosylated with EndoH and PNGaseF accord-

ing to the manufacturer’s (New England BioLabs) instructions.

Twenty-five micrograms of input and 100% of the IP were loaded

per SDS-PAGE lane.
Surface Glycoprotein Labeling and

Immunoprecipitation
Surface glycoprotein labeling of living cells was performed as pre-

viously described.15 Monolayer cells in 10 cm culture dishes were

washed twice with ice-cold DPBS and then oxidized at 4�C in

1 mM NaIO4 containing DPBS (pH 7) for 30 min, quenched

with ice-cold 1 mM glycerol in DPBS for 5 min, and washed twice

with ice-cold DPBS. Oxime ligation was performed in the presence

of 10 mM Aniline (Sigma-Aldrich) and 100 mM EZ-Link Alkoxy-

amine-PEG4-Biotin (Thermo Fisher Scientific) in 1% FBS supple-

mented with ice-cold DPBS buffer (pH 7.5) for 1 hr. Biotinylated

cells were then washed three times in PBS and scraped. Reaction

specificity was ensured with streptavidin-488 (Alexa Fluor) stain-

ing of a small sample of cells and visualized by fluorescent micro-

scopy. Scraped cells were collected by centrifugation, subjected to

purification of crude membrane protein, and solubilized in IP

buffer (20 mM HEPES [pH 7.5], 137 mM NaCl, 1% NP-40, 10%

(w/v) glycerol, 2 mM EDTA, and 2.5 mM MgCl2) supplemented

with protease inhibitors (Roche) for 15 min. Non-solubilized

proteinwas removed by centrifugation and discarded. Neutravidin

agarose was washed in IP buffer three times, and 50 mL of packed

agarose was added to solubilized membrane protein and agitated

at 4�C for 2 hr. Samples were washed three times in IP buffer

and once in ice-cold H2O. Protein was eluted in either LDS plus

TCEP or agarose and subjected to deglycosylation analyses. Tris-ac-

etate gels were washed with ultrapure water and stained with the

ProteoSilver Silver Stain Kit (Sigma-Aldrich) according to the man-

ufacturer’s instructions.
Transfection, Confocal Microscopy,

Immunofluorescence, and Surface PC1 Labeling
RCTE cells were split at a ratio of 1:2 the day before electroporation

and transfected at ~80% confluency. Electroporation of RCTE cells

was performed with the Bio-Rad Gene Pulser with a square-wave

protocol: 110V, 25 ms pulse and 0.2 cm cuvettes (Bio-Rad) in
an Journal of Human Genetics 98, 1193–1207, June 2, 2016 1195



electroporation buffer (20 mMHEPES, 135 mMKCl, 2 mMMgCl2,

and 0.5% Ficoll 400 [pH 7.6]). TagGFP-PC2 andmCherry-PC1 used

in this study have been previously described.15 RCTE cells were

grown on glass coverslips, washed once with DPBS, fixed in

3.5% paraformaldehyde (PF) for 30 min, permeabilized with

0.1% Triton in DPBS (pH 7.5), washed again in PBS, and incubated

in blocking buffer (10% normal goat serum, 1% BSA, and 0.1%

Tween in PBS [pH 7.5]) for 30min. After three PBS washes, primary

antibodies were added to IF buffer (1% BSA, PBS [pH 7.5], and 0.1%

Tween) for 2 hr at room temperature or overnight at 4�C with

gentle agitation. After three PBS washes, conjugated secondary

antibody (AlexaFluor, Invitrogen) was added for 1 hr. DAPI was

added for 1 min to stain nuclei.

For surface labeling of mCherry-PC1, transfected RCTE cells

were cooled at 4�C for 15 min, washed once in ice-cold PBS and

pre-chilled mCherry antibody (BioVision), and incubated in

0.5% BSA in PBS for 30 min at 4�C. Cells were then fixed in

3.5% PF, and conjugated secondary antibody was added to IF

buffer for 30 min. Confocal microscopy was performed with a

Zeiss Axiovert equipped with Apotome.

For pH shift and SDS IF, the fixation and antigen-retrieval

method was performed for visualizing endogenous PC2 in MEFs.

For partially denaturing the protein, cells were grown to 100%

confluency and serum starved for 48 hr, fixed in 3% PF (pH 7.5)

for 15 min, fixed in 4% PF (pH 11]) in 100 mM borate buffer for

15 min, and then permeabilized in 5% SDS for 5 min. Subse-

quently, PC2 antibody (H280) staining was performed overnight

at a 1:200 dilution at 4�C as described above.
Antibodies
The following antibodies were used: PC1-NT, 7e1252 (N-terminal,

mouse monoclonal; 1/1,000 for WB); PC1-CT, EB08670 (C-termi-

nal, goat; Everest Biotech; 1/250 for IP); PC2, H280 (rabbit; Santa

Cruz; 1/5,000 for WB and 1/200 for IF); PC2, YCE2 (mouse mono-

clonal; Santa Cruz; 1/2,000 forWB and 1/500 for IF); EGFR (rabbit;

BD Transduction labs; 1/1,000 for WB); acetylated a-tubulin

(Invitrogen; 1/5,000 for IF); mCherry, 5993-100 (rabbit; BioVision;

1/1,000 for surface labeling); FLAGM2 (Sigma; 1/1,000 for IF); and

GIIa, ab179805 (Abcam; 1/2,000 for WB).
Results

WES Identifies GANAB as a Gene Mutated in ADPKD

After PKD1 and PKD2 mutation analysis for base-pair and

larger rearrangements, we identified 327 GUR families out

of ~3,600 screened. These GUR families originated from

the HALT-PKD cohort (64) (an ADPKD clinical trial) and

the Consortium for Radiologic Imaging Studies of Polycy-

stic Kidney Disease (CRISP) (16) and Genkyst (124) ADPKD

observational studies. In addition, 123 Mayo PKD Center

GUR families affected byADPKDormild renal cystic disease

and PLD were included. Although a firm clinical diagnosis

of ADPKD was made in 247 GUR pedigrees, in 80 pedigrees

the disease presentation was more atypical (cystic kidney

disease without kidney enlargement), although the vast

majority exceeded the defined ultrasound or MRI criteria

for an ADPKD diagnosis.53,54 In the seven remaining fam-

ilies, the disease presentation was more consistent with

ADPLD, although all but one had some renal cysts. PRKCSH
1196 The American Journal of Human Genetics 98, 1193–1207, June
and SEC63 screening was also performed in these families

before inclusion. Six multiplex GUR ADPKD-affected fam-

ilies were screened by WES, and standard screening

methods were employed to identify mutated, dominant

genes (see Subjects and Methods); the detected genes and

variants are listed in Table S1. A missed PKD1 mutation

was identified in one family (M560).

From this WES analysis, one candidate gene, GANAB,

encoding the catalytic subunit of glucosidase II (GIIa), ap-

peared most promising given that PRKCSH encodes the

non-catalytic b subunit of this enzyme, and mutations in

this gene cause ADPLD. GANAB (in chromosomal region

11q12.3; genomic size 21.9 kb) has two splice forms shown

by in silico and RT-PCR analysis to be approximately

equally expressed in the human kidneys and liver

(Figure S1): isoform 3 (GenBank: NM_198335.3) has 966

aa (~110 kDa), 25 exons, and 2,898 bp of coding sequence,

and isoform 2 (GenBank: NM_198334.2) has 944 aa

(~107 kDa), 24 exons (in-frame skipping of exon 6), and

2,832 bp of coding sequence.36,38 We employed the larger

splice form for mutation screening and designation and

functional studies. ExAC Browser exome data (60,706 indi-

viduals) list five loss-of-function (LoF) GANAB mutations

out of an expected 49.7 (probability of LoF intolerance

[pLI] ¼ 1.0; see Subjects and Methods), a figure similar to

that for PKD2 (7/37.6; pLI ¼ 1.0) and consistent with

GANAB mutations’ causing dominant disease.55,56

TheGANABmissense variant, c.1265G>T (p.Arg422Leu),

was detected by WES in family M263 and found in the

affected father and daughter, but not the unaffected

daughter (Figures 1A–1C). In silico analysis, including

conservation in multi-sequence alignments (MSAs) of pro-

teins orthologous to yeast and related glucosidases showed

that this variant is highly predicted to be pathogenic (Fig-

ures 1D and 1E). Both of the affected individuals had mild

kidney and significant liver cystic disease (Figures 1F and

1G and Table 1).

Identification of Further ADPKD-Affected Families

with GANAB Mutations

Given that mutations in GANABmight account for disease

in families with unresolved ADPKD, we analyzed our re-

maining GUR cohort of 321 families by Sanger sequencing

of the coding region. From this analysis, we identified eight

additional families affected by GANAB mutations: three

frameshift, two splicing, one nonsense, and two missense

mutations (Table 1). Data from the ExAC Browser showed

that none of the GANAB variants, except c.152_153delGA

(reported once), have been reported in the 60,706 unre-

lated individuals sequenced as part of various disease-spe-

cific and population genetic studies.55 Additionally, none

of these variants were seen in the NHLBI Exome Sequence

Project (ESP) Exome Variant Server.

The GANAB frameshift mutation, c.1914_1915delAG

(p.Asp640Glnfs*77), was found in two families, M641

and 290100 (Figures 2A–2E, Figures S2A, S2B, and S3A,

and Table 1). In M641, two sisters had relatively mild
2, 2016



Figure 1. WES Analysis Reveals GIIa p.Arg422Leu (c.1265G>T) in Family M263 as the Likely Pathogenic Variant
(A) Pedigree of family M263 shows that the two affected individuals (I-1 and II-1, shaded in black) have the GIIa p.Arg422Leu (p.R422L)
missense variant resulting from c.1256G>T in exon 12, but the unaffected daughter (II-2, for whom no cysts were detected on ultra-
sound at 30 years of age) does not.
(B) GenomeBrowse (SVS, GoldenHelix) view of theWES results from II-1 showGANAB variant c.1265G>T (reverse strand), and details of
the reads are tabulated below.
(C) Sanger sequencing confirmation of heterozygous GIIa variant p.Arg422Leu (p.R422L) (c.1256G>T) in II-1. The WT is shown for
comparison.
(D) MSA of GIIa orthologous proteins shows invariance of Arg422 from humans to yeast. In silico analysis of the likely pathogenicity of
GIIa p.Arg422Leu (p.R422L) shows variant scores (SIFT ¼ 0.00, Align GVGD ¼ C65) characteristic of a highly likely pathogenic
mutation.
(E) MSA of related glucosidases GANC (neutral alpha-glucosidase C) and GAA (lysosomal alpha-glucosidase) of various eukaryotic species
and prokaryotic GH31 (glycosyl hydrolase family 31) shows invariant conservation of GIIa Arg422.
(F) CT scan with contrast of kidneys and liver of individual I-1 at 66 years shows a few large kidney cysts (red arrows) and multiple scat-
tered liver cysts (green arrows).
(G) T2-weighted MRI of II-1 at 41 years shows a few kidney (red arrows) and liver (green arrows) cysts.
PKD with variable liver cysts. The family history was un-

clear: the father died at 75 years with renal cell cancer

but no reported cysts, and there was no information on

the mother. Both sisters had ICAs (see the Figure 2 legend

for details), and the father was reported to have a ruptured

aneurysm. In family 290100, the father and son both had

mild PKD, and multiple liver cysts were present in the fa-

ther, but not the son.
The Americ
In family P1174, the GANAB missense variant,

c.1214C>G (p.Thr405Arg), was found in three genera-

tions, including in individual III-1, in whom renal cysts

were detected incidentally in infancy (Figures 2F–2H, Fig-

ures S2C and S3B, and Table 1). The substituted residue is

invariant in orthologs and conserved in related proteins

(Figures 2I and 2J). The GANAB splicing mutation,

c.2690þ2_þ7del, was found in four affected family
an Journal of Human Genetics 98, 1193–1207, June 2, 2016 1197



Table 1. Clinical Presentation of Kidney and Liver Disease in the 20 Affected Individuals from Nine Families with GANAB Mutations

Family GANAB Mutation Subject Sex
eGFRa (Age
in Years)

HBP (Age
in Yearsb)

Radiologic Presentation

Kidneys Liver

Type Agec Cysts Volumed Figure Cysts Volumee Figure

M263f c.1265G>T
(p.Arg422Leu)

I-1 M 78 (66) N (67) CT 66 ~10 bilateral cysts
(largest 11 cm)

302g 1F >50 scattered cysts
(largest 6 cm)

1,226 1F

II-1 F 91 (42) N (43) MRI 41 ~10 bilateral cysts
(largest 3 cm)

211 1G >20 scattered cysts
(largest 3 cm)

835 1G

M641 c.1914_1915delAG
(p.Asp640Glnfs*77)

II-1 F 86 (51) Y (40) CT 55 ~15 bilateral cysts
(largest 10 cm)

822g S3A no liver cysts detected 1,505h S3A

II-2 F 104 (46) N (50) CT 45 ~10 bilateral cysts
(largest 6 cm)

318g 2B ~20 scattered cysts
(largest 2 cm)

764 2B

290100 c.1914_1915delAG
(p.Asp640Glnfs*77)

I-1 M 78 (65) N (65) MRI 58 ~8 bilateral cysts
(largest 2 cm)

227 2E >30 scattered cysts
(largest 3 cm)

1,255 2E

II-1 M 87 (25) Y (13) MRI 24 ~12 bilateral cysts
(largest 2.5 cm)

259 2D none 832 2D

P1174 c.1214C>G
(p.Thr405Arg)

I-1 M NAi N (61) US 55 3 cysts in the left
kidney

NE S3B 1 cyst (1.5 cm) NE –

II-1 F NAi N (35) US 29 2 cysts in the right
kidney

NE 2H NA NA –

III-1 M 122 (9) N (9) MRI 9 ~5 bilateral cysts
(largest 2 cm)

116 2G none 492 –

M656 c.2690þ2_þ7del I-1 M NAi Y (55) CT* 67 multiple small cysts NE S3C none NE S3C

II-1 M 84 (39) N (39) US 44 multiple cysts
reported

NA – multiple cysts
reported

NA –

II-2 F 77 (50) N (50) US 52 ~5–10 bilateral cysts
(largest 2 cm)

NE S3D >20 scattered cysts
(largest 5 cm)

NE S3D

II-3 M 95 (49) Y (35) MRI 43 >30 bilateral cysts
(largest 3 cm)

SE 2L >20 scattered cysts
(largest 1 cm)

NE 2L

PK20016 c.39�1G>C II-1 M 90 (53) Y (45) CT* 52 ~20 bilateral cysts
(largest 10 cm)

665g 3B ~20 scattered cysts
(largest 2 cm)

1,449h 3B

PK20017 c.2176C>T
(p.Arg726*)

II-1 F 77 (78) Y (53) US 78 ~40 bilateral cysts
(largest 3 cm)

NE 3D ~20 scattered cysts
(largest 1.5 cm)

NA 3D

P1073 c.2515C>T
(p.Arg839Trp)

I-2 F NA NA US (78) unknown NA – multiple cysts
reported

NA –

II-1 F 86 (50) N CT* 43 ~8 bilateral cysts
(largest 1 cm)

196 3F severe PLD, transplant
at 43 years

4,641h 3F

II-2 M NA NA US (44) unknown NA – multiple cysts
reported

NA –
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The Americ
members in M656 (Figures 2K and 2L, Figures S2D, S3C,

and S3D, and Table 1). All members (apart from II-3, who

had multiple kidney cysts) had no to mild cystic liver dis-

ease andmild kidney disease. Of note, themother (without

theGANABmutation) hadmultiple cysts of unresolved eti-

ology. PK20016 had the splicing mutation c.39�1G>C,

and PK20017 had the nonsense mutation c.2176C>T

(p.Arg726*), and both had only one known affected family

member (Figures 3A–3D, Figures S2E and S2F, Table 1).

Both individuals had multiple kidney cysts and a few

liver cysts.

Identification of Families Affected by GANAB

Mutations and ADPLD

Unlike the described ADPKD-affected families, families

P1073 and M472 had a possible diagnosis of ADPLD,

although a few renal cysts were present. P1073 had the

missense mutation c.2515C>T (p.Arg839Trp), which is

at an invariant site in orthologs and segregates in three

affected family members (Figures 3E–3G, Figure S2G,

and Table 1). As indicated, there were very few renal

cysts but multiple liver cysts, and the daughter (II-1)

required a liver transplant at 43 years. M472 individual

II-1, who had the GANAB frameshift mutation c.152_

153delGA (p.Arg51Lysfs*21) (Figures 3H and 3I, Fig-

ure S2H, and Table 1), had a few small kidney cysts but

severe PLD that required partial liver resections.

A similar phenotype with less severe PLD was seen in

II-2 (Figure S3E), although a sample was unavailable for

mutation analysis.

Characterization of the Effect of GANAB Loss on PC1

and PC2 Maturation and Localization

From the genetic studies, mutations in GANAB were

shown to be a cause of ADPKD and ADPLD, so we next

explored the mechanism of pathogenesis by cellular anal-

ysis. CRISPR/Cas9 targeting of GANAB exon 12 in human

RCTE cells generated clones with biallelic frameshift

mutations (null; clone C6) or a single in-frame deletion

(heterozygous; E4) (Figures S4A–S4D). Analysis of the

polycystin complex immunocaptured with PC2 or PC1-

CT antibodies in GANAB�/� cells showed that the PC1

N-terminal, mature product (PC1-NTR) was absent (Fig-

ures 4A and 4B). In contrast, full-length (GPS-uncleaved)

PC1, PC1-NTS, and PC2 were elevated, indicating that

GIIa plays a major role in PC1 maturation. We previously

showed an interdependence of PC1 and PC2 for localiza-

tion, including to cilia,15 and so to assess localization

of the polycystin complex, we analyzed PC2. Ciliary

localization of PC2 was completely absent in GANAB�/�

cells, although cilia formed normally (Figure 4C and

Figure S4E).15,16 Given that affected individuals harbored

just one GANAB mutation, we assayed GANABþ/� cells

and found a proportional, ~50%, depletion of PC1-NTR

(Figures 4D and 4E). Analysis of the maturation of other

membrane proteins (epidermal growth factor receptor

[EGFR] and E-cadherin) showed that they were not
an Journal of Human Genetics 98, 1193–1207, June 2, 2016 1199



Figure 2. Characterization ofGANABMu-
tations in Four ADPKD-Affected Families
(A) Pedigree of family M641 shows
c.1914_1915delAG (p.Asp640Glnfs*77)
(exon 17) in two affected siblings. Both sis-
ters had basilar tip aneurysms, and II-2 also
had two aneurysms detected on the left
middle cerebral artery. The affected status
of the parents is unclear (gray shading);
I-1 had renal cell carcinoma and a ruptured
aneurysm, but no reported PKD.
(B) CT scan of kidneys and liver from II-2
showsmultiple kidney and occasional liver
cysts.
(C) Pedigree of family 290100 shows
c.1914_1915delAG in the father and son.
(D and E) MRI shows a few kidney but no
hepatic cysts in II-1 (D) and a few kidney
and scattered liver cysts in I-1 (E).
(F) Pedigree of family P1174 shows
p.Thr405Arg (p.T405R) (c.1214C>G, exon
11) in three affected individuals; III-2,
for whom no cysts were detected by ultra-
sound at 5 years, did not have the variant.
(G and H) MRI of III-1 shows bilateral
kidney cysts (G), and ultrasound (US) of
II-1 shows a single large renal cyst (H).
(I) MSA of GIIa orthologs shows that
Thr405 is invariant across species. In
silico mutation analysis highly predicts
p.Thr405Arg (p.T405R) to be pathogenic
(SIFT ¼ 0.00, Align GVGD ¼ C65).
(J) MSA of GANAB-like proteins shows
invariant conservation of this residue.
(K) Pedigree of family M656 shows
c.2690þ2_þ7del (IVS20) in four affected
members. Splicing predictions show com-
plete loss of the donor site. The mother
(I-2), who does not have the GANABmuta-
tion, has ~5 kidney and ~30 liver cysts,
but no detected PKD1, PKD2, PRKCSH, or
SEC63 mutations.
(L) MRI of II-3 shows small hepatic and-
multiple renal cysts. Red and green arrows
indicate kidney and liver cysts, respec-
tively. Where multiple cysts are present,
only representative cysts are highlighted.
(or only mildly) affected by loss of GIIa (Figure 4A).

Further analysis of terminally glycosylated proteins in

GANAB�/� cells did not suggest a global disruption of sur-

face-localized proteins (Figures S4F–S4H).

Functional Analysis of GANAB Mutations and

Variants

To determine the effect of GANAB loss on PC1 localization

by immunofluorescence and to test the pathogenicity

of detected GIIa variants, we co-transfected WT and

GANAB�/� cells with tagged PC1 and PC2 constructs

(mCherry-PC1-V5 and GFP-PC2; Figures 5A and 5B).15
1200 The American Journal of Human Genetics 98, 1193–1207, June 2, 2016
GIIa loss prevented efficient surface

localization of tagged PC1, which

was restored by co-expression of WT

FLAG-GIIa (Figure 5A). Identified
GIIa missense variants (p.Thr405Arg, p.Arg422Leu, and

p.Arg839Trp), expressed as FLAG-GIIa constructs, failed

to rescue PC1 surface localization in GANAB�/� cells

(Figure 5A), whereas three other variants considered likely

to be neutral (c.284A>G [p.Gln95Arg], c.760A>G

[p.Thr254Ala], and c.991C>T [p.Arg331Cys]) restored sur-

face localization (Figure S5).

Discussion

The combination of the human genetic studies and

cellular analysis of GANAB-null cells showed that



Figure 3. Characterization of GANAB
Variants in Four Families, Including
ADPLD-Affected P1073 and M472
(A) Pedigree of family PK20016 shows the
splicing mutation c.39�1G>C (IVS1). The
family history is unclear because samples
were unavailable, but one large renal cyst
was reported in I-1.
(B) CT scan of II-1 shows bilateral kidney
cysts and occasional hepatic cysts.
(C) Pedigree of family PK20017 shows
p.Arg726* (p.R726*) (c.2176C>T, exon
18), in the proband, II-1. A lack of DNA
samples and clinical information pre-
cluded determining the family history.
II-2 died at 55 years from a ruptured intra-
cranial aneurysm, but his PKD status was
unknown.
(D) Ultrasound examination of II-1 shows
several liver (left), and kidney cysts (right).
(E) Pedigree of family P1073 shows
p.Arg839Trp (p.R839W) (c.2515C>T,
exon 22) in three affected individuals.
(F) CT scan of II-1 shows very few kidney
cysts (left) but severe PLD (right). Gross
images of the liver of this subject have
been published.57

(G) MSA of GANAB (GIIa) orthologs shows
invariant conservation of Arg839 across
species. In silico mutation analysis highly
predicts p.Arg839Trp (p.R839W) to be
pathogenic (SIFT ¼ 0.00, Align GVGD ¼
C65).
(H) Pedigree of family M472 shows
c.152_153delGA (p.Arg51Lysfs*21)
(p.R51fs; exon 3) in II-1.
(I) MRI of II-1 shows a few renal cysts (left)
but significant PLD; this image was subse-
quent to earlier resections (Table 1). No
sample was available from II-2, but im-
aging also showed predominant PLD
(Figure S3E). Unavailable parental DNA
samples and limited clinical information
precluded determining the family history,
but I-1 was reported to have had a cerebral
hemorrhage. Red and green arrows indi-
cate kidney and liver cysts, respectively.
Where multiple cysts are present, only
representative cysts are highlighted.
mutations in GANAB cause ADPKD and ADPLD, that loss

or reduction of GIIa is associated with maturation and

localization defects of PC1 and PC2, and that the identified

mutations cannot rescue the PC1 localization defect.

The renal phenotype associated with GANAB mutations

is consistently mild without renal insufficiency, such that

any kidney enlargement is due to a few large cysts. The

phenotype caused by GANAB mutations is more similar

to PKD2 than to PKD1 but is apparently even milder.58
The American Journal of Human G
One individual had more severe PKD

(M656 member II-3), and here an un-

determined cystogenic influence from

the mother might be significant.

Applying imaging diagnostic criteria

developed in PKD1- and PKD2-
affected families53,54 might be unreliable in families

affected by GANAB mutations even in those with a largely

renal phenotype given the disease mildness and the vari-

ability within families. The significance of the vascular

disease, noted in families M641, PK20017, and M472, is

presently unclear. Only in M641 do the definitely affected

sisters have ICAs; the vascular phenotypes in three other

individuals in these families are not proven to be linked

to GANAB mutations.
enetics 98, 1193–1207, June 2, 2016 1201



Figure 4. GIIa Is Required for PC1 ER Exit and Maturation
(A) Deglycosylation analysis of WT and GANAB�/� RCTE membrane protein either untreated (Un) or treated with EndoH (þE) or
PNGaseF (þP). IP was used to enrich the PC1 complex with C-terminal PC1 (PC1-CT) or PC2 (YCE2) antibodies and immunodetected
with the N-terminal PC1 (PC1-NT) antibody (7e12). Complete loss of the mature PC1 glycoform15 (NTR; red arrow) was observed
in GANAB�/� cells, and full-length PC1 (FL) and PC1-NTS became more abundant. Mature E-cadherin and EGFR were not or only
marginally affected by GANAB loss; the EndoH-resistant protein (R, red arrow) persisted. No EndoH-resistant form of PC2 was
noted,15 but the protein was upregulated in GANAB�/� cells. Loss of WT GIIa was confirmed in GANAB�/� cells with the use of a C-ter-
minal antibody.
(B) Schematic representation of the observed PC1 banding pattern in the WT and GANAB�/� cells shown in (A).
(C) Confocal z stack rendering of primary cilia in confluent WT and GANAB�/� cells in which acetylated a-tubulin (Ac.a-tub) and PC2
were detected shows no cilia PC2 signal in GANAB�/� cells. Nuclei were stained with DAPI, and 100 ciliated cells were analyzed in three
independent experiments. The scale bar represents 10 mm.
(D) Immunoblot of PC1-NT in WT and GANABþ/� cells shows a reduced level of PC1-NTR in GANABþ/� cells. Asterisks indicate a non-
specific product.15

(E) Quantification of PC1-NTR shows a reduction to ~50% (p < 0.001, Student’s t test) in heterozygous cells and a complete loss in
homozygous, GANAB�/� cells.
The liver disease is variable and ranges from no cysts to

severe PLD requiring surgical intervention. The highly

variable PLD phenotype is characteristic of ADPKD and

ADPLD. Allelic effects do not appear to explain this

variability, although some evidence of familial clustering

of severe PLD suggests that genetic modifiers play a signif-

icant role.25,46 It is interesting that GANABmutations were

identified as the cause of the disease in two of the seven

ADPLD-affected families studied, suggesting that the mu-

tation-detection rate might be higher in ADPLD-affected

families. Although there might be ascertainment bias

because ADPKD was the diagnosis in the vast majority of
1202 The American Journal of Human Genetics 98, 1193–1207, June
screened families, the overall phenotype appears to

involve more renal disease than described in PRKCSH.59

The reason for this is unclear given that they are subunits

of the same protein, and further analysis of GANAB in

ADPLD and PRKCSH in ADPKD populations is required.

We show that phenotypes consistent with mild ADPKD

and ADPLD involving a few renal cysts can be caused by

GANAB mutations. Rather than considering ADPKD and

ADPLD to be strictly separate diseases, we suggest

recording the full range of phenotypes associated with

each gene in which mutations are associated with ADPKD

and/or ADPLD.
2, 2016



Figure 5. Surface Localization of PC1 Requires WT GIIa and Is Disrupted by GANAB Missense Mutations
(A)WTandGANAB�/� cells were co-transfected withWT tagged PC1 and PC2, mCherry-PC1, and TagGFP-PC2 and examined for surface
mCherry-PC1 labeling. Co-transfected cells were screened for live cell-surface PC1 signal and quantified as the percentage of surface-pos-
itive PC1 cells out of the total co-transfected cells. Surface PC1 was detected on 55.0% 5 6.8% of WT cells but only 5.9% 5 2.0% of
GANAB�/� cells (p% 0.0001), and the level was rescued to 32.7%5 4.9% by co-transfection with the WT GANAB (FLAG-GIIa) plasmid.
Co-transfection with the newly identified putative GANAB missense mutations cloned in FLAG-GIIa, p.Thr405Arg (p.T405R),
p.Arg422Leu (p.R422L), and p.Arg839Trp (p.R839W) did not rescue PC1 surface localization (bottom three panels; all p < 0.0001 versus
WT rescue). Student’s t test was performed to determine significance in at least 100 triple-transfected cells analyzed among three inde-
pendent experiments. The scale bar represents 20 mm.
(B) Diagram of the constructs.
GANAB mutations account for ~3% of GUR ADPKD-

affected families (~0.3% total ADPKD), although given

that many GUR cases most likely involve PKD1 or PKD2

mutations that were missed (see Introduction and Paul

et al.23), they are probably responsible for a much greater

proportion of missing genetic causes of ADPKD. In addi-

tion, because of the mild phenotype, these mutations are

most likely underdiagnosed and, in particular, might

be more common in families with mild PKD and signifi-

cant PLD.

Defects inglycosylation andprotein traffickingunderlie a

large number of human diseases,60,61 but the interesting

aspect here is the specificity of the phenotype associated

with disruption of a step in a process important for many
The Americ
proteins. GII functions in the early cargo-recruitment steps

of the calnexin and calreticulin cycle, which facilitates

the quality control and maturation of transmembrane

glycoproteins.34 GANAB�/� cells and S. pombe mutants are

viable without growth defects,62,63 and we have demon-

strated a lack of global, surface glycoprotein deficiencies

in GANAB�/� cells, which suggests that endomannosidase

activity and other chaperones and folding-assisting pro-

teins can generally compensate for this loss, at least in

non-stress conditions. The complexity due to protein size

and extensive N-linked glycosylation might underlie the

critical dependence of PC1 onGII and the calnexin and cal-

reticulin cycle for achievingnative folding.At this stage, it is

unclear whether the enrichment of PLD associatedwithGII
an Journal of Human Genetics 98, 1193–1207, June 2, 2016 1203



deficiency indicates that the liver is particularly vulnerable

to reduction of this enzyme. In contrast to that described

for SEC63 deficiency,15,62,64,65 the defect we observed in

GANAB�/� cells was complete disruption of PC1 matura-

tion, which increased ER accumulation of cleaved PC1

while onlymarginally affectingGPS cleavage. InRCTEcells,

GANAB heterozygosity was associated with a ~50% reduc-

tion of PC1-NTR, a level predisposing to cyst development

in association with stochastic, renal injury and/or somatic

events.12,15,66,67 However, fully understanding quantita-

tively how PC1 maturation is influenced by GII dosage

will require further studies, which could provide insights

into a therapeutic role for cellular and molecular chaper-

ones in ADPKD.
Accession Numbers

The accession number for the cDNA sequence reported in this

paper is GenBank: NM_198335.3.
Supplemental Data

Supplemental Data include five figures and three tables and can be

found with this article online at http://dx.doi.org/10.1016/j.ajhg.

2016.05.004.
Acknowledgments

We thank the families and coordinators for involvement in the

study, the Exome Aggregation Consortium, Tatyana Masyuk,

and other HALT Progression of Polycystic Kidney Disease

(HALT-PKD) and Consortium for Radiologic Imaging Studies of

Polycystic Kidney Disease (CRISP) investigators: Drs. Grantham,

Yu, and Winklehofer (Kansas Medical Center), Bae, Abebe, and

Landsittel (University of Pittsburgh), Schrier and Brosnahan (Uni-

versity of Colorado Denver), Perrone and Miskulin (Tufts Univer-

sity), Braun (Cleveland Clinic), Steinman (Beth Israel Deaconess

Medical Center), Mrug (University of Alabama at Birmingham),

Rahbari-Oskoui (Emory University), Bennett (Legacy Health,

Portland), Flessner (National Institute of Diabetes and Digestive

and Kidney Diseases [NIDDK]), Moore (Carolinas HealthCare,

Charlotte), and Czarnecki (Brigham and Women’s Hospital).

This study received support from NIDDK grant DK058816, the

Mayo PKD Translational Center (DK090728), an American Heart

Association postdoctoral fellowship (B.P.), the Mayo Clinic

Nephrology Training Grant (T32DK007013 to V.G.G.), an Amer-

ican Society of Nephrology (ASN) Foundation Kidney Research

Fellowship (E.C.-L.G.) and Ben J. Lipps Research Fellowship

(K.H.), the Mayo Graduate School (E.K.D.), the Zell Family

Foundation, and Robert M. and Billie Kelley Pirnie. The CRISP

and HALT-PKD studies were supported by NIDDK cooperative

agreements (DK056943, DK056956, DK056957, DK056961,

DK062410, DK062408, DK062402, DK082230, DK062411, and

DK062401), National Center for Research Resources General Clin-

ical Research Centers, and National Center for Advancing Trans-

lational Sciences Clinical and Translational Science Awards. The

Genkyst cohort was supported by National Plans for Clinical

Research, Groupement Interrégional de Recherche Clinique et

d’Innovation (GIRCI Grand Ouest), and the French Society of

Nephrology.
1204 The American Journal of Human Genetics 98, 1193–1207, June
Received: February 16, 2016

Accepted: May 3, 2016

Published: June 2, 2016
Web Resources

ADPKD Mutation Database, http://pkdb.mayo.edu

Align GVGD, http://agvgd.iarc.fr

Berkeley Drosophila Genome Project NNSPLICE 0.9, http://www.

fruitfly.org/seq_tools/splice.html

ExAC Browser, http://exac.broadinstitute.org

GeneReviews, Harris, P.C., and Torres, V.E. (2015). Polycystic

Kidney Disease, Autosomal Dominant, http://www.ncbi.nlm.

nih.gov/books/NBK1246/

GeneTests, https://www.genetests.org

NCBI Nucleotide, http://www.ncbi.nlm.nih.gov/nuccore

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

OMIM, http://www.omim.org

RefSeq, http://www.ncbi.nlm.nih.gov/refseq/

SIFT, http://sift.jcvi.org

UCSC Genome Browser, https://genome.ucsc.edu/
References

1. Torres, V.E., Harris, P.C., and Pirson, Y. (2007). Autosomal

dominant polycystic kidney disease. Lancet 369, 1287–1301.

2. Harris, P.C., and Torres, V.E. (2009). Polycystic kidney disease.

Annu. Rev. Med. 60, 321–337.

3. The European Polycystic Kidney Disease Consortium (1994).

The polycystic kidney disease 1 gene encodes a 14 kb tran-

script and lies within a duplicated region on chromosome

16. Cell 77, 881–894.

4. Mochizuki, T., Wu, G., Hayashi, T., Xenophontos, S.L., Veld-

huisen, B., Saris, J.J., Reynolds, D.M., Cai, Y., Gabow, P.A.,

Pierides, A., et al. (1996). PKD2, a gene for polycystic kidney

disease that encodes an integral membrane protein. Science

272, 1339–1342.

5. Heyer, C.M., Sundsbak, J.L., Abebe, K.Z., Chapman, A.B.,

Torres, V.E., Grantham, J.J., Bae, K.T., Schrier, R.W., Perrone,

R.D., Braun, W.E., et al.; HALT PKD and CRISP Investigators

(2016). Predicted mutation strength of nontruncating

PKD1 mutations aids genotype-phenotype correlations in

autosomal dominant polycystic kidney disease. J. Am. Soc.

Nephrol. Published online January 28, 2016. http://dx.doi.

org/10.1681/ASN.2015050583.
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