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Abstract

Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically

on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the

quantitative trait values by simultaneously modeling all marker effects. Genetic trait prediction is usu-

ally represented as linear regression models. In many cases, for the same set of samples and

markers, multiple traits are observed. Some of these traits might be correlated with each other.

Therefore, modeling all the multiple traits together may improve the prediction accuracy. In this work,

we view the multitrait prediction problem from a machine learning angle: as either a multitask learn-

ing problem or a multiple output regression problem, depending on whether different traits share the

same genotype matrix or not. We then adapted multitask learning algorithms and multiple output

regression algorithms to solve the multitrait prediction problem. We proposed a few strategies to im-

prove the least square error of the prediction from these algorithms. Our experiments show that mod-

eling multiple traits together could improve the prediction accuracy for correlated traits.

Availability and implementation: The programs we used are either public or directly from

the referred authors, such as MALSAR (http://www.public.asu.edu/~jye02/Software/MALSAR/)

package. The Avocado data set has not been published yet and is available upon request.

Contact: dhe@us.ibm.com

1 Introduction

Whole genome prediction of complex phenotypic traits using high-

density genotyping arrays has attracted lots of attention, as it is rele-

vant to the fields of plant and animal breeding and genetic epidemi-

ology (Cleveland et al., 2012; Hayes et al., 2009; Heffner et al.,

2009; Jannink et al., 2010; Lande and Thompson, 1990; Meuwissen

et al., 2001; Rincent et al., 2012; Xu and Crouch, 2008). Given a set

of biallelic molecular markers, such as SNPs, with genotype values

typically encoded as {0, 1, 2} on a collection of plant, animal or

human samples, the goal is to predict the quantitative trait values by

simultaneously modeling all marker effects. The problem is called

genetic trait prediction or genomic selection.

More specifically, the genetic trait prediction problem is defined

as follows. Given n training samples, each with m� n genotype

values (we use ‘feature’, ‘marker’, ‘genotype’, ‘SNP’ interchange-

ably) and a trait value, and a set of n0 test samples each with the

same set of genotype values but without trait value, the task is

to train a predictive model from the training samples to predict

the trait value, or phenotype of each test sample based on their geno-

type values. Let Y be the trait value of the training samples. The

problem is usually represented as the following linear regression

model:

Y ¼ b0 þ
Xm
i¼1

biXi þ el (1)

where Xi is the ith genotype value, m is the total number of geno-

types and bi is the regression coefficient for the ith genotype, el is the

error term.

There have been lots of work on predicting genetic trait values

from genotype data, such as rrBLUP (Ridge regression BLUP)

(Meuwissen et al., 2001), Elastic-Net, Lasso, Ridge Regression

(Tibshirani, 1994; Shaobing Chen et al., 1998), Bayes A, Bayes B

(Meuwissen et al., 2001), Bayes Cp (Kizilkaya et al., 2010) and

Bayesian Lasso (Legarra et al., 2011; Park and Casella, 2008), as

well as other machine learning methods. Most of the work assumes

that for each set of samples there is only one trait, and therefore, a

single regression is conducted to predict the trait value. However, in

reality, it is quite often the case that we could observe and measure

multiple traits rather than one, especially for crops and animals. For

example, for plant dataset, once we obtain a fruit, we could measure

its weight, size, etc. This will give us multiple traits. Obviously some
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of the traits are correlated, such as weight and size. Leveraging such

correlations in the predictive model might improve the prediction

accuracy. Therefore, we call the problem of modeling multiple traits

at once as multitrait prediction problem.

Lots of work have been proposed for the multitrait prediction

problem from genotype data, such as multitrait GBLUP (Clark and

van der Werf, 2013), Multitrait BayesA (Jia and Jannink, 2012),

Bayesian multivariate antedependence model (Jiang et al., 2015).

GBLUP and multitrait BayesA are mainly based on the framework

of linear regression. The Bayesian multivariate antedependence

model considers nonstationary correlations between SNP markers

through assuming a linear relationship between the effects of adja-

cent markers. These methods are shown to have superior perform-

ance compared with single trait prediction methods.

In this work, we study the multitrait prediction problem from a

machine learning angle. We consider the multitrait prediction prob-

lem as a multitask learning problem or a multiple output regression

problem. When there are multiple sets of samples, each having a sep-

arate set of genotypes on the same set of markers as well as a corres-

ponding trait, the multitrait prediction problem can be converted

into a multitask learning problem. This is shown in Figure 1. We

can see that there are three sample sets and three different genotype

matrices. These genotype matrices, however, share the same set of

markers. Each sample set has a different trait. When there is only set

of samples and one set of genotypes but multiple traits, the problem

can be converted into a multiple output regression problem, as

shown in Figure 2. There is only one sample set and one genotype

matrix. There are three different traits. Although lots of work have

been done for the multitrait prediction problem, this is indeed the

first time the problem is modeled as a multitask learning and a mul-

tiple output regression problem.

We can see that for the multitask learning problem, if we learn

each task independently, we only use a small portion of the samples.

If we model all the tasks at the same time, we leveraged the informa-

tion from the complete set of samples and the improvement could be

significant when the number of tasks is large. In the multiple output

regression problem, although all the tasks share the same set of sam-

ples and there is no advantage on the sample size, the prediction per-

formance could still be improved by the modeling the correlations

among the tasks.

In this work, we adapt the state-of-the-art multitask learning al-

gorithms and multiple output regression problems to solve the mul-

tiple trait prediction problem. For the multiple output regression

problem, we conduct an iterative algorithm to learning the variable

one at a time with others fixed. The objective function is convex

when we only optimize one variable with others fixed, and there-

fore, efficient optimization is allowed. We observed that a direct ap-

plication of these algorithms to the multiple trait prediction problem

usually leads to poor least square error. We applied strategies such

as centering the genotype matrix to improve the prediction perform-

ance. We showed that modeling all the traits together could improve

the prediction compared with predicting each trait independently,

especially for the correlated traits.

2 Preliminaries

Given the traditional encoding of genotypes as {0, 1, 2}, lots of tech-

niques have been applied to the genetic trait prediction problem

defined in Equation (1). Consider the typical situation for linear re-

gression, where we have the training set y 2 Rl; x 2 Rl�n, in a stand-

ard linear regression, we wish to find parameters b0; b such that the

sum of square residuals,
Pl

i¼1 ðyi � b0 � x>i;�bÞ
2, is minimized.

Many machine learning methods have been applied to the gen-

etic single trait prediction problem, such as Elastic-Net, Lasso,

Ridge Regression (Shaobing Chen et al., 1998; Tibshirani, 1994),

Bayes A, Bayes B (Meuwissen et al., 2001), Bayes Cp (Kizilkaya

et al., 2010) and Bayesian Lasso (Legarra et al., 2011; Park and

Casella, 2008). They could be applied to predict the multiple traits

where each trait is predicted independently. In this work, we

applied ridge regression (Hoerl and Kennard, 1970) for single trait

prediction, which aims to minimize the following objective

function.

min
Xl

i¼1

ðyi � xT
i bÞ2 þ k

Xn

j¼1

b2
j

�
;

"
(2)

The solution of ridge regression is given by:

b ¼ ðXTXþ kIÞ�1XTy (3)

which is similar to the ordinal least square solution, but with the

addition of a ‘ridge’ down the diagonal. Ridge regression has been

shown to have certain bias as �kðXTXþ kIÞ�1b. The unbiased ver-

sion of rrBLUP (Ridge regression BLUP) (Meuwissen et al., 2001;

Whittaker et al., 2000) is one of the most popular methods for gen-

etic trait prediction. rrBLUP simply is ridge regression with a specific

choice of k in (2). Specifically, Meuwissen et al. (2001) assumes that

the b coefficients are iid from a normal distribution such that

bi � Nð0; r2
bÞ. Then the choice of k ¼ r2

e=r
2
b where r2

e is the residual

error. In this case, the ridge regression penalized estimator is equiva-

lent to best linear unbiased predictor (BLUP) (Ruppert et al., 2003).

Many methods for multitrait prediction where all the traits are

modeled together have also been proposed, such as multitrait

GBLUP (Clark and van der Werf, 2013), Multitrait BayesA (Jia and

Jannink, 2012), Bayesian multivariate antedependence model (Jiang

Fig. 1. An example of multitasking learning

Fig. 2. An example of multiple output regression
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et al., 2015). In multivariate models with m traits, marker effects on

phenotypic traits were estimated from the mixed linear model

below:

y ¼ uþ
Xp

j¼1

Xjajdj þ e (4)

where y is a n�m matrix with n samples and m traits, aj is a 1�m

vector for the effects of the jth marker on all m traits which is

assumed to be normally distributed aj � Nð0;Raj
Þ; Raj

is m�m

variance-covariance matrix for the jth marker, e is a n�m matrix

for residual error that follows a normal distribution.

In multitrait GBLUP (Cleveland et al., 2012), unstructured covari-

ance matrix among traits was assumed and the relationship matrix

derived from SNPs were fit in ASReml (Gilmour et al., 2009). The

multitrait BayesA model (Jia and Jannink, 2012) assumes the prior of

Raj
follows a scaled inverse-Wishart distribution, which were given a

flat prior and estimated from the data using the Metropolis algorithm

to sample from the joint posterior distribution. Gibbs sampling and

MCMC are applied to estimate the parameters. In the Bayesian multi-

variate antedependence model (Jiang et al., 2015), it is assumed that

the adjacent markers are correlated as below:

aj ¼
dj j ¼ 1

tj;j�1aj�1 þ dj j ¼ 2; . . . ; p

(
(5)

where tj;j�1 is the scalar antedependence parameter of aj on aj�1.

Again, the parameters are estimated via Gibbs sampling and MCMC.

3 Multitrait prediction

As we have discussed before, there are two types of multitrait pre-

diction problem:

• For each trait, the genotype matrix is different: the problem can

be formalized as a multitask learning problem.
• For each trait, the genotype matrix is the same: the problem can

be formalized as a multiple output regression problem.

3.1 Multitask learning
Many algorithms have been proposed (Abernethy et al., 2006, 2009;

Agarwal et al., 2010; Argyriou et al., 2007; Chen et al., 2012;

Evgeniou and Pontil, 2004; Liu et al., 2009; Zhou et al., 2011) for

the multitask learning problem. Here we mainly focused on four al-

gorithms: Cluster-based MTL (CMTL) (Zhou et al., 2011), ‘1-norm

regularized MTL, ‘2;1-norm regularized MTL (Liu et al., 2009) and

Trace-norm Regularized MTL (Abernethy et al., 2009).

Lasso (Tibshirani, 1996) is a well-known method that uses the

‘1-norm (or Lasso) regularizer to reduce model complexity and learn

features. It can be easily extended for single task learning to multi-

task learning. The objective function for ‘1-norm regularized MTL

is based on least square lasso:

minW

Xt

i¼1

jjWT
i Xi � Yijj2F þ q1jjWjj1 þ qL2

jjWjj2F (6)

where Xi denotes the input matrix of the ith task, Yi denotes the ith

trait, Wi is the coefficient matrix for task i, the regularization par-

ameter q1 controls sparsity and the optional qL2
regularization par-

ameter controls the ‘2-norm penalty. Note that both ‘1-norm and

‘2-norm penalties are used in Elastic Net.

Besides a simple ‘1-norm regularizer, we could constrain all coef-

ficient matrices to share a common set of features. This motivates

the group sparsity, i.e. the ‘1=‘2-norm, or ‘2;1-norm, regularized

learning (Liu et al., 2009). The objective function for ‘2;1-norm regu-

larized MTL is also based on least square lasso:

minW

Xt

i¼1

jjWT
i Xi � Yijj2F þ q1jjWjj2;1 þ qL2

jjWjj2F (7)

where Xi denotes the input matrix of the ith task, Yi denotes the ith

trait, Wi is the coefficient matrix for task i, the regularization par-

ameter q1 controls sparsity and the optional qL2
regularization par-

ameter controls the ‘2-norm penalty. Notice the difference of the

objective functions in Equations (6) (jjWjj1) and (7) (jjWjj2;1).

We could also constrain the coefficient matrices from different

tasks to share a low-dimensional subspace, i.e. W is of low rank. By

replacing the rank of W with trace norm jjWjj� ¼
P

i diðWÞ, the ob-

jective function becomes:

minWLðWÞ þ cjjPjj1
subject to : W ¼ PþQ; jjQjj� <¼ s

(8)

where the task coefficient matrices W is decomposed into two com-

ponents: a sparse part P and a low-rank part Q.

The advantage of CMTL is that prior knowledge on the cluster

structure of the traits can be embedded into the objective function.

For our multitrait problem setting, we always know what are the

traits and what they measured. Thus it is very often we know which

traits are more correlated with each other. For example, fruit weight

and fruit size are known to be highly correlated. These more corre-

lated traits should be in one cluster. By leveraging such cluster infor-

mation, we could improve the multitrait prediction algorithm. The

objective function for CMTL is based on the spectral relaxed k-

means clustering:

minW;F:FT F¼Ik
LðWÞ þ aðtrðWTWÞ � trðFTWTWFÞÞ þ btrðWTWÞ

(9)

where k is the number of clusters and F captures the relaxed cluster

assignment information. As the above objective function is not con-

vex, a convex relaxation cCMTL is also proposed as below:

minWLðWÞ þ q1gð1þ gÞtrðWðgI þMÞ�1WTÞ

subject to : trðMÞ ¼ k;M � I;M 2 St
þ; g ¼

q2

q1

(10)

Accelerated Projected Gradient (Zhou et al., 2011) is applied to

optimize the above objective function.

3.2 Multiple output regression
Given a set of training data consisting of N samples, each sample is

associated with a genotype matrix X of D-dimension and a trait matrix

Y of C-dimension, the multioutput regression model is shown below:

Y ¼ XBþ E (11)

where B ¼ ½B1; . . . ;Bc	 is a D�C regression coefficient matrix, each

element Bj is the vector of the regression coefficient for the jth trait.

E ¼ ½�1; . . . ; �N 	T is an N�C matrix, where �i ¼ ð�i1; . . . ; �iCÞ 2 RC

denotes the residual errors on each trait prediction introduced by

the ith sample.

Multiple output regression has been widely used in a variety of

domains such as stock prices prediction, pollution prediction, etc. It

was first noticed by Breiman (2000) and Friedman that through uti-

lizing correlations between outputs the regression accuracy can be

improved. In general there are two types of correlations: the task

Novel applications of multitask learning i39
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correlation and the noise correlation. Most of the work focus on

modeling only one type of correlation, either task correlation or

noise correlation. Some recent works (Cai et al., 2014; Rai et al.,

2012) consider both types of correlation, which are shown to

achieve better regression performance. The work of Rai et al. (2012)

and Cai et al. (2014) are essentially the same in that they both aim

to optimize the following objective function:

argminB;X�1 ;R�1 ¼ trððY �XBÞX�1ðY �XBÞTÞ

�NlogjX�1j þ k1trðBBTÞ þ k2trðBR�1BTÞ

�DlogjR�1j þ k3trðX�1Þ þ k4trðR�1Þ

(12)

where j:j denotes the determinant of a matrix.

The inverse covariance matrix X�1 couples the correlated noise

across tags and similarly, R�1 obtained relationships among the

multiple tasks’ regression coefficients. Apparently, both X�1 and

R�1 are learnt from the training data rather than pre-defined prior

knowledge. The last two terms trðX�1Þ and trðR�1Þ are the regular-

izers, which impose the matrix variate Gaussian priors on both

X�1=2 and R�1=2 to solve the overfitting issue.

The objective function in Equation (12) of the multiple output re-

gression model is not jointly convex in all variables but individually

convex in each variable while others are fixed. Therefore, in order to

optimize the objective function, an iterative algorithm is applied: (i)

Fix X�1 and R�1 and estimate B, (ii) Fix X�1 and B and estimate R�1

and (iii) Fix R�1 and B and estimate X�1. The process iterates and

stops when the value of the objective function does not change or

when the number of iterations exceeds a pre-defined threshold.

As the multiple output regression model is convex in each vari-

able while others are fixed, when we optimize a variable, we can

take the derivative of the variable to estimate its optimal value. To

estimate B with fixed X�1 and R�1, we set the derivative of B over

the objective function as 0 and we obtain:

2XTXBX�1 þ 2k1Bþ 2k2BR�1 ¼ 2XTYX�1

) XTXBþ k1BXþ k2BR�1X ¼ XTY

Both works (Cai et al., 2014; Rai et al., 2012) applied the above

algorithm. However, when optimizing B, the work (Rai et al., 2012)

applies Kronecker product which generates a DC�DC matrix

whose complexity might be high for large D and C. Then work Cai

et al. (2014) MOR improved the complexity by applying Cholesky

factorization and singular value decomposition and they showed

that the efficiency of the optimization process can be significantly

improved. Please refer to Rai et al. (2012) and Cai et al. (2014) for

the details of the two approaches.

As k1Xþ k2R
�1X is systemic and positive-definite, the

Cholesky factorization is performed on it to produce lower triangu-

lar matrix P:

k1Xþ k2R
�1X ¼ PPT

By setting X ¼ U1R1VT
1 and P ¼ U2R2VT

2 be the SVD of X and

P, respectively, we obtain the following:

V1R1UT
1 U1R1VT

1 Bþ BU2R2VT
2 V2R2UT

2 ¼ XTY

By setting ~B ¼ VT
1 BU2 and S ¼ VT

1 XTYU2, we could obtain B

as:

B ¼ V1
~BUT

2

When optimize R�1 with fixed X�1 and B, we set the derivative

of R�1 over the objective function as 0 and we obtain:

k2BTB�DRþ k4IC ¼ 0

) R�1 ¼ ðk2BTBþ k4IC

D
Þ

When optimize X�1 with fixed R�1 and B, we set the derivative

of R�1 over the objective function as 0 and we obtain:

ðY �XBÞTðY �XBÞ �NXþ k3IC ¼ 0

) X�1 ¼ ððY �XBÞTðY �XBÞ þ k3IC

N
Þ�1

where IC is an C�C identity matrix and M�1 denotes the inverse ma-

trix of the matrix M. The k1; k2; k3 are selected by cross-validation.

In Cai et al. (2014), dimensionality reduction is applied on both

feature space and target (trait) space. Feature space is the space for

all the features, which are the genotypes in our setting. Target space

is the space for all the target variables, which are the multiple gen-

etic traits in our setting. On feature space, PCA is applied to reduce

the dimensionality. On target space, a regularizer is applied to re-

duce the dimensionality. In this work, we did not conduct dimen-

sionality reduction as in the dataset we studied, the number of

features (in thousands) and the number of traits (eight) are not very

big.

Notice the MOR method without the task correlations and noise

correlations can be reduced to a standard ridge regression. We

observed that a direct application of the MOR method usually leads

to poor accuracy, as the predicted values are usually far off the true

values. In order to address this issue, we centered the input data ma-

trix X as X�MeanðXÞ
StdðXÞ , where Mean(X) computes the column-wise

mean of X, Std(X) computes the column-wise standard deviation of

X. We call it Centered MOR. It turns out that the centering strategy

significantly improved the least square error of MOR.

4 Results

4.1 Simulated data
We first simulate the data using the Equation (11). Recall that in

this equation, B ¼ ½B1; . . . ;Bc	 is a D�C regression coefficient ma-

trix, each element Bj is the vector of the regression coefficient for the

j-th trait. In order to add task correlation among all the Bj’s, we

sample Bj’s from a standard normal distribution. Similarly, to add

noise correlation, we sample the residual errors E from a standard

normal distribution. The genotype matrix X is randomly sampled

from the values [0, 1, 2]. The traits Y are then computed as

Y ¼ XBþ E. We simulated four traits for 200 samples, each with

2000 markers. We repeat all the experiments 10 times and com-

puted the average performance. To evaluate the performance of the

prediction methods, we used r2 (r-square, the square of the person’s

correlation coefficient between the predicted trait values and the

real trait values, a popular metric for genomic selection. For gen-

omic selection, the r2 is almost consistent with least square error).

For r2, the larger the better.

Notice we do not compare multitask learning and multiple out-

put regression methods directly as they will be used in different scen-

arios. Multitask learning is used when we have unique set of

samples for different traits. Multiple output regression is used when

we have the same set of samples for all the traits.

4.1.1 Multitask learning

We randomly split the 200 samples into 4 subsets, each with 50

samples and one corresponding trait. All of these subsets share the
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same 2000 set of markers, with their corresponding genotype values.

We tested the performance of the four multitask learning algorithms

[Cluster-based MTL (CMTL), L1-norm regularized MTL, L2,1-

norm regularized MTL, Trace-norm Regularized MTL] against the

single trait ridge regression algorithm. Notice for the single trait al-

gorithm, for each trait, we train ridge regression only on one subset

of 50 samples. For CMTL, as we do not have specific clusters, we

just randomly group two of the traits in one cluster and the other

two in another cluster.

We show the results in Figure 3. We can see that the four multi-

task learning algorithms in general achieved much better results

than that of the single trait ridge regression. This is reasonable as the

single trait ridge regression only uses 50 samples for the prediction.

The CMTL does not have any advantage over other methods as the

traits are indeed not in clusters. The trace-norm MTL achieved the

best results.

4.1.2 Multiple output regression

Here we conducted 10-fold cross validation for each trait and we

compare the performance of the the single trait prediction method:

single trait ridge regression, the multiple output regression methods:

the centered MOR method and the state-of-the-art multitrait predic-

tion methods: the multitrait BayesA algorithm, the Bayesian multi-

variate antedependence model. We did not show the performance of

MOR here as it in general has poor performance.

The results are shown in Figure 4. We can see that the multitrait

algorithms have better performance than the single trait ridge regres-

sion does. The Bayesian multivariate antedependence model does not

outperform BayesA in that we do not insert LD in our dataset. The

centered MOR has the best performance. We also see that the multi-

trait prediction methods and multiple output regression methods

made improvements on all four traits over the single trait prediction

method. This is because all the four traits are correlated as they are

sampled from the same standard normal distribution. As we will

show later in the experiments on real data, when the traits are not cor-

related, multitrait prediction does not make obvious improvements.

4.2 Real data
Next we evaluate the performance of the multitrait prediction meth-

ods on a real plant dataset, the avocado dataset, which contains 8

traits, 160 samples and 2663 markers. The eight traits are: fruit

weight, seed weight, fruit length, fruit width, fruit diameter, number

of fruit (log), mesocarp weight and water loss percentage. From the

name of the traits, we know which traits are more correlated with

each other. We show the heat map of the correlation of these traits

in Figure 5. Notice in the Figure there are two more traits ‘seed

width’ and ‘seed length’. They are not included in the experiments.

From the heat map, we can see that the first six traits are more cor-

related with each other and the last two traits are less correlated

with the remaining traits.
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Fig. 3. The r2 of the four multitask learning algorithms versus the single trait

ridge regression algorithm on the simulated data
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Fig. 4. The r2 of the centered MOR method, the multitrait BayesA algorithm,

the Bayesian multivariate antedependence model versus the single trait ridge

regression algorithm on the simulated data

Fig. 5. The heat map of the correlation of the eight traits
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4.2.1 Multitask learning

We randomly divide the genotype matrix into eight subsets, each

with 20 samples. Notice the eight genotype matrices share the same

set of markers. For each subset, we keep only one trait for the cor-

responding samples in the subset. Therefore, we ended up with eight

datasets, each with a single trait.

For single trait prediction, to predict the j-trait, we first train a

predictive model on the jth dataset. Then we take all the other data-

sets as input and apply the predictive model on the other datasets to

predict the jth trait for them. The predictive model we used here is

ridge regression. For the multitrait prediction, we used four algo-

rithms: Cluster-based MTL (CMTL), L1-norm regularized MTL,

L2,1-norm regularized MTL and Trace-norm Regularized MTL.

For CMTL, we applied our prior knowledge on the structure of the

clusters, namely the traits fruit weight, fruit length, fruit width, fruit

diameter are highly correlated and they should be in one cluster.

We compare the performance of the four multitask learning al-

gorithms with the single trait prediction. We show the results in

Figure 6. We can see the obviously the multitrait prediction signifi-

cantly outperforms the single trait prediction, as the single trait
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Fig. 6. The r2 of the four multitask learning algorithms versus the single trait ridge regression algorithm
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prediction used only one-eighth of the complete data to predict each

trait. We also observed that CMTL and the TraceNormMTL

achieved better results than the other two MTL methods, as they

conducted more complicated strategies rather than simple regular-

ization. The TraceNormMTL achieved slightly better results than

CMTL, indicating that reducing the original problem into a lower

dimensional subspace is indeed an effective strategy when the

dimensionality of the original problem is high.

4.2.2 Multiple output regression

For the multiple output regression methods, as there is only one data-

set, we conducted 10-fold cross validation. We evaluated the perform-

ance of the single trait prediction method: single trait ridge regression,

the multiple output regression methods: the centered MOR method

and the state-of-the-art multitrait prediction methods: the multitrait

BayesA algorithm, the Bayesian multivariate antedependence model.

Again we do not include MOR here as it has poor performance.

Notice we do not include the multitrait GBLUP algorithm here as the

two multitrait prediction methods have been shown to have superior

performance over the multitrait GBLUP algorithm. The performance

is again evaluated by the two metrics: r2 and the least square error.

As we can see in Figure 7, both the multitrait and multiple out-

put regression methods outperform single trait ridge regression. The

centered MOR method achieved better performance than the ridge

regression does, indicating that the centering strategy is critical for

the genetic trait prediction problem. The centered MOR method

also shows competitive performance compared with the multitrait

prediction methods on most of the traits. Also we can observe that

the improvement are mainly made on the first six traits, which are

highly correlated with each other. For the last two traits, the multi-

trait prediction does not show advantages.

5 Conclusions and future work

In this work, we studied the multitrait prediction problem where the

multiple quantitative trait values of a set of samples are predicted from

their corresponding genotypes. We modeled the problem from a ma-

chine learning perspective. We considered the problem as either a mul-

titask learning problem or a multiple output regression problem. By

adapting the state-of-the-art machine learning algorithms, we showed

that the prediction accuracy can be improved by modeling all the traits

together and we also showed that the machine learning methods are in-

deed very competitive with the existing statistical methods.

We also observed that the MOR method without the task correl-

ations and noise correlations can be reduced into a standard ridge

regression. From our previous study on single genetic trait predic-

tion (Haws et al., 2015), we observed that rrBLUP (the unbiased

version of ridge regression) achieves better performance than ridge

regression does. In our future work, we would like to extend the

MOR method to take the form of rrBLUP rather than ridge regres-

sion, which might improve its performance.
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