
What time is it? Deep learning approaches for

circadian rhythms

Forest Agostinelli1,*, Nicholas Ceglia1, Babak Shahbaba2,

Paolo Sassone-Corsi3 and Pierre Baldi1,3*

1Department of Computer Science, 2Department of Statistics and 3Department of Biological Chemistry, University

of California-Irvine, Irvine, CA 92697, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Circadian rhythms date back to the origins of life, are found in virtually every species

and every cell, and play fundamental roles in functions ranging from metabolism to cognition.

Modern high-throughput technologies allow the measurement of concentrations of transcripts,

metabolites and other species along the circadian cycle creating novel computational challenges

and opportunities, including the problems of inferring whether a given species oscillate in circadian

fashion or not, and inferring the time at which a set of measurements was taken.

Results: We first curate several large synthetic and biological time series datasets containing labels

for both periodic and aperiodic signals. We then use deep learning methods to develop and train

BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian

experiments, producing estimates of amplitudes, periods, phases, as well as several statistical sig-

nificance measures. Using the curated data, BIO_CYCLE is compared to other approaches and

shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning

methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular

single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably

predict time, within approximately 1 h, using the expression levels of only a small number of core

clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only

small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments

found in the GEO database with an inferred time stamp.

Availability and Implementation: All data and software are publicly available on the CircadiOmics

web portal: circadiomics.igb.uci.edu/.

Contacts: fagostin@uci.edu or pfbaldi@uci.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The importance of circadian rhythms cannot be overstated: circa-

dian oscillation have been observed in animals, plants, fungi and

cyanobacteria and date back to the very origins of life on Earth.

Indeed, some of the most ancient forms of life, such as cyanobacte-

ria, use photosynthesis as their energy source and thus are highly cir-

cadian almost by definition. These oscillations play a fundamental

role in coordinating the homeostasis and behavior of biological sys-

tems, from the metabolic (Eckel-Mahan and Sassone-Corsi, 2009;

Froy, 2011; Takahashi et al., 2008; Yoo et al., 2004) to the cogni-

tive levels (Eckel-Mahan et al., 2008; Gerstner et al., 2009).

Disruption of circadian rhythms has been directly linked to health

problems (Knutsson, 2003; Lamia et al., 2008; Takahashi et al.,

2008) ranging from cancer, to insulin resistance, to diabetes, to

obesity and to premature ageing (Antunes et al., 2010; Froy, 2010,

2011; Karlsson et al., 2001; Kohsaka et al., 2007; Kondratov et al.,

2006; Sharifian et al., 2005; Shi et al., 2013; Turek et al., 2005). At

their most fundamental level, these oscillations are molecular in na-

ture, whereby the concentrations of specific molecular species such

as transcripts, metabolites and proteins oscillate in the cell with a 24

h periodicity. Modern high-throughput technologies allow large-

scale measurements of these concentrations along the circadian cycle

thus creating new datasets and new computational challenges and

opportunities. To mine these new datasets, here we develop and

apply machine learning methods to address two questions: (i) which

molecular species are periodic? and (ii) what time or phase is
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associated with high-throughput transcriptomic measurements

made at a single timepoint?

At the molecular level, circadian rhythms are in part driven by a

genetically encoded, highly conserved, core clock found in nearly

every cell based on negative transcription/translation feedback

loops, whereby transcription factors drive the expression of their

own negative regulators (Partch et al., 2014; Schibler and Sassone-

Corsi, 2002), and involving only a dozen genes (Partch et al., 2014;

Yan et al., 2008). In the mammalian core clock (Fig. 1), two bHLH

transcription factors, CLOCK and BMAL1 heterodimerize and bind

to conserved E-box sequences in target gene promoters, thus driving

the rhythmic expression of mammalian Period (Per1, Per2 and Per3)

and Cryptochrome (Cry1 and Cry2) genes (Stratmann and Schibler,

2006). PER and CRY proteins form a complex that inhibits subse-

quent CLOCK:BMAL1-mediated gene expression (Brown et al.,

2012; Dibner et al., 2010; Partch et al., 2014). The master core

clock located in the suprachiasmatic nucleus (SCN) (Moore and

Eichler, 1972; Ralph et al., 1990) of the hypothalamus interacts

with the peripheral core clocks throughout the body (Takahashi

et al., 2008; Yoo et al., 2004).

In contrast to the small size of the core clock, high-throughput

transcriptomic (DNA microarrays, RNA-seq) or metabolomic (mass

spectrometry) experiments (Andrews et al., 2010; Eckel-Mahan

et al., 2012, 2013; Hughes et al., 2009; Masri et al., 2014b; Miller

et al., 2007; Panda et al., 2002; P.Tognini et al., in preparation),

have revealed that a much larger fraction, typically on the order of

10%, of all transcripts or metabolites in the cell are oscillating in a

circadian manner. Furthermore, the oscillating transcripts and me-

tabolites differ by cell, tissue type, or condition (Panda et al., 2002;

Storch et al., 2002; Yan et al., 2008). Genetic, epigenetic and envir-

onmental perturbations—such as a change in diet—can lead to cellu-

lar reprogramming and profoundly influence which species are

oscillating in a given cell or tissue (Bellet et al., 2013; Dyar et al.,

2014; Eckel-Mahan et al., 2012, 2013; Masri et al., 2013, 2014a).

When results are aggregated across tissues and conditions, a very

large fraction, often exceeding 50% and possibly approaching

100%, of all transcripts is capable of circadian oscillations under at

least one set of conditions, as shown in plants (Covington et al.,

2008; Harmer et al., 2000), cyanobacteria and algae (Monnier

et al., 2010; Vijayan et al., 2009) and mouse (Patel et al., 2015;

Zhang et al., 2014).

In a typical circadian experiment, high-throughput omic meas-

urements are taken at multiple timepoints along the circadian cycle

under both control and treated conditions. Thus the first fundamen-

tal problem that arises in the analysis of such data is the problem of

detecting periodicity, in particular circadian periodicity, in these

time series. The problem of detecting periodic patterns in time series

is of course not new. However, in the cases considered here the

problem is particularly challenging for several reasons, including: (i)

the sparsity of the measurements (the experiments are costly and

thus data may be collected for instance only every 4 h); (ii) the noise

in the measurements and the well known biological variability; (iii)

the related issue of small sample sizes (e.g. n¼3); (iv) the issue of

missing data; (v) the issue of uneven sampling in time; and (vi) the

large number of measurements (e.g. 20 000 transcripts) and the

associated multiple-hypothesis testing problem. Here we develop

and apply deep learning methods for robustly assessing periodicity

in high-throughput circadian experiments, and systematically com-

pare the deep learning approach to the previous, non-machine learn-

ing, approaches (Glynn et al., 2006; Hughes et al., 2010; Yang and

Su, 2010). While this is useful for circadian experiments, the vast

majority of all high-throughput expression experiments have been

carried, and continue to be carried, at single timepoints. This can be

problematic for many applications, including applications to preci-

sion medicine, precisely because circadian variations are ignored cre-

ating possible confounding factors. This raises the second problem

of developing methods that can robustly infer the approximate time

at which a single-time high-throughput expression measurement

was taken. Such methods could be used to retrospectively infer a

time stamp for any expression dataset, in particular to improve the

annotations of all the datasets contained in large gene expression

repositories, such as the Gene Expression Omnibus (GEO) (Edgar

et al., 2002), and improve the quality of all the downstream infer-

ences that can be made from this wealth of data. There may be other

applications of such a method, for instance in forensic sciences, to

help infer a time of death. In any case, to address the second prob-

lem we also develop and apply deep learning methods to robustly

infer time or phase for single-time high-throughput gene expression

measurements.

2 Datasets

2.1 Periodicity inference from time series

measurements
To train and evaluate the deep learning methods, we curate

BioCycle, the largest dataset including both synthetic and real-world

biological time series, and both periodic and aperiodic signals.

While the main goal here is to create methods to analyze real-world

biological data, relying only on biological data to determine the ef-

fectiveness of a method is not sufficient because there are not many

biological samples which have been definitively labeled as being

periodic or aperiodic. Even when one can be confident that a signal

is periodic, it can be difficult to determine the true period, phase and

amplitude of that signal. Therefore, we rely also on synthetic data to

provide us with signals that we can say are definitely periodic or

aperiodic, and whose attributes—such as period, amplitude, and

phase—can be controlled and are known. Furthermore, previous

approaches were developed using synthetic data and thus the same

synthetic data must be used to make fair comparisons.

2.1.1 Synthetic data

We first curate a comprehensive synthetic dataset BioCycleSynth,

which includes all previously defined synthetic signals found in

JTK_Cycle (Hughes et al., 2010) and ARSER (Yang and Su, 2010),

but also contains new signals. BioCycleSynth is in turn a collection of

two different types of datasets: a dataset in which signals are con-

structed using mathematical formulas (BioCycleForm), and a dataset
Fig. 1. Core clock genes and proteins and the corresponding transcription/

translation negative feedback loop
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in which signals are generated from a Gaussian process (Rasmussen,

2004) (BioCycleGauss). In previous work, synthetic data was gener-

ated with carefully constructed formulas to try to mimic periodic

signals found in real-world data (see below). While this gives one a

lot of control over the data, it can create signals that are too con-

trived and therefore not representative of real-world biological vari-

ations. In addition, the noise added at each timepoint is independent

of the other timepoints, which may not be the case in real-world

data. The BioCycleGauss dataset uses Gaussian processes to generate

the data and address these problems.

The datasets used in JTK_Cycle contain the following types of

formulas or signals: cosine, cosine with outlier timepoints and white

noise. The ARSER dataset contains cosine, damped cosine with an

exponential trend, white noise and an auto-regressive process of

order 1 (AR(1)). In addition to all the aforementioned signals,

BioCycleForm contains also 9 additional kinds of signals: combined

cosines (cosine2), cosine peaked, square wave, triangle wave, cosine

with a linear trend, cosine with an exponential trend, cosine multi-

plied by an exponential, flat and linear signals (many of which can

be found in Deckard et al., 2013). Figure 2 shows an example of

each type of signal found in the BioCycleForm dataset. For clarity,

the periodic signals are shown without noise. Signals in the

BioCycleForm dataset have an additional random offset chosen uni-

formly between �200 and 200, random amplitudes chosen uni-

formly between 1 and 100, signal to noise ratios (SNRs) of 1–5,

random phases chosen uniformly between 0 and 2p, and periods be-

tween 20 and 28. [Data for the second (12 h) and third (8 h) har-

monics, which are found in biological data, are also generated

(Supplementary Information)]. At each timepoint sample, zero mean

Gaussian noise is added with the proper SNR variance.

The BioCycleGauss dataset is obtained from a Gaussian process.

The value of the covariance matrix corresponding to the timepoints

x and x0 is determined by a kernel function kðx; x0Þ. Equation 1 is

the kernel function used to generate the periodic signals, and

Equation 2 is the kernel function used to generate the aperiodic sig-

nals in BioCycleGauss .

kpðx; x0Þ ¼ exp
�sin2ðjp 1

p ðx� x0ÞjÞ
2l2

 !
þ r2dðx; x0Þ þ bxx0 (1)

kaðx;x0Þ ¼ exp
�ðx� x0Þ2

2l2

 !
þ r2dðx; x0Þ (2)

The parameter l controls how strong the covariance is between

two different timepoints, r controls how noisy the synthetic data is,

and b can add a non-stationary, linear, trend to the signals

(Duvenaud, 2014). The parameter p in equation 1 is the period of the

signal. To generate the data in BioCycleGauss, the values of l, r, b, p,

as well as the offset and the scale are varied, in a way similar to the

data in BioCycleForm . Examples of signals from the BioCycleGauss

dataset are given in Figure 3.

JTK_Cycle analyzes synthetic signals sampled over 48 h with a

sampling frequency of 1 and 4 h. ARSER analyzes synthetic signals

sampled over 44 h with a sampling frequency of 4 h. BioCycle ana-

lyzes synthetic signals sampled over 24 and 48 h. Signals sampled

over 24 h have a sampling frequency of 4, 6 and an uneven sampling

at timepoints 0, 5, 9, 14, 19 and 24. Signals sampled over 48 h have

sampling frequencies of 4, 8 and an uneven sampling at timepoints

0, 4, 8, 13, 20, 24, 30, 36, 43. The sampling frequencies in these

datasets are intentionally sparse to mimic the sparse temporal sam-

pling of real-world high-throughput data. The number of synthetic

signals at each sampling frequency is 1024 for JTK_Cycle, 20 000

for ARSER and 40 000 for BioCycleSynth . Finally, each signal in

BioCycleSynth has three replicates, obtained by adding random

Gaussian noise to the signal, to mimic typical biological

experiments.

2.1.2 Biological data

The performance of any circadian rhythm detection method requires

extensive validation on biological datasets. In previous work, due to

the aforementioned difficulty of not having ground truth labels, the

biological signals detected as being periodic had to be inspected by

hand, or loosely assessed by comparison to other methods (Straume,

2004). In addition to the scaling problems associated with manual

inspection, this approach did not allow the computation of precise

classification metrics (Baldi et al., 2000), such as the AUC—the

Area Under the Receive Operating Characteristic (ROC) Curve. The

repository of circadian data hosted on CircadiOmics (Patel et al.,

2012) includes over 30 high-throughput circadian transcriptomic

studies, as well as several circadian high-throughput metabolomic

Fig. 2. Samples of synthetic signals in the BioCycleForm dataset. Signals in

green are periodic; signals in red are aperiodic

Fig. 3. Samples of synthetic signals in the BioCycleGauss dataset. Signals in

green are periodic; signals in red are aperiodic
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studies, that provide extensive coverage of different tissues and ex-

perimental conditions. From the CircadiOmics data, a high-quality

biological dataset BioCycleReal is created with periodic/aperiodic

labels.

To curate BioCycleReal, we start from 36 circadian microarray or

RNA-seq transcriptome datasets, 32 of which are currently publicly

available from the CircadiOmics web portal (28 of these are also

available from CircaDB (Pizarro et al., 2012)). Five datasets are

from ongoing studies and will be added to CircadiOmics upon com-

pletion. All included datasets correspond to experiments carried out

in mice, with the exception of one dataset corresponding to meas-

urements taken in Arabidopsis Thaliana. BioCycleReal comprises ex-

periments carried over a: 24-h period with a 4 h sampling rate; 48-h

period with a 2 h sampling rate; and 48-h period with a 1 h sampling

rate.

To extract from this set a high-quality subset of periodic time

series, we focus on the time series associated with the core clock

genes (Fig. 1) in the control experiments. These gene include Clock,

Per1, Per2, Per3, Cyr1, Cry2, Nr1d1, Nr1d2, Bhlhe40, Bhlhe41,

Dbp, Npas2 and Tel (Harmer et al., 2001) for mouse, and the cor-

responding orthologs in Arabidopsis (Harmer et al., 2000).

Arabdiposis orthologs were obtained from Affymetrix NetAffx pro-

besets and annotations (Liu et al., 2003). These core gene time series

were further inspected manually to finally yield a set of 739

high-quality periodic signals. To extract a high-quality biological

aperiodic dataset, we start from the same body of data. To identify

transcripts unlikely to be periodic, we select the transcripts classified

as aperiodic consistently by all three programs JTK_Cycle, ARSER

and Lomb-Scargle with an associated P-value of 0.95. After further

manual inspection, this yields a set of 18 094 aperiodic signals.

Examples of signals taken at random from the BioCycleReal are

shown in Figure 4.

2.2 Time inference from single timepoint

measurements
To estimate the time associated with a transcriptomic experiment

conducted at a single timepoint, we curate the BioClock dataset

starting from the same data in CircadiOmics, focusing on mouse

data only for which we have enough training data. While in prin-

ciple inference of the time can be done using the level of expression

of all the genes, exploratory feature selection and data reduction ex-

periments (not shown) show that in most cases it is sufficient to

focus on the set of core clock genes, or even a subset (see Section 4).

Thus the reduced BioClock dataset contains microarray and RNA-

Seq single time measurements for each gene transcript in the core

clock with the associated timepoint. The BioClock dataset is organ-

ized by tissue and condition. Tissues include liver, kidney, heart,

colon, glands (pituitary, adrenal), skeletal muscle, bone, white fat

and brown fat. Brain specific tissues include SCN (Suprachiasmatic

nucleus), hippocampus, hypothalamus and cerebellum. There are

also several cell-specific datasets including mouse fibroblasts and

macrophages. All the datasets in BioClock contain both control and

treatment conditions. There is great variability among the treatment

conditions (e.g. Eckel-Mahan et al., 2013; Masri et al., 2014a),

varying from gene knock out and knock down (SIRT1 and SIRT6),

to changes in diet (high fat, ketogenic), to diseases (epilepsy). It is

important to be able to assess the ability of a system to predict time

across tissues and conditions.

3 Methods

We experimented with several machine learning approaches for the

two main problems considered here. In general, the best results were

obtained using neural networks. This is perhaps not too surprising

since it is well known that neural networks have universal approxi-

mation properties and deep learning has led to state-of-the art per-

formance, not only in several areas of engineering (e.g. computer

vision, speech recognition, natural language processing, robotics)

(Hannun et al., 2014; Lenz et al., 2015; Szegedy et al., 2014), but

also in the natural sciences (Baldi et al., 2014; Di Lena et al., 2012;

Lusci et al., 2013; Quang et al., 2015). Thus here we focus exclu-

sively on deep learning approaches to build two systems,

BIO_CYCLE and BIO_CLOCK, to address the two main problems.

However, we add comparisons to k-nearest neighbors and Gaussian

processes in the Supplementary Information.

3.1 Periodicity inference from time series

measurements
3.1.1 Classifying between periodic and aperiodic signals

To classify signals as periodic or aperiodic, we train deep neural net-

works (DNNs) using standard gradient descent with momentum

(Rumelhart et al., 1988; Sutskever et al., 2013). We train separate

networks for data sampled over 24 and 48 h. The input to these net-

works are the expression time-series levels of the corresponding gene

(or metabolite). The output is computed by a single logistic unit

trained to be 1 when the signal is periodic and 0 otherwise, with

relative entropy error function. We experimented with many hyper-

parameters and learning schedules. In the results reported, the learn-

ing rate starts at 0.01, and decays exponentially according to
0:1

1:000087t, where t is the iteration number. The training set consists of

1 million examples, a size sufficient to avoid overfitting. The DNN

uses a mini-batch size of 100 and is trained for 50 000 iterations.

Use of dropout (Baldi and Sadowski, 2014; Srivastava et al., 2014),

or other forms of regularization, leads to no tangible improvements.

The best performing DNN found (Fig. 5(a)) has 3 hidden layers of

size 100. We are able to obtain very good results by training

BIO_CYCLE on synthetic data alone and report test results obtained

on BioCycleForm, BioCycleGauss and BioCycleReal .

Fig. 4. Samples of biological time series in the BioCycleReal dataset. Signals in

green are periodic; signals in red are aperiodic. [Note the signals are spline-

smoothed.]
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3.1.2 Estimating the period

In a way similar to how we train DNNs to classify between periodic

and aperiodic signals, we can also train DNNs to estimate the period

of a signal classified as periodic. During training, only periodic time

series are used as input to train these regression DNNs. The output

of the DNNs are implemented using a linear unit and produce an

estimated value for the period. The error function is the squared

error between the output of the network and the true period of the

signal, which is known in advance with synthetic data. Except for

the difference in the output unit, we use the same DNNs architec-

tures and hyperparameters as for the previous classification

problem.

3.1.3 Estimating the phase and the lag

After the period p, we estimate the phase / of a signal s by finding

the value / that maximizes the following expression:P
t2T cosð2pt

p þ /Þs½t�, where T is the set of all timepoints. Given /,

the lag (i.e. at what time the periodic pattern starts) is given by /p
2p.

3.1.4 Estimating the amplitude

After the phase /, we estimate the amplitude a by first removing any

linear trend and then comparing the variance of the signal to the

variance of a cosine signal with parameters /, p and amplitude 1.

The formula is shown in Equation 3, where ls ¼ 1
jTj
P

t2T s½t� and

lc ¼ 1
jTj
P

t2T cosð2pt
p þ /Þ

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
jTj

X
t2T

ðs½t� � lsÞ2

1
jTj

X
t2T

ðcosð 2pt
p þ /Þ � lcÞ2

vuuuuut (3)

We cannot claim this approach is new, however, we have not

seen it in previous literature. An alternative is to measure the ampli-

tude on the smoothed time series.

3.1.5 Calculating P-values and q-values

To calculate P-values, the distribution of the null hypothesis must

first be obtained. To do this, N aperiodic signals are generated from

one of the two BioCycleSynth datasets. Then we calculate the N out-

put values V(i) (i ¼ 1; . . . ;N) of the DNN on these aperiodic signals.

The P-value for a new signal s with output value V is now
1
N

XN

i¼1
1ðV > VðiÞÞ, where 1 is the indicator function. This equa-

tion provides an empirical frequency estimate for the probability of

obtaining an output of size V or greater, assuming that the signal s

comes from the null distribution (the distribution of aperiodic sig-

nals). Therefore, the smaller the P-value, the more likely it is that s is

periodic. The q-values are obtained through the Benjamini and

Hochberg procedure (Benjamini and Hochberg, 1995). We also

compute a posterior probability of periodic expression (PPPE) using

the method described in Allison et al. (2002), which models the dis-

tribution of P-values as a mixture of beta distributions.

3.2 Time inference from single timepoint

measurements
For this task, different machine learning methods were investigated,

including simple linear regression, k-nearest neighbors, decision

trees, shallow learning and deep learning, including unsupervised

compressive autoencoders (Baldi, 2012) with two coupled phase

(cosine/sine) units in the bottleneck layer (below and Supplementary

Information). Supervised deep learning methods give the best results

and are used in the final BIO_CLOCK system. The output of the

DNNs is implemented using two coupled output units, representing

the cosine and the sine of the phase angle (Fig. 5(b)). If the total

weighted inputs into these two units are S1 and S2 respectively, then

the values of the two outputs units are given by: S1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2

q
and

S2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2

q
. These are then automatically converted into a time

(ZT). In order to better assess the effect of having data from differ-

ent tissues, we experiment with both training specialized predictors

trained on data originating from a single tissue, as well as predictors

trained on data from all tissues. The final general-purpose predictor

corresponds to a DNN trained on all the data. In each one of these

experiments, we use 5-fold cross validation on the corresponding

subset of the BioClock dataset, using architectures with 2 to 9

layers, and 100 to 600 units, to select the best network. A learning

rate of 0.1 is typically used, with an exponential decay according to
0:1

1:002t. A visualization of the DNN is provided in Figure 5(b).

3.3 Data normalization
For both the periodicity and time inference problems, training and

testing examples are normalized to have a mean of zero and a stand-

ard deviation of one.

3.4 Software and run time
Downloadable software is currently written in R and Python and is

intended to be easy for biologists to use. While exploring different

models both Pylearn2 (Goodfellow et al., 2013) and Caffe (Jia et al.,

2014) were used. The DNNs typically take hours for training but,

once trained, can process a real-world dataset (�20 000 time series)

in about one minute, both run times corresponding to a single CPU.

4 Results

In all the tables, the best results are shown in bold.

4.1 Periodic/aperiodic classification
For comparison, the methods ARSER (ARS), Lomb-Scargle (LS) and

JTK_Cycle (JTK) are all evaluated along with the DNNs used by

BIO_CYCLE, trained on the BioCycleForm and BioCycleGauss data-

sets. In addition, we compare to MetaCycle (MC) (Wu et al., 2016).

To identify periodic signals, ARSER uses autoregressive spectral es-

timation, Lomb-Scargle uses a periodogram, and JTK_Cycle uses

the Jonckheere-Terpstra’s and the Kendall’s tau tests. MetaCycle

combines ARSER, Lomb-Scargle and JTK_Cycle into one method.

To determine if the BIO_CYCLE results are significantly differ-

ent from other methods, the testing set is randomly split into 10

BIO_CYCLE. The output is

either the binary periodic/aperiodic

classification, or the regression

estimate of the period of the signal.

BIO_CLOCK. The outputs are

the cosine and sine of the phase

angle associated with the expression

measurement of the core clock genes.

(a) (b)

Fig. 5. Visualizations of the deep neural networks (DNNs)
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equal-size, non-overlapping, subsets and the results from each subset

are obtained. Then, a Student’s t-test is performed between the re-

sults of the best of the two DNNs and the best of the previously

existing methods. Finally, the P-value from that test is obtained to

assess if the result differences are statistically significant. Small P-

values (such as 0.05 and below) indicate that there is a significant

difference between the methods. The P-values from the t-tests are

shown in the rightmost column in all the tables. The results focus on

periodic signals with periods around 24 h, the most common case,

however periods of 12 and 8 h, corresponding to the second and

third harmonics, are analyzed in the Supplementary Information.

In the tables, the datasets BioCycleForm, BioCycleGauss and

BioCycleReal are referred to as BCF, BCG and BCR, respectively.

4.1.1 Synthetic data (BioCycleSynth)

Results for the area under the receiver operating characteristic curve

(AUC) for the task of classifying signals as periodic or aperiodic are

shown in Table 1, and the ROC curves computed on BioCycleForm

are shown in Figure 6. The DNNF label corresponds to the DNN

that has been trained on the BioCycleForm data, and the DNNG label

corresponds to the DNN that has been trained on the BioCycleGauss

data. The ROC curves computed on BioCycleGauss are similar (not

shown). The results from Table 1 show that the DNN method has

better AUC than all the other published methods on the

BioCycleForm and BioCycleGauss datasets. Though the DNN does

better when tested on data from the same distribution as it was

trained on, it still outperforms all the other previous methods, re-

gardless of which data it is trained on. A plot showing how the sig-

nal to noise ratio (SNR) affects performance is shown in Figure 7.

This plot cannot be done for the BioCycleGauss dataset, since in this

case the exact SNR is not known. The DNN outperforms all the

other published methods at all SNRs.

4.1.2 Biological data (BioCycleReal)

The performance on the biological dataset is shown in Table 2.

Although the ARSER, LS and JTK_Cycle methods achieve good per-

formance on the aperiodic data, as can be expected since they were

used to label the aperiodic data, the DNN method remains very

competitive, often outperforming at least one of the other published

methods.

4.1.3 Evaluation of P-value cutoffs

To investigate if the p-values obtained by BIO_CYCLE are reason-

able, the accuracy of the periodic/aperiodic classification at different

p-value cutoffs is evaluated. In addition to a p-value, BIO_CYCLE

produces a binary classification. If the output of the DNN is greater

than 0.5 the signals is labeled as periodic, otherwise, it is labeled as

aperiodic. The accuracy using this binary classification is also eval-

uated. Results are shown in Figure 8. The vertical dashed line corres-

ponds to a common p-value cutoff of 0.05. However, a proper

p-value does not guarantee that the best accuracy will be at the cut-

off of 0.05. Results show that BIO_CYCLE has the highest potential

accuracy. It also has the best accuracy at 0.05 for 2 out of the 4

plots. In addition, the binary classification of BIO_CYCLE is almost

always better than the accuracy of all the other methods at any

p-value cutoff. Histograms showing the p-values can be found in the

Supplementary Information.

4.2 Period, lag and amplitude estimation
The metric to determine how well each method estimates the period,

lag and amplitude is given by the coefficient of determination R2.

BioCycleForm (24_4) BioCycleForm (24_6)

BioCycleForm (48_4) BioCycleForm (48_8)

(a) (b)

(c) (d)

Fig. 6. ROC Curves of different methods on the BioCycleForm dataset

BioCycleForm (24_4) BioCycleForm (24_6)

BioCycleForm (48_4) BioCycleForm (48_8)

(a) (b)

(c) (d)

Fig. 7. AUC at various signal-to-noise ratios (SNRs) on the BioCycleForm data-

set. The lower the SNR the noisier the signal is

Table 1. AUC performance on synthetic data

ARS LS JTK MC DNNF DNNG t-test

BCF (24_4) 0.85 0.86 0.87 0.87 0.92 0.91 0Eþ00

BCF (24_6) 0.72 0.81 0.76 0.81 0.85 0.84 0Eþ00

BCF (48_4) 0.94 0.95 0.95 0.95 0.97 0.96 3E-06

BCF (48_8) 0.83 0.86 0.78 0.86 0.89 0.89 1E-06

BCF (24_U) 0.80 0.84 0.85 0.84 0.89 0.88 0Eþ00

BCF (48_U) 0.89 0.92 0.83 0.92 0.94 0.93 0Eþ00

BCG (24_4) 0.85 0.89 0.89 0.89 0.92 0.94 0Eþ00

BCG (24_6) 0.73 0.85 0.78 0.85 0.88 0.89 1E-06

BCG (48_4) 0.96 0.95 0.95 0.96 0.97 0.97 5E-04

BCG (48_8) 0.90 0.91 0.80 0.92 0.93 0.93 2E-06

BCG (24_U) 0.84 0.89 0.88 0.89 0.91 0.92 0Eþ00

BCG (48_U) 0.93 0.94 0.85 0.94 0.95 0.96 2E-06

ARS (44_4) 0.99 0.98 0.97 0.99 0.99 0.99 0Eþ00

JTK (48_1) 1.00 1.00 1.00 1.00 1.00 1.00 2E-01

JTK (48_4) 0.96 0.97 0.98 0.98 0.98 0.97 1Eþ00
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The line y¼x corresponds to perfect prediction. In this case, y is the

estimated value given by the method and x is the true value.

R2 measures how well the line y¼x fits the points that correspond

to the true value versus the estimated value. Perfect prediction cor-

responds to y¼x and corresponds to R2 ¼ 1. The results for

estimating the period, lag and amplitude are shown in Tables 3–5,

respectively. For the BioCycleGauss dataset we cannot control or

know the exact lag or amplitude, so there are no results for

BioCycleGauss in Tables 4 and 5. These tables tell a similar story as

Table 1. The DNN outperforms the other methods in most of the

categories. Even when the DNN is tested on data associated with a

distribution that is different from the distribution of its training set,

in the majority of the cases it gives superior performance compared

to ARSER, LS and JTK_Cycle.

4.3 Missing replicates and missing data
In gene expression experiments, replicate measurements can be miss-

ing. To investigate how missing replicates affect performance, the

BioCycleForm dataset which has three replicates for each timepoint

was used to assess performance with zero replicates removed at each

timepoint, one replicate removed at each timepoint and two repli-

cates removed at each timepoint. The results are shown in Figure 9

and show that JTK_Cycle is significantly affected in a negative way

by missing replicates, while the performance of all the other meth-

ods degrades gracefully with the number of missing replicates, and

minimally compared to JTK_Cycle. Missing data (timepoints at

which there are no replicates) is also handled gracefully by

BIO_CYCLE, while it is not handled at all by some of the other

methods (not shown).

4.4 Time inference from single timepoint

measurements
4.4.1 Overall performance

BIO_CLOCK is trained using 16 core clock genes: Arntl, Per1, Per2,

Per3, Cyr1, Cry2, Nr1d1, Nr1d2, Bhlhe40, Bhlhe41, Dbp, Npas2,

Tef, Fmo2, Lonrf3 and Tsc22d3. When trained and tested on all the

data, using 70% of the data for training and the remaining 30% for

testing, it accurately predicts the time of the experiment with a mean

absolute error of 1.22 h (less than 75 min) (Table 6). We experi-

mented also with training BIO_CLOCK with an even smaller

Table 2. AUC performance on the biological dataset

ARS LS JTK MC DNNF DNNG t-test

BCR (24_4) 0.97 0.97 0.89 0.97 0.97 0.97 7E-01

BCR (48_1) 0.96 0.94 0.91 0.98 0.98 0.97 5E-01

BCR (48_2) 0.98 0.97 0.95 0.96 0.94 0.95 3E-01

BioCycleForm (24_4) BioCycleForm (24_6)

BioCycleForm (48_4) BioCycleForm (48_8)

(a)

(c)

(b)

(d)

Fig. 8. Accuracy of periodic/aperiodic classification at different p-value cutoffs

on the BioCycleForm dataset

Table 3. Coefficients of determinations (R2) for the periods

ARS LS JTK MC DNNF DNNG t-test

BCF (24_4) 0.02 0.22 0.17 0.19 0.31 0.27 0Eþ00

BCF (24_6) 0.04 0.16 0.02 0.16 0.22 0.19 3E-04

BCF (48_4) 0.59 0.64 0.51 0.65 0.74 0.73 5E-05

BCF (48_8) 0.36 0.48 0.00 0.42 0.57 0.55 0Eþ00

BCF (24_U) 0.05 0.20 0.06 0.20 0.28 0.24 0Eþ00

BCF (48_U) 0.33 0.52 0.02 0.52 0.62 0.60 0Eþ00

BCG (24_4) 0.02 0.27 0.20 0.24 0.35 0.40 0Eþ00

BCG (24_6) 0.07 0.26 0.01 0.26 0.32 0.36 0Eþ00

BCG (48_4) 0.70 0.68 0.53 0.72 0.80 0.81 0Eþ00

BCG (48_8) 0.56 0.54 0.00 0.53 0.67 0.69 0Eþ00

BCG (24_U) 0.06 0.25 0.03 0.25 0.32 0.37 0Eþ00

BCG (48_U) 0.42 0.63 0.02 0.63 0.73 0.75 0Eþ00

ARS (44_4) 0.74 0.85 0.66 0.83 0.89 0.89 0Eþ00

JTK (48_1) 0.66 0.94 0.91 0.90 0.93 0.93 3E-03

JTK (48_4) 0.67 0.84 0.62 0.80 0.85 0.83 3E-02

Table 4. Coefficients of determination (R2) for the lags. The blank

sqaures in LS and MC is due to the programs crashing on this

dataset

ARS LS JTK MC DNNF DNNG t-test

BCF (24_4) 0.36 0.37 0.27 0.42 0.49 0.49 8E-03

BCF (24_6) 0.30 0.07 0.45 0.43 0Eþ00

BCF (48_4) 0.50 0.14 0.31 0.50 0.52 0.51 5E-01

BCF (48_8) 0.37 0.12 0.02 0.35 0.42 0.41 6E-03

BCF (24_U) 0.34 0.31 0.10 0.32 0.47 0.47 0Eþ00

BCF (48_U) 0.36 0.07 0.21 0.38 0.49 0.48 3E-04

ARS (44_4) 0.67 0.12 0.41 0.69 0.65 0.65 1E-01

JTK (48_1) 0.60 0.16 0.80 0.70 0.72 0.79 9E-01

JTK (48_4) 0.47 0.12 0.30 0.55 0.49 0.50 5E-01

Table 5. Coefficients of determination (R2) for the amplitudes. The

blank squares in LS and MC is due to the programs crashing on

this dataset

ARS LS JTK MC DNNF DNNG t-test

BCF (24_4) 0.81 0.63 0.86 0.87 0.81 0.81 2E-04

BCF (24_6) 0.81 0.76 0.80 0.80 0Eþ00

BCF (48_4) 0.82 0.55 0.87 0.84 0.75 0.75 0Eþ00

BCF (48_8) 0.80 0.57 0.48 0.79 0.75 0.75 2E-02

BCF (24_U) 0.68 0.62 0.84 0.85 0.80 0.80 2E-05

BCF (48_U) 0.78 0.56 0.79 0.83 0.77 0.77 1E-03

ARS (44_4) 0.97 0.82 0.93 0.99 0.98 0.98 0Eþ00

JTK (48_1) 0.86 0.64 0.90 0.93 0.91 0.92 0Eþ00

JTK (48_4) 0.72 0.43 0.71 0.74 0.71 0.72 9E-01
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number of genes. For example, using only Arntl, Per1, Per2, Per3, Cry1

and Cry2, produces a mean absolute error of 3.72 h. Adding Nr1d1

and Nr1d2 to this set reduces the mean absolute error to 1.65 h.

4.4.2 Training and testing on different organs/tissues

Table 6 shows the mean absolute errors obtained when training

BIO_CLOCK on data from certain organs/tissues and testing it on

data from a different set of organs/tissues. All the data is from mice

and under WT condition. The only datasets for which we have

enough data for training correspond to liver and brain (when aggre-

gating all the corresponding datasets). We form two additional sets

(Set 1 and Set 2) by combining data from other organs. The first cor-

responds to combined data from the adrenal gland, fat, gut, kidney,

lung and muscle (Set 1). The second corresponds to combined data

from the aorta, colon, fibroblast, heart, macrophages and pituitary

gland (Set 2). Finally, all of the aforementioned data is combined to

form a bigger dataset (All). In all the experiments reported in

Table 6, the data are split using a 70/30 training/test ratio, and tests

sets never overlap with any of the corresponding training sets. The

DNNs perform best when trained and tested on the same organ/tis-

sue or sets of organ/tissues or when trained on all the organs/tissues.

The DNNs perform significantly worse when trained and tested on

data with diverging origins. However, in all cases, the DNN trained

on the combined dataset does almost as well as, or better than, the

corresponding specialized DNN.

4.4.3 Training and testing on different conditions

The collected data also includes data from mice under experimental

conditions. The experimental conditions include high-fat and keto-

genic diets, epilepsy and SIRT1 and SIRT6 knockouts. This dataset

is too small to build a training and testing set. However, one can test

the BIO_CLOCK DNN trained on the combined mice organs under

normal conditions on this dataset. This experiment yields a mean

absolute error of 2.57 h.

4.4.4 Annotation of the GEO database

Finally, we extract all the mouse gene expression experiments con-

tained in the GEO repository (Edgar et al., 2002) and run

BIO_CLOCK on them. A file containing all the corresponding

imputed times is available from the CircadiOmics web portal.

5 Conclusion

Deep learning methods can be applied to high-throughput circadian

data to address important challenges in circadian biology. In par-

ticular, we have developed BIO_CYCLE to detect molecular species

that oscillate in high-throughput circadian experiments and extract

the characteristics of these oscillations. Remarkably, BIO_CYCLE

can be trained with large quantities of synthetic data preventing any

kind of overfitting. We have also developed BIO_CLOCK to infer

the time at which a transcriptomic sample was collected from the

level of expression of a small number of core clock genes. Both

methods will be improved as more data becomes available and,

more generally, deep learning methods are likely to be useful to ad-

dress several other related circadian problems, such as analyzing

periodicity in high-throughput circadian proteomic data, or infer-

ring sample time in different species. In particular, developing meth-

ods for annotating the time of all the human gene expression

experiments, contained in GEO, and other similar repositories,

would be valuable. Such annotations could be important for im-

proving the interpretation of both old and new data and discovering

circadian driven effects that may be important in precision medicine

and other applications, for instance to help determine the optimal

time for administering certain drugs.
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