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Abstract

Motivation: Large-scale gene expression profiling has been widely used to characterize cellular

states in response to various disease conditions, genetic perturbations, etc. Although the cost of

whole-genome expression profiles has been dropping steadily, generating a compendium of ex-

pression profiling over thousands of samples is still very expensive. Recognizing that gene expres-

sions are often highly correlated, researchers from the NIH LINCS program have developed a cost-

effective strategy of profiling only �1000 carefully selected landmark genes and relying on compu-

tational methods to infer the expression of remaining target genes. However, the computational

approach adopted by the LINCS program is currently based on linear regression (LR), limiting its

accuracy since it does not capture complex nonlinear relationship between expressions of genes.

Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of tar-

get genes from the expression of landmark genes. We used the microarray-based Gene Expression

Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its per-

formance to those from other methods. In terms of mean absolute error averaged across all genes,

deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise com-

parative analysis shows that deep learning achieves lower error than LR in 99.97% of the target

genes. We also tested the performance of our learned model on an independent RNA-Seq-based

GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with

6.57% relative improvement, and achieves lower error in 81.31% of the target genes.

Availability and implementation: D-GEX is available at https://github.com/uci-cbcl/D-GEX.

Contact: xhx@ics.uci.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A fundamental problem in molecular biology is to characterize

the gene expression patterns of cells under various biological states.

Gene expression profiling has been historically adopted as the tool to

capture the gene expression patterns in cellular responses to diseases,

genetic perturbations and drug treatments. The Connectivity Map

(CMap) project was launched to create a large reference collection of

such patterns and has discovered small molecules that are functionally

connected using expression pattern-matching (e.g. HDAC inhibitors

and estrogen receptor modulators) (Lamb et al., 2006).

Although recent technological advances, whole-genome gene ex-

pression profiling is still too expensive to be used by typical aca-

demic labs to generate a compendium of gene expression over

a large number of conditions, such as large chemical libraries, gen-

ome-wide RNAi screening and genetic perturbations. The initial

phase of the CMap project produced only 564 genome-wide gene
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expression profiles using Affymetrix GeneChip microarrays (Lamb

et al., 2006).

Despite the large number of genes (�22 000) across the whole

human genome, most of their expression profiles are known to be

highly correlated. Systems biologists have leveraged this idea to con-

struct gene regulatory networks and to identify regulator and target

genes (Bansal et al., 2007). Researchers from the LINCS program

(http://www.lincsproject.org/) analyzed the gene expression profiles

from the CMap data using principal component analysis. They found

that a set of �1000 carefully chosen genes can capture �80% of the

information in the CMap data (http://support.lincscloud.org/hc/en-us/

articles/202092616-The-Landmark-Genes). Motivated by this obser-

vation, researchers have developed the L1000 Luminex bead technol-

ogy to measure the expression profiles of these �1000 genes, called

the landmark genes (http://support.lincscloud.org/hc/en-us/articles/

202092616-The-Landmark-Genes), with a much lower cost (�$5 per

profile) (Peck et al., 2006). Therefore, researchers can use the expres-

sion signatures of landmark genes to characterize the cellular states of

samples under various experimental conditions. If researchers are

interested in the expression of a specific gene other than landmark

genes, the expression profiles of the remaining �21 000 genes, called

the target genes, can be then computationally inferred based on land-

mark genes and existing expression profiles. With the L1000 technol-

ogy, the LINCS program has generated �1.3 million gene expression

profiles under a variety of experimental conditions.

However, computationally inferring the expression profiles of

target genes based on landmark genes is challenging. It is essentially

a large-scale multi-task machine learning problem, with the target

dimension (�21 000) significantly greater than the feature dimen-

sion (�1000). The LINCS program currently adopts linear regres-

sion (LR) as the inference method, which trains regression models

independently for each target gene based on the Gene Expression

Omnibus (GEO) (Edgar et al., 2002) data. While LR is highly scal-

able, it inevitably ignores the nonlinearity within gene expression

profiles that has been observed (Hasty et al., 2001). Kernel machines

can represent dexterous nonlinear patterns and have been applied to

similar problems (Ye et al., 2013). Unfortunately, they suffer from

poor scalability to growing data size. Thus, a machine learning

method enjoying both scalability and rich representability is ideal

for large-scale multi-task gene expression inference.

Recent successes in deep learning on many machine learning

tasks have demonstrated its power in learning hierarchical nonlinear

patterns on large-scale datasets (Bengio et al., 2013). Deep learning

in general refers to methods that learn a hierarchical representation

of the data through multiple layers of abstraction (e.g. multi-layer

feedforward neural networks). A number of new techniques have

been developed recently in deep learning, including the deployment

of General-Purpose Computing on Graphics Processing Units

(Ciresan et al., 2012; Coates et al., 2013), new training methodolo-

gies, such as dropout training (Baldi and Sadowski, 2013; Hinton

et al., 2012b) and momentum method (Sutskever et al., 2013). With

these advances, deep learning has achieved state-of-the-art perform-

ances on a wide range of applications, both in traditional machine

learning tasks such as computer vision (Krizhevsky et al., 2012), nat-

ural language processing (Socher et al., 2011), speech recognition

(Hinton et al., 2012a) and in natural science applications such

as exotic particles detection (Baldi et al., 2014), protein structure

prediction (Di Lena et al., 2012), RNA splicing prediction (Leung

et al., 2014) and pathogenic variants identification (Quang et al.,

2014).

Here, we present a deep learning method for gene expression in-

ference (D-GEX). D-GEX is a multi-task multi-layer feedforward

neural network. We evaluated the performances of D-GEX, LR

(with and without different regularizations) and k-nearest neighbor

(KNN) regression on two types of expression data, the microarray

expression data from the GEO and the RNA-Seq expression data

from the Genotype-Tissue Expression (GTEx) project (Ardlie et al.,

2015; Lonsdale et al., 2013). GPU computing was used to accelerate

neural network training so that we were able to evaluate a series of

neural networks with different architectures. Results on the GEO

data show that D-GEX consistently outperforms other methods in

terms of prediction accuracy. Results on the GTEx data further dem-

onstrate D-GEX, combined with the dropout regularization tech-

nique, achieves the best performance even where training and

prediction were performed on datasets obtained from different plat-

forms (microarray versus RNA-Seq). Such cross platforms generaliz-

ability implies the great potential of D-GEX to be applied to

the LINCS program where training and prediction were also done

separately on the microarray data and the L1000 data. Finally, we

attempted to explore the internal structures of the learned neural

networks with two different strategies and tried to interpret the ad-

vantages of deep learning compared with LR.

2 Methods

In this section, we first introduce three expression datasets we used

in this study and formulate gene expression inference as a supervised

learning problem. We then present D-GEX for this problem and ex-

plain a few key deep learning techniques to train D-GEX. Finally,

we introduce several common machine learning methods that we

used to compare with D-GEX.

2.1 Datasets
The GEO expression data were curated by the Broad Institute from

the publicly available GEO database. It consists of 129 158 gene ex-

pression profiles from the Affymetrix microarray platform. Each pro-

file comprises of 22 268 probes, corresponding to the 978 landmark

genes and the 21 290 target genes. The original GEO data were ac-

cessed from the LINCS Cloud (http://www.lincscloud.org/), which

has been quantile normalized into a numerical range between 4 and

15. Some of the expression profiles in the GEO dataset are biological

or technical replicates. To avoid complications in the learning proced-

ure, we removed duplicated samples (see Supplementary material),

leaving 111 009 profiles in the end.

The GTEx expression data consist of 2921 gene expression pro-

files of various tissue samples obtained from the Illumina RNA-Seq

platform (Ardlie et al., 2015). The expression level of each gene was

measured based on Gencode V12 annotations (Ardlie et al., 2015)

in the format of Reads Per Kilobase per Million (RPKM).

The 1000 Genomes expression data consist of 462 gene expres-

sion profiles of lymphoblastoid cell line samples from the Illumina

RNA-Seq platform (Lappalainen et al., 2013). The expression level

of each gene was also measured based on Gencode V12 annotations

(Lappalainen et al., 2013) in the format of RPKM.

Since the gene expression values of the microarray platform and

the RNA–Seq platform were measured in different units (probes ver-

sus Gencode annotations) and different numerical scales, we quantile

normalized the three expression datasets jointly to retain the max-

imum information cross platforms. Because one Gencode annotation

may include multiple microarray probes, 943 landmark genes and

9520 target genes in terms of Gencode annotations were left after

joint quantile normalization. Details of joint quantile normalization

are given in Supplementary materials. Finally, all the datasets were
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standardized by subtracting the mean and dividing by the standard

deviation of each gene.

2.2 Gene expression inference as multi-task regression
Assume there are L landmark genes, T target genes and N training

samples (i.e. profiles); the training dataset is expressed as fxi; yig
N
i¼1,

where xi 2 RL denotes the expression values of landmark genes and

yi 2 RT denotes the expression values of target genes in the ith sam-

ple. Our goal is to infer the functional mapping F : RL !RT that

fits fxi; yig
N
i¼1, which can be viewed as a multi-task regression

problem.

We use mean absolute error (MAE) to evaluate the predictive

performance at each target gene t,

MAEðtÞ ¼
1

N0

XN0
i¼1

jyiðtÞ � ŷiðtÞj; (1)

where N0 is the number of testing samples and ŷiðtÞ is the pre-

dicted expression value for target gene t in sample i. We define the

overall error as the average MAE over all target genes, and use it to

evaluate the general predictive performance.

For the microarray platform, we used the GEO data for training,

validation and testing. Specifically, we randomly partitioned the

GEO data into �80% for training (88 807 samples denoted as

GEO-tr), �10% for validation (11 101 samples denoted as GEO-va)

and �10% for testing (11 101 samples denoted as GEO-te). The val-

idation data GEO-va were used to do model selection and parameter

tuning for all the methods.

For the RNA-Seq platform, we used GEO-tr for training, the

1000 Genomes data for validation (denoted as 1000G-va), and the

GTEx data for testing (denoted as GTEx-te). The validation data

1000G-va was used to do model selection and parameter tuning for

all the methods.

2.3 D-GEX
D-GEX is a multi-task multi-layer feedforward neural network. It

consists of one input layer, one or multiple hidden layers and one

output layer. All the hidden layers have the same number of hidden

units. Units between layers are all fully connected. A hidden unit j in

layer l takes the sum of weighted outputs plus the bias from the pre-

vious layer l � 1 as the input, and produces a single output ol
j using

a nonlinear activation function f.

ol
j ¼ f

XH
i¼1

wl�1
i;j ol�1

i þ bl�1
j

 !
; (2)

where H is the number of hidden units, fwl�1
i;j ; b

l�1
j g

H
i¼1 are the

weights and the bias associated with unit j that need to be learned.

We adopt the hyperbolic tangent activation function to hidden units,

which naturally captures the nonlinear patterns within the data.

Linear activation function is applied to output units for the regres-

sion purpose. The loss function for training is the sum of mean

squared error at each output unit, namely,

L ¼
XT

t¼1

1

N

XN
i¼1

yiðtÞ � ŷiðtÞ

� �2
" #

: (3)

D-GEX contains 943 units in the input layer corresponding to

the 943 landmark genes. Ideally, we should also configure D-GEX

with 9520 units in the output layer corresponding to the 9520 target

genes. However, each of our GPUs has only 6 GB of memory, thus

we cannot configure hidden layers with sufficient number of hidden

units if all the target genes are included in one output layer.

Therefore, we randomly partitioned the 9520 target genes into two

sets that each contains 4760 target genes. We then built two separ-

ate neural networks with each output layer corresponding to one

half of the target genes. With this constraint, we were able to build

a series of different architectures containing 1–3 hidden layers

each and each hidden layer contains 3000, 6000 or 9000 hidden

units. Supplementary Figure S1 shows an example of architecture of

D-GEX with three hidden layers.

Training D-GEX follows the standard back-propagation algorithm

(Rumelhart et al., 1988) and mini-batch gradient descent, supple-

mented with advanced deep learning techniques. Detailed parameter

configurations are given in Supplementary Table S1. For more descrip-

tions about neural networks and their background please see Chen

(2014). We discuss a few key training techniques as follows:

1. Dropout is a technique to perform model averaging and regu-

larization (Hinton et al., 2012b) for neural networks. At the training

time, each unit along with its edges is temporarily dropped out

with probability p for each training sample. Then the forward- and

back-propagation are performed on a particularly ‘thinned’ net-

work. For an architecture with n units performing dropout, there

are O 1
ð1�pÞn
� �

such thinned networks. At the testing time, all the

units are retained with weights multiplied by 1� p. Therefore, drop-

out can be seen as model averaging of exponentially many different

neural networks in an approximate but efficient framework.

Dropout has been shown to suppress co-adaptation among units

and force each unit to learn patterns that are more generalizable

(Srivastava et al., 2014). The dropout rate p serves as a tuning par-

ameter that controls the intense of regularization. We applied drop-

out to all the hidden layers of D-GEX except for the outgoing edges

from the input layer. The dropout rate was set to [0%, 10%, 25%]

to compare the effect of different degrees of regularization.

2. Momentum method is a technique to accelerate gradient-based

optimization. It accumulates a velocity in directions of gradients

of the loss function across iterations and uses the velocity instead of

the gradient to update parameters (Sutskever et al., 2013). Given

a loss function L with respect to the parameters H of the neural net-

work, the momentum is given by

Vðkþ1Þ ¼ lVðkÞ � gðkÞrLðHðkÞÞ;

Hðkþ1Þ ¼ HðkÞ þVðkþ1Þ; (4)

where l 2 ½0; 1� is the momentum coefficient, g is the learning

rate, V is the velocity and rLðHÞ is the gradient of the loss function.

Momentum method has been shown to improve the convergence

rate particularly for training deep neural networks (Sutskever et al.,

2013).

3. Normalized initialization is a technique to initialize the

weights of deep neural networks (Glorot and Bengio, 2010). The

weights of a unit is sampled from a uniform distribution defined by,

W � U �
ffiffiffi
6
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ni þ no
p ;

ffiffiffi
6
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ni þ no
p

" #
; (5)

where ni, no denote the number of fan-ins and fan-outs of the

unit. It is designed to stabilize the variances of activation and back-

propagated gradients during training (Glorot and Bengio, 2010).

The uniform distribution of the output layer of D-GEX was set to be

within a smaller range of ½�1� 10�4; 1� 10�4� as it was adopted

with the linear activation function.

4. Learning rate was initialized to 5� 10�4 or 3� 10�4 depend-

ing on different architectures, and was decreased according to the
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training error on a subset of GEO-tr for monitoring the training pro-

cess. Specifically, the training error was checked after each epoch, if

the training error increased, the learning rate was multiplied by a

decay factor of 0.9 until it reached a minimum learning rate of

1� 10�5.

5. Model selection was performed based on GEO-va for the

GEO data and 1000G-va for the GTEx data. Training was run for

200 epochs. The model was evaluated on GEO-va and 1000G-va

after each epoch, and the model with the best performance was

saved respectively.

D-GEX was implemented based on two Python libraries, Theano

(Bergstra et al., 2010) and Pylearn2 (Goodfellow et al., 2013).

Training was deployed on an Nvidia GTX TITAN Z graphics card

with dual GPUs. The largest architecture of D-GEX (three hidden

layers with 9000 hidden units in each hidden layer) contains �427

million parameters. Training half of the target genes with the largest

architecture took around 6 h. D-GEX is publicly available at https://

github.com/uci-cbcl/D-GEX.

2.4 Linear regression
LR for multi-task gene expression inference trains a model,

FðtÞðxÞ ¼ wT
ðtÞxþ bðtÞ, independently for each target gene t. wðtÞ

2 RL; bðtÞ 2 R are the model parameters associated with each target

gene t, and

wðtÞ; bðtÞ
� �

¼ arg min
w;b

1

N

XN
i¼1

yiðtÞ �wT
ðtÞxi � bðtÞ

� �2
(6)

L1 or L2 penalties can be further introduced for regularization

purpose. In these cases,

wðtÞ; bðtÞ
� �

¼ arg min
w;b

1

N

XN
i¼1

yiðtÞ �wT
ðtÞxi � bðtÞ

� �2
þ kjjwðtÞjj1 (7)

or

wðtÞ; bðtÞ
� �

¼ arg min
w;b

1

N

XN
i¼1

yiðtÞ �wT
ðtÞxi � bðtÞ

� �2
þ kjjwðtÞjj2 (8)

LR (6) is currently adopted by the LINCS program. In our study,

we evaluated both (6) and (7), (8) using scikit-learn (Pedregosa

et al., 2011). The regularization parameter k was tuned based on the

performance on GEO-va and 1000G-va.

2.5 KNN regression
KNN regression is a non-parametric and instance-based method. In

standard KNN regression, a spatial data structure T such as the KD

tree (Bentley, 1975) is built for training data in the feature space.

Then, for any testing data, the k-nearest training samples based

on a certain distance metric are queried from T . The average of their

values is computed as the prediction.

However, the standard KNN regression may be biased

when duplicated samples frequently exist in the data, such as the

GEO microarray data. Therefore, in gene expression inference, a com-

monly adopted alternative is to query the k-nearest genes rather than

the k-nearest samples. Specifically, for each target gene, its Euclidean

distances to all the landmark genes were calculated using the training

samples. The k-landmark genes with the least Euclidean distances are

determined as the k-nearest landmark genes of the target gene. Then

the average of their expression values in the testing samples is com-

puted as the prediction for the target gene. Such algorithm is also con-

sistent with the basic assumption of the LINCS program that, the

expression of target genes can be computationally inferred from land-

mark genes. We call this algorithm the gene-based KNN (KNN-GE).

Due to the non-parametric and instance-based nature, KNN-GE

does not impose any prior assumptions on the learning machine.

Therefore, it is very flexible to model nonlinear patterns within

the data. However, as performing prediction involves building

and querying data structures that have to keep all the training

data, KNN-GE suffers from poor scalability to growing data size

and dimension. We evaluated KNN-GE in our study. The optimal k

was selected based on the performance on GEO-va and 1000G-va.

3 Results

We have introduced two types of gene expression data, namely the

GEO microarray data and the GTEx/1000G RNA-Seq data. We

have formulated the gene expression inference as a multi-task regres-

sion problem, using the GEO data for training and both the GEO

and the GTEx data for testing. We have also described our deep

learning method D-GEX, and another two methods, LR and KNN

regression, to solve the problem. Next, we show the predictive per-

formances of the three methods on both the GEO data and the

GTEx data.

3.1 Performance on the GEO data
D-GEX achieves the best performance on both GEO-va and GEO-te

with 10% dropout rate (denoted as D-GEX-10%). Figure 1 and

Table 1 show the overall performances of D-GEX-10% and the

other methods on GEO-te. The complete performances of D-GEX

with other dropout rates on both GEO-va and GEO-te are

given in Supplementary Tables S2 and S3. The largest architecture of

D-GEX-10% (three hidden layers with 9000 hidden units in each

hidden layer, denoted as D-GEX-10%-9000�3) achieves the best

performance on both GEO-va and GEO-te. The relative improve-

ments of D-GEX-10%-9000�3 are 15.33% over LR and 45.38%

over KNN-GE. Besides D-GEX-10%-9000�3, D-GEX-10% con-

sistently outperforms LR and KNN-GE on all the other architecture

as shown in Figure 1. One possible explanation is that deep architec-

tures enjoy much richer representability than shallow architectures,

thus learning complex features is much easier from the perspective

of optimization (Bengio, 2009).

D-GEX also outperforms LR and KNN-GE for almost all of the

target genes. Figure 2 shows the density plots of the predictive errors

LR
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Fig. 1. The overall errors of D-GEX-10% with different architectures on GEO-te.

The performance of LR is also included for comparison
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of all the target genes by LR, KNN-GE and GEX-10%-9000�3.

Figure 3 shows a gene-wise comparative analysis between D-GEX-

10%-9000�3 and the other two methods. D-GEX-10%-9000�3

outperforms LR in 99.97% of the target genes and outperforms

KNN-GE in all the target genes. These results seem to suggest that

D-GEX captured some intrinsic nonlinear features within the GEO

data where LR and KNN-GE did not.

Regularization methods do not improve LR significantly.

Table 1 shows the relative improvements of LR-L1 and LR-L2 over

LR are 0.05 and 0.00%. Thus, it is most likely that LR is underfit-

ting which means linear model is not complex enough to represent

the data. Therefore, regularization techniques that reduce model

complexity are not helpful.

KNN-GE performs significantly worse than the other methods.

One possible explanation is that the k-nearest landmark genes for

each target gene based on GEO-tr and GEO-te may not be fully

consistent.

3.2 Performance on the GTEx data
Results on the GEO data demonstrate the significant improvement

of D-GEX over LR and KNN-GE on the microarray platform. Yet

in practice, the LINCS program trains regression models with the

GEO data and performs gene expression inference on the L1000

data, which was generated with a different platform. Whether

the significance of D-GEX preserves cross platforms requires further

investigation. To explore the cross platforms scenario, we trained

D-GEX with GEO-tr and evaluated its performances on GTEx-te

which was generated with the RNA-Seq platform (Lonsdale et al.,

2013).

However, new challenges arise in this scenario as the intrinsic

distributions of the training data and the testing data may be similar

but not exactly equivalent. Particularly in gene expression profiling,

discrepancies between microarray and RNA-Seq data have been sys-

tematically studied (Wang et al., 2014). Such discrepancies bring

specific challenges to deep learning as the complex features it learn

in the training data may not generalize well to the testing data,

which leads to overfitting and reduces the prediction power.

Therefore, more aggressive regularization may be necessary for deep

learning to retain the maximum commonality cross platforms while

avoiding platform-dependent discrepancies.

D-GEX-25%-9000�2 (with 25% dropout rate, two hidden

layers with 9000 hidden units in each layer) achieves the best per-

formance on both 1000G-va and GTEx-te. The relative improve-

ments of D-GEX-25%-9000�2 are 6.57% over LR and 32.62%

over KNN-GE. Table 2 shows the overall performances of D-GEX-

25% and the other methods on GTEx-te. The complete perform-

ances of D-GEX with other dropout rates on both 1000G-va and

GTEx-te are given in Supplementary Tables S4 and S5.

D-GEX still outperforms LR and KNN-GE in most of the target

genes. Figure 4 also shows the gene-wise comparative analysis be-

tween D-GEX-25%-9000�2 and the other two methods. D-GEX-

25%-9000�2 outperforms LR in 81.31% of the target genes and

outperforms KNN-GE in 95.54% of the target genes. Therefore, the

significance of D-GEX on the microarray platform basically pre-

serves on the RNA-Seq platform. However, unlike the results on the

GEO data, there is a noticeable number of target genes that D-GEX

gets higher error than the other methods on the GTEx data. Thus,

the expression patterns of these target genes D-GEX learned on the

GEO data may be platform dependent and do not generalize well to

the GTEx data. It is noteworthy that although the general perform-

ance of KNN-GE is still poor on the GTEx data, its errors on some

of the target genes are significantly lower than D-GEX (dots in bot-

tom right part of Fig. 4b). This is likely due to the gene-based aspect

of KNN-GE that the numerical values predicted on target genes

were not computed based on GEO-tr but based on GTEx-te itself.

Therefore, the expression patterns captured by KNN-GE may be

cross platforms invariant.

Dropout regularization effectively improves the performance of

D-GEX on the GTEx data as shown in Figure 5. Without dropout,

the overall error of D-GEX-9000�2 on GTEx-te slightly decreases

at the beginning of training and then quickly increases, clearly

implying overfitting. However, with 25% dropout rate, D-GEX-

9000�2 achieves the best performance on both 1000G-va and

GTEx-te.

3.3 Interpreting the learned neural network
We have demonstrated the performance of our deep learning

method D-GEX on both the GEO microarray data and the GTEx

RNA-Seq data. D-GEX outperforms LR on both types of expression

data. On the other hand, interpreting the learned linear model from

LR is straightforward as coefficients with large absolute value indi-

cate strong dependencies between landmark genes and target genes.

But for deep learning, currently there are no established methods to

interpret the neutral networks learned from gene expression data.

Next, we attempt to explore the learned neural networks with two

strategies: (a) visualizing the major weights of the learned neural

networks and (b) examining the nonlinearity captured by the hidden

layers.

Table 1. The overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX-

10% with different architectures on GEO-te

Number of hidden units

3000 6000 9000

Number of hidden layers

1 0.3421 6 0.0858 0.3337 6 0.0869 0.3300 6 0.0874

2 0.3377 6 0.0854 0.3280 6 0.0869 0.3224 6 0.0879

3 0.3362 6 0.0850 0.3252 6 0.0868 0.3204 6 0.0879

LR 0.3784 6 0.0851

LR-L1 0.3782 6 0.0844

LR-L2 0.3784 6 0.0851

KNN-GE 0.5866 6 0.0698

Numerics after ‘6’ are the standard deviations of prediction errors over all

target genes. The best performance of D-GEX-10% is shown in bold font.

The performance selected using model selection by GEO-va of D-GEX-10%

is underscored.
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Fig. 2. The density plots of the predictive errors of all the target genes by LR,

KNN-GE and GEX-10%-9000�3 on GEO-te
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(a) Visualizing the major weights is a strategy inspired by the

method of interpreting linear model that coefficients with large abso-

lute value indicate strong dependencies between inputs and targets.

Similarly, we examined the weights of the learned neural network of

D-GEX-10%-3000�1 that was trained based on half of the target

genes of GEO-tr and GEO-va. The weights from input to hidden units

were randomly initialized with dense connections. However, after

learning, the connections became so sparse that each input unit was

primarily connected to only a few hidden units with the weights to the

rest of hidden units decayed to near 0. Similar patterns were also

observed for connections from the hidden to the output layer.

Therefore, we created a visualization map of the learned connections

by removing those with weights near zeros. Specifically, for each input

unit (landmark gene), we calculated the mean and the standard devi-

ation of the weights of the connections between the input unit and the

3000 hidden units. Then, we only retained the major weights that

were four standard deviations away from the mean. Similarly, we used

a threshold of five standard deviations to retain the major weights of

the connections between the output units (target genes) and the hidden

units. We colored the weights differently so that red indicates positive

weights and blue indicates negative weights. Supplementary Figure S3

shows the final visualization map. From the visualization map, we

noticed two interesting observations: (a) Most of the units in the input

layer and the output layer have connections to the hidden layer. In

contrast, only a sparse number of units in the hidden layer have con-

nections to the input and the output layer. Specially, the connections

to the output layer are dominated by a few hidden units, which we

refer to as the ‘hub units’. (b) Lots of the ‘hub units’ seem to have only

one type of connections to the output layer, e.g. some of them only

have positive connections (red edges), while some other units only

have negative connections (blue edges). It seems that these ‘hub units’

may have captured some strong local correlations between the land-

mark genes and target genes.

(b) Examining the nonlinearity is a strategy to show that the

intermediate hidden layers have captured some nonlinearity within

the raw expression data. The neural networks we used are quite

complex, containing several layers and many hidden units, each of

which is activated through a nonlinear transfer function. To dissect

the nonlinear contribution, we took a relatively simple approach by

focusing on the representation (activations) from the last hidden

layer. Each of the hidden unit in that layer can be viewed as a feature

generated through some nonlinear transformation of the landmark

genes. We then studied whether an LR based on these nonlinear fea-

tures can achieve better performance than an LR based solely on the

landmark genes. For this purpose, we measured the linear correl-

ation between the activations from the last hidden layer of D-GEX-

10%-9000�3 and the final targets (the expression of target genes),

and compared it with the linear correlation between the raw inputs

Fig. 3. The predictive errors of each target gene by GEX-10%-9000� 3 compared with LR and KNN-GE on GEO-te. Each dot represents one out of the

9520 target genes. The x-axis is the MAE of each target gene by D-GEX, and the y-axis is the MAE of each target gene by the other method. Dots above diagonal

means D-GEX achieves lower error compared with the other method. (a) D-GEX verse LR; (b) D-GEX verse KNN-GE

Table 2. The overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX-

25% with different architectures on GTEx-te

Number of hidden units

3000 6000 9000

Number of hidden layers

1 0.4507 6 0.1231 0.4428 6 0.1246 0.4394 6 0.1253

2 0.4586 6 0.1194 0.4446 6 0.1226 0.4393 6 0.1239

3 0.5160 6 0.1157 0.4595 6 0.1186 0.4492 6 0.1211

LR 0.4702 6 0.1234

LR-L1 0.5667 6 0.1271

LR-L2 0.4702 6 0.1234

KNN-GE 0.6520 6 0.0982

Numerics after ‘6’ are the standard deviations of prediction errors over all

target genes. The best performance of D-GEX-25% is shown in bold font.

The performance selected using model selection by 1000G-va of D-GEX-25%

is underlined.
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and the final targets. Normally, coefficient of determination (R2) is

used to compare the fitnesses of different linear models. Since the

dimensionality has changed from the raw inputs to the transformed

activations, we used adjusted R2 (Theil, 1958) to specifically ac-

count for the change in dimensionality. We calculated the adjusted

R2 of both the raw inputs and the transformed activations for each

target gene based on GEO-tr. Supplementary Figure S2 shows the

gene-wise comparison of adjusted R2 between the raw inputs and

the transformed activations. The transformed activations have a

larger adjusted R2 than the raw inputs in 99.99% of the target

genes. It seems to indicate that the intermediate hidden layers have

systematically captured some nonlinearity within the raw expression

data that would be ignored by simple LR. After the nonlinear trans-

formation through the hidden layers, the activations fit the final tar-

gets significantly better than the raw inputs using a simple linear

model. The analysis seems to suggest that most of the target genes

benefit from the additional nonlinear features, although to a differ-

ent extent as characterized by the adjusted R2.

3.4 Inference on the L1000 data
The LINCS program has used the L1000 technology to measure the

expression profiles of the 978 landmark genes under a variety of ex-

perimental conditions. It currently adopts LR to infer the expression

values of the 21 290 target genes based on the GEO data. We have

demonstrated our deep learning method D-GEX achieved signifi-

cantly improvement on prediction accuracy over LR on the GEO

data. Therefore, we have re-trained GEX-10%-9000�3 using all

the 978 landmark genes and the 21 290 target genes from the GEO

data and inferred the expression values of unmeasured target genes

from the L1000 data. The full dataset consists of 1 328 098 expres-

sion profiles and can be downloaded at https://cbcl.ics.uci.edu/pub

lic_data/D-GEX/l1000_n1328098x22268.gctx. We hope this data-

set will be of great interest to researchers who are currently querying

the LINCS L1000 data.

4 Discussion

Revealing the complex patterns of gene expression under numerous

biological states requires both cost-effective profiling tools and

powerful inference frameworks. While the L1000 platform adopted

by the LINCS program can efficiently profile the �1000 landmark

genes, the linear-regression-based inference does not fully leverage

the nonlinear features within gene expression profiles to infer the

�21 000 target genes. We presented a deep learning method for

gene expression inference that significantly outperforms LR on the

GEO microarray data. With dropout as regularization, our deep

learning method also preserves cross platforms generalizability

on the GTEx RNA-Seq data. In summary, deep learning provides a

Fig. 4. The predictive errors of each target gene by GEX-25%-9000� 2 compared with LR and KNN-GE on GTEx-te. Each dot represents one out of the 9520 tar-

get genes. The x-axis is the MAE of each target gene by D-GEX, and the y-axis is the MAE of each target gene by the other method. Dots above diagonal means

D-GEX achieves lower error compared with the other method. (a) D-GEX versus LR; (b) D-GEX versus KNN-GE

LR

0.44

0.46

0.48

0.50

0 50 100 150 200
Epoch

O
ve

ra
ll 

er
ro

r

Dropout rate
0%
10%
25%

Fig. 5. The overall error decreasing curves of D-GEX-9000� 2 on GTEx-te with

different dropout rates. The x-axis is the training epoch and the y-axis is the

overall error. The overall error of LR is also included for comparison
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better model than LR for gene expression inference. We believe that

it achieves more accurate predictions for target gene expressions of

the LINCS dataset generated from the L1000 platform.

Interpreting the internal representation of deep architectures is

notoriously difficult. Unlike other machine learning tasks such as

computer vision, where we can visualize the learned weights of hid-

den units as meaningful image patches, interpreting the deep archi-

tectures learned by biological data requires novel thinking. We

attempted to interpret the internal structures of the neural networks

learned from gene expression data using strategies that were inspired

by linear model. Yet, more systematic studies may require advanced

computational frameworks that are specifically designed for deep

learning. Unsupervised feature learning methods, such as autoen-

coder (Vincent et al., 2008) and restricted Boltzmann machine

(Hinton, 2010) may provide some insights on this problem.

In the current setting, target genes were randomly partitioned

into multiple sets, and each set was trained separately using different

GPUs due to hardware limitations. Alternatively, we could first clus-

ter target genes based on their expression profiles, and then partition

them accordingly rather than randomly. The rationale is that target

genes sharing similar expression profiles share weights in the context

of multi-task neural networks. Ultimately, the solution is to jointly

train all target genes, either by using GPUs with larger memory such

as the more recent Nvidia Tesla K80, or by exploiting multi-GPU

techniques (Coates et al., 2013).
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