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Summary

CD26/DPP4 (dipeptidyl peptidase 4/DP4/DPPIV) is a surface T cell

activation antigen and has been shown to have DPP4 enzymatic activity,

cleaving-off amino-terminal dipeptides with either L-proline or L-alanine at

the penultimate position. It plays a major role in glucose metabolism by N-

terminal truncation and inactivation of the incretins glucagon-like peptide-1

(GLP) and gastric inhibitory protein (GIP). In 2006, DPP4 inhibitors have

been introduced to clinics and have been demonstrated to efficiently

enhance the endogenous insulin secretion via prolongation of the half-life of

GLP-1 and GIP in patients. However, a large number of studies demonstrate

clearly that CD26/DPP4 also plays an integral role in the immune system,

particularly in T cell activation. Therefore, inhibition of DPP4 might

represent a double-edged sword. Apart from the metabolic benefit, the

associated immunological effects of long term DPP4 inhibition on

regulatory processes such as T cell homeostasis, maturation and activation

are not understood fully at this stage. The current data point to an

important role for CD26/DPP4 in maintaining lymphocyte composition and

function, T cell activation and co-stimulation, memory T cell generation

and thymic emigration patterns during immune-senescence. In rodents,

critical immune changes occur at baseline levels as well as after in-vitro and

in-vivo challenge. In patients receiving DPP4 inhibitors, evidence of

immunological side effects also became apparent. The scope of this review is

to recapitulate the role of CD26/DPP4 in the immune system regarding its

pharmacological inhibition and T cell-dependent immune regulation.
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Structure and characterization of CD26

Originally described 50 years ago [1], the lymphocyte cell

surface protein CD26 possess a dipeptidyl peptidase-4

(DPP4) activity. It cleaves dipeptides from the N-termini

of oligopeptides and smaller peptides with proline or ala-

nine at the penultimate position, as illustrated in Fig. 1b

[International Union of Biochemistry and Molecular Biol-

ogy (IUBMB) Enzyme Nomenclature EC 3.4.14.5].

CD26/DPP4 is a homodimer and an integral type II gly-

coprotein anchored to the membrane by its signal peptide.

The primary structure consists of a short six amino acid

cytoplasmic tail, a 22 amino acid transmembrane, a 738

amino acid extracellular portion comprised of a flexible

stalk, glycosylation-rich region, cysteine-rich region and cat-

alytic region with the catalytic triad Ser630, Asp708 and His740

(Fig. 1e). Recent studies have revealed that the transmem-

brane region contributes to enzyme activity and quaternary

structure by dimerization [2]. The crystal structure of

human CD26/DPP4 has been elucidated to reveal two

domains: an eight-bladed propeller and an a/b-hydrolase

domain. The propeller is open and consists of two subdo-

mains made up of blades II–V and VI–VIII for the

glycosylation-rich and cysteine-rich regions, respectively

(Fig. 1d). Most monoclonal anti-CD26/DPP4 antibodies, as

well as adenosine deaminase (ADA) and caveolin-1, bind to

the glycosylation-rich domain of human CD26/DPP4,

whereas collagen, fibronectin, plasminogen and streptoki-

nase bind to the cysteine-rich region (Fig. 1a) [3–5]. There

are two openings: a side opening and a propeller tunnel (Fig.

1a) [6,7]. The DPP4 substrate neuropeptide Y (NPY) was

found to enter DPP4 at the side opening [8].
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Post-translational modification

Glycosylation-based heterogeneity

Carbohydrates contribute approximately 18–25% of the total

molecular weight, and human DPP4 contains nine potential N-

glycosylation sites [4]. Analysis of oligosaccharides revealed

extensive heterogeneity composed of one high mannose type

and several mono-, bi-, tri- and tetra-antennary complex types

of N-glycans [9,10]. Thus, DPP4 is comprised of several iso-

forms differing in sialylation and being dependent upon species,

tissue, epitope and differentiation status [11,12]. While co-

translational core N-glycosylation is responsible for the folding

and stability of DPP4 [13–15], N-terminal sialylation appears to

play a more (patho-)physiological role (summarized in Fig. 2).

Resting T cells were determined to be more sialylated than

activated cells [16]. Hypersialylation has been associated with

HIV-infection, rheumatoid arthritis, systemic lupus erythem-

atosus and ageing [16,17], whereas decreased sialylation has

been observed in lung cancer [18]. The process of sialylation

seems to be dynamic, as de- and re-sialylation has been

detected in rat hepatocytes [19,20]. Furthermore, trafficking

of DPP4 to the apical surfaces has been shown to be influ-

enced greatly by terminal sialylation [21,22].

Tyrosine phosphorylation

Tyrosine phosphorylation of DPP4 has been described

recently in association with cellular c-Scr, HIV-Tat and

mannose 6-phosphate binding [23–25].

Fig. 1. Primary and quaternary structure of human dipeptidyl peptidase 4 (DPP4), based on Protein Data Bank: 1W1I. (a) Primary structure of

DPP4 subunit, consisting of an intracellular tail (aa 1–6), transmembrane region (aa 7–28), flexible stalk (aa 29–39), glycosylated region (aa

101–350), cysteine-rich region (aa 55–100, 351–497), and catalytic region (aa 506–766). , N-glycosylation; , potential unoccupied

N-glycosylation; , cysteine residues involved in S-bridges; red numbers and letters indicate the catalytic triad. (b) Substrate specificity of DPP4.

Xaa and Yaa indicate any amino acid. Decreasing font of amino acid at P1 position represents declining rate of hydrolysis. Amino acids crossed

out must not occupy P1
0. Arrow indicates site of cleavage. (c) quaternary structure of homodimeric human recombinant DPP4 as determined by

Weihofen et al., 2004, showing the a/b-hydrolase domain (aa 39–51 and 506–766) in green and propeller domain (aa 55–497) with the

glycosylation-rich subdomain (red) and the cystein-rich subdomain (blue). (d) Propeller domain viewed from the top, illustrating the eight

propeller blades designated with roman numbers and two subdomains. (e) Active site zoomed in, depicting the residues involved in catalysis,

catalytic triad Ser630, Asp708, His740 are shown in red, Tyr547 responsible for oxyanion hole in brown, Tyr662 and Tyr666 forming the hydrophobic

pocket in grey, Arg125 and Asn710, contributing to an electrostatic sink in orange and blue, respectively, and Glu205 and Glu206 ensuring

N-terminal anchoring in pale green. S–S bridges are illustrated in yellow and carbohydrates in orange. Structures were drawn with PyMOLTM

2008 DeLano Scientific LLC, using Protein Data Base: 1W1I [7].
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Soluble CD26/DPP4 (sCD26)

CD26/DPP4 exists in a soluble form, thought to be shed

from the membrane into plasma, which still maintains its

enzymatic activity (for review see [26,27]). Recently, the

bone marrow – but not the kidney – could be determined

as one of the sources of soluble serum CD26/DPP4 by

transplantation studies in DPP4-deficient rats [28]. Stand-

ard concentrations of serum and cerebrospinal fluid (CSF)

levels for healthy children and adults have been assessed

[4,26,27,29,30]. The alterations of human DPP4 activity in

the serum and CD26/DPP4 expression in numerous dis-

eases will be discussed in more detail below and are sum-

marized in Table 3.

Gene

The gene structures of human and mouse DPP4 show great

homology, with some minor variation in gene and exon

size [31,32]. In humans, the gene is located on chromo-

some 2q24.3, spans 81.8 kb and contains 26 exons. The

nucleotides encoding the sequence around the active site

serine (Gly-X-Ser-X-Gly) are split between exons 21 and

22. Similarly, the exons of the catalytic triad are 22 for Ser,

24 for Asp and 26 for His [31]. In F344/DuCrj(DPP4neg)

rats, among other point mutations, a G to A transition at

nucleotide 1897 in the Dpp4 cDNA sequence leads to a sub-

stitution of Gly633 to Arg in the catalytic centre of the

enzyme (Gly629–Trp–Ser–Tyr–Gly633) [33] and a retention

of the mutant protein in endoplasmatic reticulum largely

abrogating expression of the mutant CD26/DPP4 protein

[34,35]. The Ser631 is the active serine of rat DPP4 and the

same point mutations were reconfirmed in otherwise inde-

pendent substrains of F344 rats [36,37], and were also used

to generate DPP4-deficient congenic DA.F344-Dpp4m/SvH

rats [38].

DPP4 contains neither a TATAA nor a CCAAT box as a

promoter, but has a C- and G-rich region containing sev-

eral consensus binding sites for transcriptional factors

[39,40]. The expression is regulated at RNA level and is

organ-specific [41–44]. Within an organ, it is dependent

upon cell type, differentiation state and activation state.

Several cytokines are known to regulate DPP4 expression

in a cell-type-specific manner such as interferon (IFN)-g,

tumour necrosis factor (TNF)-a and lipopolysaccharide

(LPS) in human umbilical vein endothelial cells (HUVEC)

[42,45–49]. In some tumours, binding of the transcription

factors is enhanced by certain cytokines also modifying the

expression of CD26/DPP4 [50].

Expression of CD26/DPP4

CD26/DPP4 is expressed ubiquitously in many tissues –

endothelia and epithelia – including but not limited to kid-

ney, liver, lung, intestine and, interestingly, also on immune

cells (e.g. T cells, activated B, activated natural killer (NK)

cells and myeloid cells) [31,35,41,51–55].

T cells

CD26/DPP4 is expressed on only a fraction of resting T

cells, mainly CD41CD45RO1 memory T cells, but is up-

regulated strongly following T cell activation [54]. Detailed

expression patterns have been recently reviewed elsewhere

[56]. Altogether, up to 70% of peripheral blood lympho-

cytes can express detectable CD26/DPP4 protein levels

[55]. Importantly, CD26/DPP4 has been described as a

negative selection marker for human regulatory T cells

(Tregs) [57,58]. In contrast, human T helper type 17 (Th17)

cells showed very high expression of enzymatically active

CD26/DPP4 [59]. Recently, mucosal-associated invariant T

cells (MAITs) have also been shown to express high levels

of CD26/DPP4 in humans [60].

NK cells

NK cells usually express only low amounts of CD26/DPP4,

but surface expression increases significantly up to 30%

after interleukin (IL)-2 stimulation as well as IL-12 or IL-

Fig. 2. Structure, properties and

functions of dipeptidyl peptidase 4

(DPP4) sialylation [10–12,16–18,20].

CD26/DPP4 in the immune system
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15 stimulation [61–63]. A functional aspect of this up-

regulated expression of CD26/DPP4 on NK cells might be

an increased CD16-dependent lysis. This may be caused by

the mediation of protein tyrosine phosphorylation and an

involvement of CD26/DPP4 in the production of cytokines

by NK cells [35,64,65]. In a model of lung metastasis, NK

cell cytotoxicity against tumour (MADB106) cells proved

to be diminished in a CD26/DPP4-deficient F344 rat sub-

strain. Additionally, the absolute capacity of single NK cells

to lyse tumour target cells is reduced in a congenic rat

model, suggesting that CD26/DPP4 enzymatic activity sus-

tains NK cytotoxicity [35,38]. NK cells exert their cytotox-

icity via secretory lysosomes, and CD26/DPP4 was

identified on the membrane of secretory lysosomes in NK

cells by proteomic analysis [66,67]. Concerning the NK cell

maturation, the percentage of NK cells in DPP4-deficient

animals was increased significantly, while total leucocyte

numbers were decreased in a congenic DPP4-deficient rat

model, as well as in knock-out mice [38,68].

B cells

Upon activation, up to 50% of human B cells express CD26/

DPP4 [53]. Specific suppression of DPP4 activity reduces the

B cell activation and synthesis of DNA in a dose-dependent

manner [53,69]. In mice, an impaired immunoglobulin iso-

type switching of B cells in CD26-deficient mice became

apparent in one study [68], while another could not show

any differences [70]. Another in-vitro study showed no effect

of CD26/DPP4 deficiency on B cells in rats expressing a trun-

cated CD26 molecule lacking the DPP4 activity [71]. How-

ever, monitoring the long-term effect of DPP4 deficiency in

vivo, we found B cell numbers to be decreased markedly in

later life [72]. One of the best substrates of DPP4, neuropep-

tide Y (NPY), has been shown to mobilize B1-like B cells

selectively [73]. Hence, a pharmacologically induced lack of

DPP4 function may, indirectly, modulate ‘stress-induced’ B

cell redistribution and composition of B cell reservoirs. In

humans, CD26/DPP4 is currently under investigation as a

possible prognostic marker in B cell carcinoma [74].

Myeloid cells

CD26/DPP4 was shown to be chemorepellent for human

and murine neutrophils, whereas DPP4 truncation affected

recruitment of eosinophils via its substrate eotaxin

(CCL11) [38]. CD26/DPP4 has also been shown to be

expressed on dendritic cells [75–77] and, in rodents, on

monocytes/macrophages [78]. In rats, DPP4 could be

shown in K€upffer and microglia cells, respectively, with

DPP4 being expressed in lysosomes and increased upon

activation [79–81]. Data on the role of CD26/DPP4 on

monocytes/macrophages in humans are scarce. Neverthe-

less, a special interest arises from the fact that long-term

DPP4 inhibition influences atherosclerosis positively by

inhibiting inflammation mediated by myeloid cells [82].

The detailed involvement of CD26/DPP4 in atherosclerosis

has been reviewed recently elsewhere [56].

Substrates of DPP4

Many gastrointestinal hormones, growth factors, neuropeptides

and chemokines share either the X-Pro or -Ala motif at their

N-terminus and have been shown to be cleaved by DPP4, as

summarized in Table 1 (for a review, see [4]). Substrates of

DPP4 are involved in neuroendocrine system, nociception,

metabolism/nutrition, cardiovascular functions, immune regu-

lation such as chemotaxis, and in infection (Table 1; Fig. 3) [4].

Structure–activity relationships have shown that truncation by

DPP4 either results in modulation of receptor selectivity with

different physiological responses such as in NPY or ablation of

receptor selectivity with additional but lower physiological out-

puts, such as in substance P, or inactivation towards receptor

response such as in glucagon-like peptide 1 (GLP-1), pituitary

adenylate cyclase-activating polypeptide (PACAP), eotaxin and

stromal-derived factor (SDF)-a [4,56,83]. However, the regula-

tion of chemokines with regard to immune response and

receptor selectivity is extremely diverse (for a review, see [84]).

After truncation, most DPP4 substrates, being devoid of the X-

proline N-terminal dipeptide, are degraded more rapidly by

additional peptidases [85]. This is the case for substrates such

as substance P being degraded further by aminopeptidase N,

or GLP-1 being degraded by neprilysin [85,86]. Intriguingly,

many cytokines also contain an X-Pro N-terminal motif, but

DPP4 could only truncate their fragments [87].

Binding partners

Several molecules have been shown to bind to DPP4, thereby

triggering various physiological responses and modulation

immune responsiveness [4]. These can be subdivided into

four categories: immune regulation, cell adhesion, cell–cell

communication and peptide transport (Table 2).

Physiological role of DPP4

DPP4 has been described as a ‘moonlighting’ protein due to

its multiple functions. DPP4 exerts its physiological roles

either via its enzymatic activity by regulating many peptides

or via its interactions with a variety of binding partners [88].

It is involved in processes such as nutrition, nociception,

cell-adhesion, psychoneuroendocrine regulation, immune

response and cardiovascular adaptation, as reviewed recently

[4,5,27,88–92] and summarized in Fig. 3a.

Function of CD26/DPP4 in the immune system

T cell development

Bone marrow-derived T progenitor cells undergo matura-

tion in the thymus [93]. The vast majority of cells in the

C. Klemann et al.
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Table 1. Selection of known dipeptidyl peptidase 4 (DPP4) substrates [4].

Peptide N-terminus # Amino acids Selectivity‡ Physiological effect

Inactivation/Alteration in vivo

and in vitro

Pancreatic polypeptides:

Peptide YY YP#IKPE. . . 36 1 (11)* M/N

Neuropeptide Y YP#SKPD. . . 36 111 Ne, No, C, Im

Chemokines:

SDF-1a KP#VSLS. . . 68 1111 Im

MDC GP#YG#AN 69 1111 (11)† Im

I-TAC FP#MFKR. . . 73 111 Im

IP-10 VP#LSRT. . . 77 11 Im

Mig TP#VVRK. . . 10 11 Im

RANTES SP#YSSD. . . 68 1 Im

Eotaxin GP#ASVP. . . 74 1 Im

LD78b AP#LAAD. . . 70 1 Imm

PACAP/glucagon family:

GLP-1 HA#EG#TF. . . 30 11 (111)* M/N

GIP YA#EGTF. . . 42 11 M/N

PACAP38/PACAP27 HS#EG#IF. . . 38/27 11 (1)†/1 (1)† M/N, Ne

Glucagon HS#QGTF. . . 29 11 M/N

GLP-2 HA#DG#SF. . . 33 1 M/N

Neuropeptides/Peptides:

Substance P RP#KP#Q. . . 11 11 (11)† No, Ne, C, Im

Endomorphin-2 YP#WF-NH2 4 1 No

GRP VP#LP#AG. . . 27 111 (111)† M/N

Procalcitonin AP#FRSA. . . 116 n.d. Inf

Inactivation/Alteration

shown in vitro only

Chemokines:

SDF-1b KP#VSLS. . . 72 n.d. Im

PACAP/Glucagon family:

GHRH44/GHRH29-NH2 YA#DAIF. . . 44/29 111 Ne

Oxyntomodulin HS#QGTF. . . 37 11 Ne

PHM HA#DGVF. . . 27 11 Ne

VIP HS#DA#VF. . . 59 1 (1)† Ne, M/N

Secretin HS#DGTF. . . 27 1 M/N

Neuropeptides/peptides:

BNP-32 SP#KMVQG. . . 32 11 C

IGF-I GP#ETLCGA. . . 105 1 Ne, M/N

Haemorphin-7 LV#VYPW. . . 10 11 C

b-casomorphin YP#FVEPI 7 11 Ne, M/N

Endomorphin-1 YP#FF-NH2 4 1 No

Enterostatin VP#DP#R 5 1 M/N

Tyr-MIF-1 YP#LG-NH2 4 1 No

Morphiceptin YP#FP-NH2 4 n.d. No

Kentsin TP#RK 4 n.d. No

Vasostatin-1 (chromogranin A1–76) LP#VNSPM. . . 76 111 C

SR-17 (chromogranin B586–602) SA#EFPDFY. . . 17 1 C

Pro-colipase VP#DP#R. . . 101 1 M/N

CLIP RP#V. . . 22 1 Ne

Trypsinogen pro-peptide FP#T. . . 8 1 M/N

Trypsinogen (pig) FP#T. . . 231 1 M/N

Prolactin (sheep) TP#V. . . 198 1 Ne, M/N

Aprotinin (bovine) RP#D. . . 58 1 Trypsin inhibitor

Chorionic gonadotrophin AP#D. . . 243 1 Ne

Promellitin AP#EP#EP# 50 n.d. Bee venom

Chemokine:

GCP-2 GP#VS. . . 75 n.d. Im

*Different values obtained by various laboratories. †Selectivity of second cleavage of the same substrate. ‡In-vitro values. kcat/KM values: 1 5

0 – 1 3 105 M21 s21, 11 5 1 – 10 3 105 M21 s21
; 111 5 10 – 30 3 105 M21 s21, 1111 5 30 – 50 3 105 M21 s21. Ne 5 neuroendocrine;

No 5 nociception; M/N 5 metabolic/nutrition; C 5 cardiovascular; Im 5 immunology; Inf 5 infection; n.d. 5 not determined.

CD26/DPP4 in the immune system
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thymus express CD26/DPP4 and, therefore, it is thought to

be a thymic maturation marker in rodents as well as

humans [55,94]. CD26/DPP4 has been described as a

mediator of lymphocyte migration through the thymus. It

is down-regulated on cells that undergo apoptosis and up-

regulated on maturing thymocytes, reaching the highest

level of CD26/DPP4 expression in mature CD4 or CD8

single-positive T cells within the thymus [94–96]. Findings

are conflicted in the periphery, but describe the expression

of CD26/DPP4 favourably as a characteristic of memory T

cells, with CD26/DPP4 bright cells responding maximally

to recall antigens [97–100]. CD26/DPP4 has shown the

ability to act as a non-integrin receptor, being able to bind

fibronectin and collagen [101,102]. Another study indi-

cated that CD26/DPP4 acts as an endogenous inhibitor of

T cell motility regulated by a cascade of interacting cell sur-

face molecules [103]. Proper adhesion is of great impor-

tance: first for progenitor cells entering the thymus;

secondly, for thymocytes trafficking from cortex to medulla

during their maturation; and thirdly, egressing as mature T

cells [93]. Apparently, CD26/DPP4-associated enzymatic

activity is controlled ontogenetically during T cell matura-

tion and may be involved in thymic deletion of emerging

clones [95,96]. However, the precise functional role of

CD26/DPP4 expressed on maturing thymocytes remains

unclear.

The thymus undergoes an age-dependent involution but

remains active up to a high age, playing a central role in

replenishing the peripheral T cell pool [104]. Impairment

of CD26/DPP4 function under long-term conditions had a

remarkable effect on T cell subpopulations in a Fischer-344

(F344) rat model. In CD26/DPP4-deficient F344 rats the

Fig. 3. Physiological and

pathological processes influenced

by dipeptidyl peptidase 4 (DPP4)

[4,92,93]. (a) Summary of

physiological roles of DPP4; (b)

pathophysiological role of DPP4

with either altered expression and/

or activity.

C. Klemann et al.
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Table 2. Summary of molecules known to associate with dipeptidyl peptidase 4 (DPP4).

Binding partner Binding site Function Refs

Immunology ADA a1 and a2 of ADA bind to DPP4

via loop A between blades IV

and V, and loop B between b 3

and b 4 of blade V, respectively.

Glycosylation of DPP4-Asn-229

involved, as observed in crystal

structure

Ternary complex between A2BR-

ADA of dentritic APC to lym-

phocytic CD26. ADA binding

only in higher mammalian and

species-dependent: human>

porcine 6¼ rat 6¼mouse

Binding of extracellular ADA to

AB2 receptor on dentritic APC

cells and CD26 on T cells to

form a ternary complex, result-

ing in: co-stimulation of T cells,

T cell proliferation, T cell

protection

[7,193] [24]

CD45 Binding of DPP4 at the intracellu-

lar PTP2 domain of CD45

causes recruitment of both

enzymes on lipid rafts

Signal transduction resulting in

phosphorylation of Erk1/2TCR-

zeta, ZAP70 by p56lck

[191]

M6P Carbohydrate moiety of DPP4 Induces association of M6P/

IGFRII and DPP4

[190]

Caveolin-1 Binding of caveolin-1 on APC cells

to soluble CD26 at aa 201–210

and Ser630 leading to: T cell

proliferation 1* CD26 on T

cells ) binding of CARMA-1

on cytoplasmic tail of CD26 )
phosphorylation of caveolin-1

) dissociation of Tollip and

IRAK-1 ) phosphorylation of

IRAK-1 ) activation of NF-jB

) * CD86

Causes up-regulation of CD86 on

TT-loaded dentritic monocytes,

thus leading to the association

of APC with CD28 on T cells

and subsequently to T cell

activation

[189]

[114]

[112]

CARMA1

(CARD11)

Binding of CARMA-1 on cytoplas-

mic tail of CD26 ) recruitment

of CARMA-1, CD26, Bcl10 and

IkappaB kinase complex to lipid

rafts ) signal transduction

Leading to activation of ZAP70,

PLC, MAPK, phosphatyl inosi-

tol and * IL-2

[112]

[112]

M6P/IGFRII Needs M6P bound on DPP4 T cell activation, internalization of

DPP4, transendothelial migra-

tion by binding of lymphocytes

to endothelial DPP4

[25]

[190]

CXCR4 receptor ? Reduction of chemoattraction, co-

internalization in presence of

SDF-a, formation of invadopo-

dia in presence of SDF-a and

gp120

[194]

Tromoxane A2

receptor

? Natural DPP4 inhibitor,

T cell suppression

[195]

HIV-TAT 2 binding sites, sialic acid moiety

and active site of DPP4

Crystal structures shows P2 and P1

of Tat1–9 bind to S1 and S2 of

DPP4, respectively

HIV-entry, inhibitor of DPP4 due

to reverse binding at the active

site

[16,24]

HIV-gp120 Cysteine-rich region, HIV-gp 120

interacts via its C3 region with

DPP4 on lymphocytes

HIV-entry and subsequent apopto-

sis; inhibits ADA binding to

DPP4 in presence of CXCR4,

although binding site distinct

to ADA

[194]

CD26/DPP4 in the immune system
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CD41 T cell pool showed decreased numbers of memory T

cells, as well as rat tracheal epithelial (RTE) and increased

numbers of naive T cells instead [72]. Also, thymus archi-

tecture appears to be altered in this model of chronic

genetic CD26/DPP4-deficiency. Again, in CD26/DPP4-

deficient mice, the percentage of CD41 T cells is lower

among the splenic lymphocyte population [68]. In another

congenic CD26/DPP4 rat model, the overall number of leu-

cocytes proved to be decreased in CD26/DPP4-deficient

animals [38]. Similar observations were made in humans,

as (reversible) dose-dependent decreases in absolute lym-

phocyte numbers were observed in patients receiving

DPP4-inhibitors [105]. One case of severe leucopenia

associated with DPP4 inhibition has been reported, but

causality has not been proven [106]. In contrast, a current

meta-analysis, including 16 papers with randomized trials

Table 2. Continued

Binding partner Binding site Function Refs

Cell adhesion/cell-

cell communication

Collagen Cysteine-rich region between aa

238 and 495

Extracellular adhesion? Cancer?

Metastasis?

[196]

Fibronectin (FN) Cysteine-rich region of DPP4

between aa 469–479 via aa

LTSRPA motif (FN)

Fibronectin-mediated spreading of

fibroblasts, lung metastasis, dis-

sociates in presence of soluble

DPP4

[197]

Plasminogen

receptor (PgR)

Plasminogen/

Plasmin

(Pg/Pl)

Cysteine-rich region of DPP4 close

to ADA binding site, sialic acid

carbohydrate moieties of plas-

minogen binds to Pg-receptor/

DPP4 complex (aa 313–319)/

aIIbb3 and urinary/tissue plas-

minogen activator uPA/tPA.

Activated plasmin (Pl) changes

conformation and binds to

DPP4. Quintary complex abol-

ished by angiostatin binding to

DPP4

* Ca21 response in synovial fibro-

blasts, activation of synovial

fibroblasts, signal transduction

in prostate cancer cells resulting

in * MMP 9. Quintary complex

of ADA, Pg 2, DPP4 and uri-

nary plasminogen activator

(uPA/tPA) and PgR ) * Pg 2

to plasmin

[198]

[199]

[5]

Streptokinase (SK) Cysteine-rich region of DPP4 only

from rheumatoid synovial fibro-

blasts via aa LTSRPA motif (SK)

Ca21 response in synovial fibro-

blasts, * DPP4 autoantibodies,

SK bound to DPP4 hydrolysis

FN

[188]

[198]

Vitronectin Sialic acid moiety of DPP4 Extracellular adhesion? Metastasis?

Complement system?

Coagulation?

[16]

Glypican 3 Both glycosylated and unglycosy-

lated glypican 3 bind to DPP4

Natural DPP4 inhibitor. Binding

of soluble glypican 3 to CD26

+ cell-proliferation and induces

apoptosis

[200]

FAP Heteromeric complex Heteromeric complex on invado-

podia causing metastasis, tumor

invasion, angiogenesis, wound

healing and fibroblast migration

[201]

DPP4 Blades IV of each subunit align to

form an eight-stranded antipar-

allel sheet, possibly Asn229

involved

Tetramerization, cell-adhesion,

cell–cell communication?,

chemotaxis?

[202]

Peptide transport Na1/H1 exchanger

isoform NH3

? Peptide transporter on microvilli

membrane of renal proximal

tubule, reabsorption of dipeptides

with proline. In prostate cancer,

association of DPP4, Pg 2 and

NH3 results in Ca21 signal cascade

and in intracellular pH

+ tumour cell-proliferation 1

invasiveness

[203]

[204]
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comparing DDP4 inhibitors in addition to sulphonylurea,

could not identify a significantly increased risk of this

potential side effect [107].

T cell stimulation

Early in-vitro studies showed that DPP4 inhibition

decreases the induction and activation of cytokines con-

trolling human T lymphocyte proliferation [108]. DPP4

inhibition on mitogen-stimulated thymocytes and spleno-

cytes inhibited DNA synthesis as well as production of IL-

2, IL-6 and IL-10, and increased secretion of the regulatory

cytokine transforming growth factor (TGF)-b1 [109]. In

congenic rats, the T cell proliferative response of CD26/

DPP4-deficient rats upon stimulation with anti-T cell

receptor (TCR) antibodies was decreased fivefold in vitro

[38]. In the past, there has been a controversial debate as to

what extent CD26/DPP4 and its catalytic region are impor-

tant for T cell co-stimulation [110,111]. Recent in-vitro

findings now demonstrate that CD26/DPP4 is able to trig-

ger direct T cell activation and proliferation directly via

(5CARD11) CARMA1-mediated nuclear factor (NF)-jB

activation in T cells [112]. Additionally, CD26/DPP4 on T

cells interacts directly with antigen-presenting cells (APCs)

via caveolin-1. Upon linkage, Tollip and interleukin-1

receptor-associated kinase 1 (IRAK-1) disengage from

caveolin-1 leading to subsequent IRAK-1 phosphorylation

[113]. As illustrated in Fig. 4, this results in an up-

regulation of the co-stimulatory molecule CD86, which

enhances the bond of the immunological synapse [113].

One the other side of the immunological synapse, blocking

CD26/DPP4-mediated T cell co-stimulation with soluble

caveolin-1-immunoglobulin (Ig) fusion protein induces

anergy in CD41 T cells [114]. A recent study demonstrates

that CD26-mediated co-stimulation of CD81 T cells is

enhanced compared to that obtained through CD28-

mediated co-stimulation [115]. The clinical relevance of

these findings remains to be determined, as one study

showed intact T cell-dependent immune responses to anti-

genic challenge after specific DPP4-inhibition and in

CD26–/– mice [70]. However, the clinical use of DPP4-

inhibitors could prove to be critical, as the catalytic center

of CD26/DPP4 is part of the linking site required for

co-stimulation [113]. Besides co-stimulation, direct

anti-inflammatory mechanisms of DPP4 inhibitors are

discussed [116]. Yazbeck et al. propose a model of confor-

mational change in the intracellular domain after binding

an inhibitor to the catalytic center of CD26/DPP4.

Subsequently, T cell proliferation and production of proin-

flammatory cytokines are suppressed [116–118].

Involvement of CD26/DPP4 in pathology

Due to its ubiquitous distribution and involvement in vari-

ous physiological processes, a great number of pathological

conditions are associated with either altered DPP4 expres-

sion and/or activity correlating with the severity of the

respective condition. These can be subdivided into at

least five categories, as illustrated in Fig. 4b:

Fig. 4. A model of CD26 interacting

with caveolin-1 resulting in T cell co-

stimulation and activation as proposed

by Ohnuma et al. [188]: after antigen

uptake via caveolae by antigen-

presenting cells (APCs), caveolin-1 is

exposed on the cell surface and

aggregates in the immunological

synaps in lipid rafts. Consequently,

caveolin-1 binds to CD26 and is

phosphorylated, leading dissociation

of interleukin (IL)21 receptor-

associated kinase 1 (IRAK-1) and

Tollip. This lead to activation of

nuclear factor (NF)-jB and results in

CD86 up-regulation, supporting the

immunological synapse and thus T cell

co-stimulation. In T cells, after

caveolin-1 to CD26 binding,

(CARD11) CARMA1 is recruited to

the cytosolic portion of CD26.

Activation of NF-jB lead to T cell

proliferation and IL-2 production.

CD26/DPP4 in the immune system
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psychoneuroendocrine disorders, autoimmune and inflam-

matory diseases, infectious diseases, haematological malig-

nancies, as well as solid tumors [4,91,92]. However, to the

best of our knowledge, DPP4 expression or activity is not

used routinely for diagnostic purposes in the clinic. Never-

theless, altered CD26/DPP4 activities or concentrations in

serum have been associated with various pathogenic condi-

tions involving psychological, autoimmune, inflammatory,

infectious, metabolic and cardiovascular disorders, as well

as tumor and cancer, as summarized in Table 3. Although,

previously, several DPP4-like enzymes were described to

contribute to the overall DPP4-like activity in serum such

as attractin and b-DPP IV, it is now generally accepted that

CD26/DPP4 constitute more than 90% of the overall

DPP4-like activity in serum and plasma [119,120].

Role of CD26/DPP4 and its inhibition in human
diseases and their animal model

CD26/DPP4 has been linked to a number of diseases as

summarized in Table 3, including but not limited to

Table 3. Summary of altered CD26/dipeptidyl peptidase 4 (DPP4) activity and expression in human sera [4,5,26,27,30,91]

Disease

Serum

CD26/DPP4

Serum CD26/

DPP4 activity Remarks

Healthy Male* *
Female* +
Age* *

Psychological diseases Major depression + + + ADA activity

Schizophrenia *
Anxiety +
Stress +
Anorexia nervosa * + T1CD26/CD25 cells

Bulimia * + T1CD26/CD25 cells

Alcoholism +
Autoimmune diseases Rheumathoid arthritis + + * sDPP-2 activity, * sCD30

* SynoviocytesCD26

Lupus erythematosus + + * DPP-2 + PBMCCD26

Sj€ogren syndrome + + * DPP-2 in leucocytes

Psoriaris + * ADA

Scleroderma +
ANCA-associated vasculitis + * sCD30 * IL-10

Coeliac disease � * intestinal CD26

Allergic asthmatics * + * TCD26/CD4 cell, * iNK * eosinophils

Diabetes type 1 * � + TCD26/CD4 + TCD26/CD8

Inflammatory/infectious

diseases

Pancreatitis �
Gastric ulcer +
Acute hepatitis * *
Chronic hepatitis + *
Crohn’s disease + * DPP4 * FAP enterocyes

HIV � + * ADA, + TCD26 cell

Sepsis +
Metabolic/cardiovascular Diabetes type 2 +

Hypertension *
Cirrhosis *
Osteoporosis *

Cancer/tumour Gastric cancer � +
Bile duct cancer *
Colorectum + +
Pancreatic cancer +
Oral sqamous cell carcinoma + +
Hepatocellular carcinoma *
Multiple myeloma +
Hodgkin’s disease +
Lymphosarcoma +

*In healthy subjects, males show a higher baseline activity of CD26/DPP4 compared to females. In males as well in females DPPV activity is

higher in older individuals compared to younger ones.
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asthma, multiple sclerosis, arthritis and inflammatory

bowel disease.

Asthma

Allergic asthma is one of the most common diseases, with

its prevalence having increased dramatically in developed

countries during the last two decades [121]. Its pathogene-

sis involves a complex series of reactions within the airways

that is associated with allergen-specific airway hyper-

responsiveness and inflammation, which can be studied in

animal models [122]. The expression of CD26/DPP4 in the

bronchi was described first by the group of van der Velden,

showing a localization of CD26/DPP4 in serosal glands,

blood vessels and on T cells [123], but there were no differ-

ences between asthmatics and healthy controls for the

expression of CD26/DPP4 in the lamina propria deter-

mined by biopsies. However, investigating the effects of air-

way inflammation in rats, we found a significant increase

of DPP4 enzymatic activity in the lung parenchyma. Also,

strong immunohistochemical staining and high mRNA lev-

els were detected in bronchial epithelium and trachea

[124]. Furthermore, the expression of the soluble form of

CD26/DPP4, in the blood as well as on T cells, increased in

patients suffering from asthma [125]. Conflicting results

arise from a mouse study indicating an enhanced

ovalbumin-induced airway inflammation in CD26/DPP4-

deficient mice [126].

Does CD26/DPP4 play a role in the pathogenesis of

asthma or allergic-like airway inflammation? Using a

model of ovalbumin-induced airway inflammation in rats,

we found a CD26/DPP4-dependent T cell recruitment to

the lungs, with reduced signs of inflammation in CD26/

DPP4-deficient rats [127]. These results were confirmed

additionally by a significant reduction of the airway-

specific recruitment of T cells to bronchi and lung paren-

chyma in rats genetically lacking expression of CD26/

DPP4. This site-specific recruitment appeared and was

mediated by chemokines, rather than nerve–T cell interac-

tions [128]. Furthermore, the amount of T cells expressing

CD26/DPP4 was increased, and correlated with the severity

of airway inflammation [129]. To address further the ques-

tions of the role of T cells expressing CD26/DPP4 in airway

inflammation, we have transferred labelled T cells from

CD26-expressing or CD26/DPP4-deficient F344 rat donors

and subsequently cross-transferred to recipients of the

other substrain [130]. Here, we found significantly more T

cells in CD26/DPP4-deficient recipient lungs, regardless of

the origin of the transferred T cells [130]. Additionally,

Fig. 5. Crystal structure of human dipeptidyl peptidase 4 (DPP4) and bovine adenosine deaminase (ADA) obtained from Protein Data Bank:

1W1I. (a) DPP4 crystal structure associated with bovine ADA at its glycosylation-rich region of the propeller domain. (b) Top view of propeller

domain, showing ADA binding site at bladea 4 and 5 as well as ADA interactions with carbohydrates of N229. (c) Caveolin-1 binding site at aa

201–210 and Ser630[7].

CD26/DPP4 in the immune system
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CD26-deficient rats exhibited a significantly increased

influx of Tregs into the lungs in vivo and increased IL-10

production of draining lymph node cells in vitro [131].

These findings demonstrate a negative regulatory role of

the bronchus-associated lymphatic tissue (BALT)-specific

expression of CD26/DPP4 in T cell adhesion during an

asthma-like inflammation. However, first data concerning

studies targeting CD26/DPP4 by a pharmacological treat-

ment regimens show differential effects depending on the

route, dose and time of the application [132]. Additionally,

inhibition of CD26/DPP4 enhances CCL11/eotaxin-medi-

ated recruitment of eosinophils in vivo [133].

Multiple sclerosis/EAE

Multiple sclerosis (MS) and its corresponding animal

model of experimental autoimmune encephaolomyelitis

(EAE) are chronic inflammatory autoimmune diseases

affecting the central nervous system (CNS) [134]. Patients

suffering from MS exhibit increased numbers of CD261 T

Table 4. Involvement of CD26/dipeptidyl peptidase 4 (DPP4) in T helper type 1 (Th1) and Th2 responses [3,17,49,67,81,88,112,116,188–192].

Th1 Th2

CD26 expression High expression on CD26bright memory T cell

subset

Binding of caveolin-1 on dentritic APC cells to

CD26 on Th1 cells, results in binding of

CARMA-1 cytoplasmic tail of CD26 ) recruit-

ment of CARMA-1, CD26, Bcl10 and IkappaB

kinase complex to lipid rafts ) signal trans-

duction * up-regulation of CD26 expression

upon induction of Th1 response

Slight up-regulation of CD26 expression

Subcellular compartmentation Association of CD26 to lipid rafts

Binding of CD26 to CD45R01 on lipid rafts,

resulting in signal transduction; followed by

disassembly of CD45R0 from lipid rafts

Binding of CD26 to M6P/IGFIIR ) internalization 1

T cell activation

Association of CD26 1 CXCR4 ) internalization

Chemokine

DPP4 substrates

CXCR3 ! IP-10

CCR1 ! RANTES1–68>RANTES3–68

CCR5 ! RANTES3–68>RANTES 1-68

CXCR4 ! SDF-1a1–68> SDF-1a3–68

CCR3 ! eotaxin1–74> eotaxin3–74

CCR4 ! MDC1–67 6¼MDC3–67

CCR1 ! RANTES1–68>RANTES3–68

CCR3 ! RANTES3–68>RANTES 1–68

Neuropeptide/peptide

DPP4 substrates

NPY released from SNS involved in

inflammatory response of macrophages,

NK and T cells

GLP-2 involved in Crohn’s disease

Mast-cells: substanceP ! allergy 1 asthma

NPY released from SNS involved in inflammatory

response of PMN and B cells

Inflammatory response Soluble DPP4 found in secretory lysosomes

of TC cells

Membrane-bound DPP4 in secretory lysosomes

of NK cells

* DPP4 on activated macrophages truncate NPY

! loss of Y1-R binding ! + IL-1b and IL-6

release

* DPP4 on activated microglia

T cell recruitment in asthma is DPP4-dependent

Site of inflammation Arthritis: * DPP4 on activated synoviocytes 1

CD26 internalized via caveolae * hypersialyla-

tion of DPP4 ! + sDPP4 activity ! * SDF-a

! * inflammation * DPP4 on endothelial cells

via IFN-g, TNF-a and LPS stimulation

Crohn’s disease: * DPP4 in enterocytes ! +
GLP-2 * DPP4 on activated micro-

glia 1 astrocytes after ischaemia

Asthma: * DPP4 in lung parenchyma

Binding of CD26 to M6P/IGFIIR ! transendothelial

migration of lymphocytes

Diseases associated

with DPP4/CD26

Rheumatoid arthritis

Multiple sclerosis

Truncation of RANTES by DPP4 ! * protection

against HIV entry

Ischaemia

Truncation of SDF-1a by DPP4 ! + protection

against HIV entry

CD261 T cells involved in the pathogenesis of asthma

correlating to IgE titre of antigen
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cells, also showing higher expression levels of CD26/DPP4,

which correlate with disease activity [135,136]. Compelling

evidence has demonstrated that besides myelin specific T

helper 1 (Th1) cells, IL-17-producing CD41 cells (Th17)

are major contributors to the pathogenesis of autoimmune

inflammation [137]. In line with these findings, human

Th17 cells have been shown to express high amounts of

enzymatically active CD26/DPP4 [59]. Pharmacological

inhibition of DPP4 decreased incidence, onset of symptoms

and overall disease severity in EAE significantly, while nei-

ther acting as generally immunosuppressive nor eliminating

encephalitogenic T cells, and not inhibiting T cell priming

[138]. In humans, inhibitors of CD26/DPP4 suppress acti-

vation of MBP-specific CD41 T cell clones [139]. Demon-

strating the limitations of disease models and/or selectivity

of pharmacological intervention, CD26–/– mice demonstrate

a higher disease severity compared to wild-type (WT) con-

trols, which the authors explained by a functional deregula-

tion of Th1 immunity because of a reduced TGF-b

production [117]. A possible involvement of other members

of the DPP4 family or the encephalopathic role of Th17 cells

has not been addressed at this point. Later, it has be shown

conclusively that the combined suppression of DPP4 and

aminopeptidase N (APN) results in decreased T cell-specific

IL-17 production and thus disease amelioration [140].

Arthritis

Rheumatoid arthritis is a chronic, systemic inflammatory

disease with progressive destruction of articular cartilage

[141]. A number of studies show decreased levels of DPP4

activity in subjects suffering from this disease [142]. Further-

more, the expression of CD26/DPP4 on joint-infiltrating T

cells has also been shown to be decreased [143]. Lower

serum DPP4 activity in rheumatoid arthritis is caused by

hypersialylation and DPP4 autoantibodies, as illustrated in

Fig. 2 [17]. The involvement of CD26/DPP4 in arthritis has

been reviewed recently, involving glycosylation and DPP4

autoantibodies on one hand and SDF-a on the other hand

[17,144–146]. Additionally, one study summarizes three

cases of DPP4 inhibitor-induced polyarthritis [147].

Again, CD26–/– mice showed a markedly increased sever-

ity of disease due to lower DPP4 activity in synovial fluids,

resulting in increased levels of SDF-a [145].

Inflammatory bowel disease (IBD)

IBD, with is two major forms Crohn’s disease and ulcera-

tive colitis, is characterized by chronic, remittent or pro-

gressive inflammatory processes in the gastrointestinal tract

[148]. T cells from patients with IBD have higher levels of

CD26/DPP4 expression, while levels of circulating CD26/

DPP4 are decreased [149,150]. This parallels the findings of

colitis models in mice [151]. In one study, CD26–/– mice

show a greater disease severity [152]. In another study, the

acute phase of colitis, loss of body mass and disease activity

in CD26–/– mice was less intensive than in the controls,

while no pronounced histopathological differences could

be found [151]. Interestingly, lack of CD26/DPP4 led to a

twofold increase in the number of macrophages during the

acute phase of disease, while an increased influx of dendri-

tic cells became apparent in controls [151]. Another study

focused on the gut–brain axis and the altered receptor

specificity of neuropeptide Y after DPP4-mediated cleavage,

finding that CD26/DPP4 deficiency affects the neuroim-

mune response at systemic and local levels during colitis

development and resolution in mice [153]. Furthermore,

higher familial adenomatous polyposis (FAP) levels were

detected in patients with Crohn’s disease [154].

Again, the pharmacological inhibition of DPP4 by two

different inhibitors reduced disease activity significantly in

Crohn’s disease, due to increased levels of GLP-2 [155,156].

These findings suggest a pathophysiological role of CD26/

DPP4 in the nature of immune responses activated during

Crohn’s disease.

Others

CD26/DPP4 appears to play a role in a number of other

diseases (see Table 2). In atopic dermatitis, CD26/DPP4

expression was up-regulated in the skin biopsies of patients

compared with healthy controls, as well as in both models

of contact hypersensitivity [157]. In psoriasis, reduced

expression of CD26/DPP4 on CD81 T cells has been

observed [158]. In atherosclerosis, inhibition of DPP4

exerts anti-atherosclerotic effects and reduces inflammation

via inhibition of monocyte activation/chemotaxis [82].

Clinical use of DPP4 inhibitors

DPP4 has been identified as a therapeutic target for T2DM

due to its ability to cleave and inactivate insulinotrophic

incretins such as GIP and GLP-1 [159]. These incretins are

released upon glucose intake and enhance the insulin secre-

tion with a half-life of a few minutes, strictly dependent

upon DPP4-like enzymatic activity. Furthermore, incretins

exhibit positive effects on pancreatic b cells in the islets,

including stimulation of growth and replenishing insulin

stores by stimulation gene transcription. Once released,

GIP and GLP are degraded rapidly by DPP4 and thus the

inhibition of DPP4 prolongs GIP/GLP half-life and insuli-

notrophic effect [159,160]. After the first DPP4 inhibitor

sitagliptin (Januvia
VR

) had been approved by the Food and

Drug Administration (FDA) in 2006 [European Medicines

Agency (EMA), 2007], numerous functionally related

drugs, commonly called gliptins, were released [161]. Cur-

rently, there are nine DPP4 inhibitors commercially avail-

able on the market, with sitagliptin Januvia
VR

(Merck & Co.,

Inc., Kenilworth, NJ, USA), saxagliptin Onglyza
VR

(Bristol

Myers Squibb, New York, NY, USA), linagliptin Tradjen-

taTM (B€ohringer Ingelheim, Ingelheim, Germany) and

alogliptin Nesina
VR

(Takeda Pharmaceuticals, London, UK)

CD26/DPP4 in the immune system

VC 2016 British Society for Immunology, Clinical and Experimental Immunology, 185: 1–21 13



being approved by the FDA. Sitagliptin, vildagliptin

Galvus
VR

(Norvatis, Basel, Switzerland), saxagliptin and

linagliptin were approved by the EMA; and anagliptin

Suiny
VR

(Sanwa Kagaku Kenkyusho Company Ltd and

Kowa Company Ltd, Nagoya, Japan), teneligliptin Tenelia
VR

(Mitsubishi Tanabe Pharma and Daiichi Sankyo, Dussel-

dorf, Germany), trelagliptin Zafatek
VR

(Takeda Pharmaceut-

icals) and omarigliptin Marizev
VR

(Merck & Co., Inc.) being

approved in Japan. All of them are administered orally and

taken daily, except for omarigliptin, which has weekly

doses. To date, 125 meta-analyses have been reported in

PubMed, focusing on the efficacy and drug safety of DPP4

inhibitors, as well as its effects on comorbidities such as

renal impairment and cardiovascular outcome [160–173].

So far more than 500 clinical trials have been performed

throughout the world, covering all ethnic population

groups, and aproximately 250 further trials are currently

ongoing (www.clinicaltrials.gov; 31 January 2016). Gener-

ally, DPP4 inhibitors reduce DPP4 activity at approxi-

mately 70–90% of baseline and also lower the haemoglobin

A1c (HbA1c) 0.74%. All DPP4 inhibitors are excreted via

the renal route except for linagliptin, which is eliminated

via the biliary route [174].

Although demonstrating an overall favourable adverse

side-effect profile, meta-analysis showed that infections

(most common: upper respiratory tract infection and uri-

nary tract infection) increased significantly after DPP4

inhibitor treatment [160–162,164–173]. Other side effects

may include pancreatitis, headache, nausea, angioedema,

hypersensitivity and skin reactions, as well as severe joint

pain [160–162,164–173]. In response to a report of precan-

cerous changes in transplanted pancreases of donors

treated with the DPP IV inhibitor sitagliptin, the FDA and

the EMA each undertook independent reviews of all clini-

cal and preclinical data related to DPP4 inhibitors. These

reviews revealed no association of DDP4 inhibition with

pancreatic cancer [175,176]. Currently, gastrointestinal,

cutaneous and mucosal side effects, atherosclerosis and

cancer are also of special interest and have initiated exten-

sive, ongoing research [165]. When considering the more

recent findings, DPP4 inhibitors might be considered to

represent even more of a double-edged sword. Apart from

the metabolic benefit, the associated immunological effects

induced by long-term DPP4 inhibition, in particular on T

cells, are not understood fully at this stage. Further post-

marketing surveillance will hopefully elucidate the poten-

tial risks of this class of drugs for immunological side

effects.

Almost all anti-diabetic DPP4 inhibitors were designed

to exhibit a long half-life, with ‘one pill a day’ facilitating

both patients’ compliance and marketing. The short-acting

PSN-9301 appears to be the only exception [177]. A once-

daily application is convenient from a patient viewpoint.

However, long-acting inhibitors of DPP4 might compete

with other natural substrates of DPP4 and their associated

physiological functions, such as surfactant protein (SP) in

rhinosinusitis and angioedema, SDF-a in arthritis and

NPY/PYY, as well as substance P in blood pressure

[80,178,179]. Recently, the FDA revised its prescribing

information to include case reports on acute pancreatitis as

well as polyarthritis in patients using sitagliptin [146,180].

Further case reports describe contradicting effects of sita-

gliptin in psoriasis: as sitagliptin was observed, on one

hand, to trigger psoriasis, it was also claimed to ameliorate

the disease on the other hand [181,182]. Interestingly,

investigating NPY hydrolysis in serum and blood [80], a

novel C-terminal truncation of NPY by an angiotensin-

converting-enzyme (ACE)-like enzyme was detected. This

finding strongly suggests a potential interaction within cur-

rent drug treatments that use anti-diabetic DPP4 inhibitors

and anti-hypertensive ACE inhibitors in combination,

causing potentiated NPY-induced hypertension and vaso-

constriction. A suspected increase of vasocontrictive NPY1–

36 after treatment with anti-diabetic DPP4 inhibitor may

be compensated by the C-terminal inactivation of NPY

mediated by ACE, but fails if ACE is also blocked [80]. This

hypothesis has been substantiated by physiological animal

studies, using spontaneously hypertensive rats (SHR) and

normotensive Wistar-Kyoto (WKY), respectively [183].

Intriguingly, when treating SHR and WKY rats with either

the pan-DPP inhibitor P32/98 alone or in combination

with captopril, only SHR developed hypertension after

combined therapy. This suggests a genetic background

involving nephropathic hypertension similar to the human

metabolic syndrome [184]. However, Y1-R antagonists

ablated the hypertensive effects of combined treatment

with DPP4 and ACE inhibitors, supporting the involve-

ment of either NPY or PYY [183]. Similar findings have

been observed with substance P and ACE inhibitors [178].

This is of pharmacological significance, as hypertension is a

frequent co-morbidity with diabetes. In recent reports, the

development of hypertension was associated with the com-

bined application of the anti-diabetic compound sitagliptin

and anti-hypertensive drug enalapril in patients suffering

from metabolic syndrome [185,186]. Because the anti-

diabetic effects of DPP4 inhibition is only required upon

glucose challenge, the development of short-acting and

highly specific DPP4 inhibitors might minimize side effects

due to off-target inhibition.

Conclusion

The introduction of DPP4 inhibitors into clinics aimed to

enhance the endogenous insulin secretion in diabetes melli-

tus type 2 via elevated levels of glucagon, such as GLP-1

and GIP. At present, the majority of findings for non-

diabetes effects mediated by DPP4 inhibitor treatment in

patients are indicative of largely beneficial secondary

effects. Nevertheless, the application of these new com-

pounds might represent a double-edged sword: apart from
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the metabolic benefit, the associated immunological effects

of long-term DPP4 inhibition on regulatory processes such

as T cell maturation and activation are not understood

fully at this stage. Several Phase III trials of new DPP4

inhibitors are currently ongoing. These trials, along with

postmarketing surveillance data, will hopefully increase our

knowledge about the long-term efficacy and safety of DPP4

inhibitor therapy. The scope of these studies should be

focused not only on the current questions of incretin action

in the cardiovascular system, pancreatitis and cancer, but

also on (long-term) immunological parameters such as

infections, T cell development and immune homeostasis.
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