
Convolutional neural network architectures for

predicting DNA–protein binding

Haoyang Zeng, Matthew D. Edwards, Ge Liu and David K. Gifford*

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA

02142, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in

modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures

can yield poorer performance than simpler models. Thus an in-depth understanding of how to

match CNN architecture to a given task is needed to fully harness the power of CNNs for computa-

tional biology applications.

Results: We present a systematic exploration of CNN architectures for predicting DNA sequence

binding using a large compendium of transcription factor datasets. We identify the best-

performing architectures by varying CNN width, depth and pooling designs. We find that adding

convolutional kernels to a network is important for motif-based tasks. We show the benefits of

CNNs in learning rich higher-order sequence features, such as secondary motifs and local se-

quence context, by comparing network performance on multiple modeling tasks ranging in diffi-

culty. We also demonstrate how careful construction of sequence benchmark datasets, using

approaches that control potentially confounding effects like positional or motif strength bias, is

critical in making fair comparisons between competing methods. We explore how to establish the

sufficiency of training data for these learning tasks, and we have created a flexible cloud-based

framework that permits the rapid exploration of alternative neural network architectures for prob-

lems in computational biology.

Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu.

Contact: gifford@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recent application of convolutional neural networks (LeCun

et al., 2015; Salakhutdinov, 2015) to sequence-based problems in

genomics signals the advent of the deep learning era in computa-

tional biology. Two recent methods, DeepBind (Alipanahi et al.,

2015) and DeepSEA (Zhou and Troyanskaya, 2015), successfully

applied deep learning to modeling the sequence specificity of

protein binding with a performance superior to the best existing

conventional learning methods. Learning tasks in genomics often

have tens of thousands or more training examples, which makes

them well adapted to training convolutional neural networks

without overfitting. Such training examples are typically drawn

from high-throughput data, such as those produced by the

Encyclopedia of DNA Elements (ENCODE) project (Bernstein

et al., 2012).

The convolutional neural networks used by DeepBind and

DeepSEA are essential building blocks in deep learning approaches

in computer vision (Krizhevsky et al., 2012; Le, 2013; LeCun et al.,

2015; Sainath et al., 2013; Tompson et al., 2014a, b). The adapta-

tion of convolutional neural networks from computer vision to gen-

omics can be accomplished by considering a window of genome

sequence as an image. Instead of processing 2-D images with three

color channels (R,G,B), we consider a genome sequence as a fixed

length 1-D sequence window with four channels (A,C,G,T).

Therefore the genomic task of modeling DNA sequence protein-

binding specificity is analogous to the computer vision task of two-

class image classification. One of the biggest advantages of a convo-

lutional neural network for genomics is its ability to detect a motif

wherever it is in the sequence window, which perfectly suits the task

of motif identification and hence binding classification.

We have conducted a systematic exploration of the performance

of convolutional network architectures for the fundamental genomic

task of characterizing the binding affinity of transcription factors to

DNA sequence in 690 different ChIP-seq experiments. We designed

VC The Author 2016. Published by Oxford University Press. i121

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32, 2016, i121–i127

doi: 10.1093/bioinformatics/btw255

ISMB 2016

http://cnn.csail.mit.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw255/-/DC1
http://www.oxfordjournals.org/


a pool of nine architecture variants by changing network width,

depth and pooling designs. We varied each of these dimensions

while observing classification performance on each transcription

factor independently.

The two tasks we chose to explore are motif discovery and motif

occupancy. The motif discovery task classifies sequences that are

bound by a transcription factor from negative sequences that are di-

nucleotide shuffles of the positively bound sequences. The motif oc-

cupancy task discriminates genomic motif instances that are bound

by a transcription factor (positive set) from motif instances that are

not bound by the same transcription factor (negative set) in the same

cell type, where GC-content and motif strength are matched be-

tween the positive and negative set.

We found for both tasks, classification performance increases

with the number of convolution kernels, and the use of local pooling

or more convolutional layers has little, if not negative, effect on the

performance. Convolutional neural network architectures that took

advantage of these insights exceeded the classification performance

of DeepBind, which represents one particular point in the parameter

space that we tested.

2 Background

2.1 A parameterized convolutional neural

network architecture
The convolutional neural network architectures we evaluated are all

variations of Figure 1. The input is a 4� L matrix where L is the

length of the sequence (101 bp in our tests). Each base pair in the se-

quence is denoted as one of the four one-hot vectors ½1;0;0; 0�; ½0;1;
0; 0�; ½0; 0; 1;0� and ½0; 0; 0;1�.

The first layer of our network is a convolutional layer, which

can be thought of as a motif scanner. For example, DeepBind uses

16 convolutional layers, each scanning the input sequence with step

size 1 and window size of 24. The output of each neuron on a con-

volutional layer is the convolution of the kernel matrix and the part

of the input within the neuron’s window size.

The second layer is a global max-pooling layer, one for each con-

volutional layer. Each of these max-pooling layers only outputs the

maximum value of all of its respective convolutional layer outputs.

The function of this global max-pooling process can be thought of

as calling whether the motif modeled by the respective convolutional

layer exists in the input sequence or not.

The third layer is a fully connected layer of size 32. Because it is

fully connected, each of its 32 neurons is connected to all of the

neurons in the max-pooling layer. A dropout layer (Srivastava et al.,

2014) is used on the third layer output to randomly mask portions

of its output to avoid overfitting. In the published DeepBind model

the inclusion of the third layer may be omitted for a given TF to op-

timize performance. We always include the third layer followed by a

dropout layer.

The final output layer consists of two neurons corresponding to

the two classification results. These two neurons are fully connected

to the previous layer.

We implemented our generic convolutional neural network using

the Caffe (Jia et al., 2014) platform. We used Amazon EC2 GPU-

enabled machine instances to train and test our networks efficiently,

and we are making our scalable Amazon EC2 implementation available

with this paper for others to use and extend (http://cnn.csail.mit.edu).

We constructed a series of architectures by varying one of three

parameters: the number of kernels, the number of layers, or the

pooling method at the top layer (Table 1). Each of these parameters

contributes to network performance in different aspects. Additional

convolutional kernels add power in detecting motif variants and co-

factor motifs. Additional layers of convolution and max-pooling

make the neural network ‘deeper’ and enable the model to extract

features such as motif interactions at the price of making the net-

work much harder to train. The use of global max-pooling reduces

motif information to present or not-present in the input sequence,

while local max-pooling retains the location of the motif.

We note that with more than one layer, the pooling at intermedi-

ate layers must be local for higher layer of convolution to be meaning-

ful. We explored using both global pooling and local pooling at the

top layer in the deep networks we tested to investigate the combina-

torial effects of additional layers and the pooling type at the top layer.

We use more kernels for deeper convolutional layers to characterize

the different combination of lower-level features, an architecture de-

sign that has been adopted by many successful convolutional neural

network models in computer vision (Krizhevsky et al., 2012) and gen-

omics (Zhou and Troyanskaya, 2015).

3 Results

3.1 Experiment setup
We used 690 transcription factor ChIP-seq experiments from the

ENCODE project to benchmark the performance of different mod-

els compared in this work.

ACCGTTACGGGATCTTAA

Convolutions 

Global Max-pooling

Full connection

Output 

16 convolution kernels

Full connection 
(with dropout) 

32 neurons

window size = 24 
step size = 1 

2 neurons

Fig. 1. The basic architectural structure of the tested convolutional neural

networks

Table 1. The code and brief description of the 9 variants of CNN

models compared in this work

Code Architecture (relative to 1layer structure)

1layer The basic structure as depicted in Figure 1

1layer_1motif Use 1 convolutional kernels

1layer_64motif Use 64 convolutional kernels

1layer_128motif Use 128 convolutional kernels

1layer_local_win9 Use local maxpooling of window size 9 at top

1layer_local_win3 Use local maxpooling of window size 3 at top

2layer 2 layers with 16/32 kernels

3layer 3 layers with 16/32/64 kernels

2layer_local_win3 2 layers with 16/32 kernels, use local

maxpooling of window size 3 at top

3layer_local_win3 3 layers with 16/32/64 kernels, use local

maxpooling of window size 3 at top

More detailed description of the models can be found on our supporting

website.

i122 H.Zeng et al.

http://cnn.csail.mit.edu


We constructed separate positive and negative datasets for the

motif discovery and motif occupancy tasks. In the motif discovery

task, we used the same preprocessing procedure as Alipanahi et al.

(2015) and centered our 101 bp positive (bound) sequences on

ChIP-seq binding events. The negative set consists of shuffled posi-

tive sequences with dinucleotide frequency maintained. In this task,

the goal is to discover the motif combination from a similar nucleo-

tide background. In the motif occupancy task, both the positive and

negative sets are 101 bp regions centering at a motif instance, with

the size, GC-content and motif strength matched. The label of each

region is determined by whether it overlaps with any ChIP-seq re-

gion. In this task, the model will have to capture a sequence deter-

minant more complicated than motifs. It is important to note that

the motif learning task, by construction, discriminates between gen-

omic and non-genomic (artificial) sequences, while the motif occu-

pancy task discriminates between two groups of genomic sequences.

In both tasks, we randomly sampled 80% of the data to use as the

training set and used the rest as the testing set.

We compare the performance of the convolutional neural net-

work configurations by the median area under the receiver operating

curve (AUC) for all 690 experiments. We used two controls on all

transcription factor datasets, the original DeepBind implementation

and a recent state-of-the-art discriminative sequence-based method,

the gapped k-mer support vector machine (gkm-SVM) (Ghandi

et al., 2014).

3.2 A simple model outperforms in motif discovery
In the motif discovery task, our basic structure (1layer) with the

same configuration as DeepBind achieved nearly identical perform-

ance to the original DeepBind implementation. Our basic model

achieves slightly lower median AUC but fewer AUCs close to 0.5

(Fig. 2A) than DeepBind. DeepBind instances with AUCs close to

random could result from improper weight initialization. With the

instances with AUC close to 0.5 for DeepBind excluded, linear re-

gression between the AUCs from the two models yielded a good fit

with an R2 of 0.886 (Fig. 2B).

We found that additional convolutional kernels (1layer_64mo-

tifs, 1layer_128motifs) increased performance for the motif discov-

ery task (Fig. 2A). As kernels are analogous to motif scanners, this

observation emphasizes the need to use sufficient kernels to capture

motif variants. We note that the improvement seemed to be almost

saturated when more than 128 kernels were deployed for the 690

experiments we tested.

Surprisingly, while local max-pooling is popular in the

practice of deep learning in computer vision (Krizhevsky et al., 2012;

Le, 2013; LeCun et al., 2015; Sainath et al., 2013; Tompson et al.,

2014a, b), we observed that local max-pooling (1layer_local_win3,

1layer_local_win9) achieved a performance inferior to model with a

simple global max-pooling strategy. We found the more ‘local’ the

max-pooling window, the worse performance we observed. Thus for

the motif discovery task, retaining more information than the binary

existence of the motif does not help as much as the negative effect

from added noise.

For the motif discovery task we found that adding more lower layers

(2layer, 3layer) to perform feature transformation reduced performance

when compared to our basic structure with a single layer. Using local

max-pooling at the top (2layer_local_win3, 3layer_local_win3) did not

improve performance for deeper networks when compared to our basic

structure. Thus, perhaps surprisingly, we conclude that deep architec-

tures are not necessary for the motif discovery task.

3.3 CNNs excel in capturing higher-order features
The motif occupancy task is much harder than motif discovery, as

we strictly matched the distribution of motif strength in the positive

and negative set and therefore eliminate the contribution of motif

strength to binding prediction (Supplementary Fig. S1). However, in

this task CNNs also achieved good performance with an AUC close

to 0.8, outperforming gkmSVM (Fig. 3). Similar to our observations

for the motif discovery task, the number of convolutional kernels

has the greatest impact on the performance, indicating that the ad-

equate characterization of simple features is still crucial for this task

where motif strength has been controlled. This observation reflects

the limited power of motifs in characterizing the binding specificity

of transcription factors. Unlike in motif discovery, the use of local

pooling and adding more layers gave rise to similar, if not better,

performance compared to the basic model. This suggests that when

motif presence is controlled, capturing other high-level features in

the sequence context could compensate for the loss of performance

due to model complexity. However, the strength of these high-level

features is limited. We excluded DeepBind in the motif occupancy

task because DeepBind does not take customized negative samples

in training, but instead fixed its negative samples as the shuffled

positive sequence with di-nucleotide frequency maintained.

To further explore how CNNs perform in capturing higher-

order features, we generated an additional pair of positive and nega-

tive sets which is similar to that of the motif occupancy task but the

location of motif in the sample is no longer controlled in the positive

sample. In this case, the location of the motif, which is higher-order

information, needs to be learned. We found the basic CNN excelled

AUC

A
U

C
s 

of
 1

la
ye

r

AUCs of DeepBind

A

B

R squared = 0.886

Fig. 2. (A) The distribution of AUCs across 690 experiments in the motif dis-

covery task. (B) The performance of our basic model (1layer) matches

DeepBind. Blue points are the transcription factors with AUCs close to 0.5 for

DeepBind but not for our basic model

Convolutional neural network architectures for predicting DNA–protein binding i123

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw255/-/DC1


in this task, especially when we used local pooling which enables the

network to remember the location of the features (Supplementary

Fig. S2).

3.4 Complex convolutional neural network models

require sufficient training data
We found that convolutional neural network performance decreases

with network complexity when there is insufficient training data for

a given ChIP-seq experiment. For each experiment, we calculated

the change of AUC in motif discovery task from the basic 1layer

model to each of the eight model variants in Table 1. When we clus-

tered the change in performance for each experiment using hierarch-

ical clustering with Ward linkage (Fig. 4A), we observed four

clusters of performance. Two clusters (Fig. 4A, red and violet) have

worse performance when more complex models are used, one clus-

ter (blue) has similar AUCs across models, and a fourth cluster

(green) is between these extremes. After comparing the distribution

of sample sizes within each cluster, we observed a strong positive

correlation between the amount of available training data for an ex-

periment and its performance with complex models, suggesting the

need for sufficient training data for complex models (Fig. 4B).

We further investigated how sensitive different architectures are

to input dataset size. We used 112 ChIP-seq datasets which have

more than 40 000 binding events, and constructed three new sets of

experiments, each of which has 112 datasets, by down-sampling

each original ChIP-seq dataset to have 40 000, 10 000 and 2500

binding events respectively. We trained and evaluated the same set

of architectures in the motif discovery task on these three sets of ex-

periments. With 40 000 training samples, all of the models achieved

similar performance and the models with more than one layer per-

formed slightly better than the basic structure (Fig. 4C). With

smaller sample sizes, the models with more complex architectures

showed notably inferior performance and the gap expanded as the

sample size further decreased (Supplementary Fig. S3).

We next explored if the family of a transcription factor contrib-

utes to the TF’s performance. We mapped the 112 ChIP-seq datasets

to 10 TF families using TF family annotations in the JASPAR

database. We performed a two-way ANOVA test to disentangle the

contributions of TF family, model architecture, and their interaction

on the AUC of an experiment. When evaluated on the set of datasets

with 40 000, 10 000 and 2500 peaks respectively to control for the

sample size, the model architecture is always the only factor causing

changes of AUC with statistical significance (3:3� 10�11;

3:7� 10�10; < 10�16). Evaluated by g2, the effect size of TF family

and the interaction term are also always 50 times less than that of

the model architecture. Thus the family of TF only contributes mar-

ginally to the variance in the AUC.

3.5 Deeper networks are much more

time-consuming to train
We further analyzed the time-performance tradeoff for different

architectures. For each architecture, the time needed to train on

500 000 samples in the motif discovery task was calculated (Table

2). Adding layers requires the most additional training time.

4 Methods

4.1 ChIP-seq data for benchmark
As was performed in Alipanahi et al. (2015) and Zhou and

Troyanskaya (2015), we obtained 690 ChIP-seq experiments from

ENCODE (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

encodeDCC/wgEncodeAwgTfbsUniform/)

We constructed separate datasets for motif discovery and motif

occupancy. In the task of motif discovery, the positive set consists of

the centering 101 bp region of each ChIP-seq peak, and the negative

set consists of shuffled positive sequences with matching dinucleo-

tide composition. This is the same negative set used in DeepBind

(Alipanahi et al., 2015). The shuffling was performed using the

‘fasta-dinucleotide-shuffle’ package in MEME (Bailey et al., 2009).

In the motif occupancy task, we limit it to 422 TF ChIP-seq experi-

ments where the motif is present in the JASPAR database. Then the

motif instances were identified from the whole genome using the

FIMO package from the MEME suite (Bailey et al., 2009) and

labeled by whether the 101bp region centered at the motif overlaps

Fig. 3. The distribution of AUCs across 690 experiments in the motif occupancy task

i124 H.Zeng et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw255/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw255/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw255/-/DC1
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/


with any ChIP-seq peak. Lastly we matched the size, GC-content

and motif strength (using the P-value determined from FIMO) of the

positive and negative set in the same way as described in Whitaker

et al. (2015)

For each ChIP-seq experiment, performance was measured by

randomly shuffling the factor’s positive set, randomly shuffling the

factor’s negative set, and using 80% of each set for training and the

remaining 20% for testing. For convolutional neural network

Fig. 4. (A) The effect of different architectures on AUC is experiment-specific. Each column of the heat map denotes one ChIP-seq experiment. Each row repre-

sents one model variant. Each value in the heatmap shows the change of AUC in motif discovery task from the basic model 1layer to a variant model. Four clus-

ters from hierarchical clustering are colored in blue, green, red and violet. (B) The number of called ChIP-seq peaks in each of the fours clusters. The colors of the

clusters match those in (A). (C) The distribution of AUCs in the motif discovery task across 112 ChIP-seq experiment with 40000 peaks

Convolutional neural network architectures for predicting DNA–protein binding i125



models we randomly sampled 1/8 of the training set as the valid-

ation set, which was used for hyper-parameter search. In all cases,

the test set was held out until evaluating the performance of the

model.

4.2 Implementation of the parameterized convolutional

neural network
We built our parameterized convolutional neural network using

Caffe (Jia et al., 2014). We performed hyper-parameter search using

Mri (https://github.com/Mri-monitoring/Mri-docs/blob/master/

mriapp.rst). For each ChIP-seq experiment, 30 hyper-parameter set-

tings were randomly sampled from all possible combinations, which

is the same as the number used by DeepBind. Details of the hyper-

parameter space are summarized in Table 3. Note that although the

structure of DeepBind was replicated in our basic model, we selected

different methods for weight initialization and optimization because

of the differences between DeepBind’s codebase and our Caffe-

based platform. Additionally, in DeepBind, the use of a fully con-

nected layer of 32 neurons and a dropout layer before the output

layer is a binary hyper-parameter, while in our Caffe-based imple-

mentation this was not easily feasible. Thus we always include these

two layers in all of our model variants.

There are three phases in training and evaluating a model. In the

hyper-parameter search phase we used 30 candidate hyper-

parameter settings. For each potential hyper-parameter setting we

trained a model on the training set and tested it on the validation set

every 100 mini-batches of training. In the training phase, the hyper-

parameter set with the best validation accuracy in the last phase was

used to train the model on the training set and test on the validation

set every 500 mini-batches of training. The iteration with the best

validation accuracy was picked as the final model. In the testing

phase, we tested the model on the test set, which was held out com-

pletely in the first two phases.

Our implementation has been packaged using Docker to make it

runnable on any Unix-based system. All of the experiments were

performed on Amazon Elastic Cloud (EC2). Detailed instruction of

how to run the model on Amazon EC2 can be found on our paper’s

supporting website (http://cnn.csail.mit.edu).

4.3 Comparison with gkm-SVM and DeepBind
We used the default training parameters for the gkm-SVM R pack-

age (https://cran.r-project.org/web/packages/gkmSVM) for all of our

experiments. As was described in Zhou and Troyanskaya (2015),

the gkm-SVM software does not scale to using all binding sites be-

cause of its requirement to compute a full kernel matrix. Therefore

we randomly sampled 5000 positive sequences if the number of total

positives exceeds 5000, as was adopted in Zhou and Troyanskaya

(2015).

We obtained the source code of DeepBind from http://tools.

genes.toronto.edu/deepbind/nbtcode/ and packaged it with Docker

so it can be run on different systems without dependency problems.

Our adapted version can be found on our website. All of the

DeepBind experiments were run on Amazon EC2 using g2.2xlarge

instances.

4.4 Runtime evaluation
We used the time recorded in the training log of Caffe. We took the

time difference of the iteration 0 and iteration 5000 where in each it-

eration a mini-batch of 100 samples were fed into the model. Thus

we evaluated the time each model needed for training on half a mil-

lion samples.

5 Discussion

Convolutional neural networks are capable of learning sophisticated

features, however their performance does not increase monotonic-

ally with their complexity. Thus the design of a convolutional neural

network needs to match the learning task at hand to balance the

number of network parameters with the available data, the com-

plexity of feature interactions, and the noise that is introduced by

unnecessary complexity.

We have found that the effects of convolutional neural network

structure on its performance are task-specific. In both the motif

learning and motif occupancy task, we observed that deploying

more convolutional kernels is always beneficial. However the use of

local-pooling and additional convolutional layers only help in our

motif occupancy task when higher-order features exist.

We have demonstrated an improvement over the performance of

DeepBind by a systematic exploration of convolutional neural net-

work architectures, and thus our work suggests that using a config-

urable network approach will be important for sequence-based

tasks in genomics. We have produced a flexible method of testing a

wide variety of convolutional network architectures for the commu-

nity and expect that this testing-based approach will prove useful

for the further application of convolutional neural networks to

genomics.

Acknowledgements

We thank the insightful suggestions from Tatsunori Hashimoto. We also ac-

knowledge the helpful comments from other members of the Gifford

laboratory.

Funding

The authors acknowledge funding from the National Institutes of Health

under grants 1U01HG007037 and 5P01NS055923 and an equipment grant

from NVIDIA.

Conflict of Interest: none declared.

Table 2. The training time for different model variants to train on

500 000 samples

Model Time for training on

500 000 samples (s)

1layer 64.34

1layer_64motif 79.45

1layer_128motif 94.47

1layer_local_win9 68.08

1layer_local_win3 73.12

2layer 91.82

3layer 124.12

2layer_local_win3 93.34

3layer_local_win3 125.5

Table 3. Hyper-parameter sets tested

Hyper-parameter Choices

Dropout ratio 0.75, 0.5, 0.1

Momentum in AdaDelta optimizer 0.9, 0.99, 0.999

Delta in AdaDelta optimizer 1e-4, 1e-6, 1e-8

i126 H.Zeng et al.

https://github.com/Mri-monitoring/Mri-docs/blob/master/mriapp.rst
https://github.com/Mri-monitoring/Mri-docs/blob/master/mriapp.rst
http://cnn.csail.mit.edu
https://cran.r-project.org/web/packages/gkmSVM
http://tools.genes.toronto.edu/deepbind/nbtcode/and
http://tools.genes.toronto.edu/deepbind/nbtcode/and


References

Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA- and

RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831–838.

Bailey,T.L. et al. (2009) MEME SUITE: tools for motif discovery and search-

ing. Nucleic Acids Res., 37, W202–W208.

Bernstein,B.E. et al. (2012) An integrated encyclopedia of DNA elements in

the human genome. Nature, 489, 57–74.

Ghandi,M. et al. (2014) Enhanced regulatory sequence prediction using

gapped k-mer features. PLoS Comput. Biol., 10, e1003711.

Jia,Y. et al. (2014) Caffe: Convolutional architecture for fast feature embed-

ding. arXiv Preprint arXiv, 1408, 5093.

Krizhevsky,A. et al. (2012) Imagenet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems,

pp. 1097–1105.

Le,Q.V. (2013) Building high-level features using large scale unsupervised

learning. In: 2013 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), IEEE, pp. 8595–8598.

LeCun,Y. et al. (2015) Deep learning. Nature, 521, 436–444.

Sainath,T.N. et al. (2013) Deep convolutional neural networks for lvcsr. In

2013 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), IEEE, pp. 8614–8618.

Salakhutdinov,R. (2015) Learning deep generative models. Ann. Rev. Stat.

Appl., 2, 361–385.

Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res., 15, 1929–1958.

Tompson,J. et al. (2014a) Efficient object localization using convolutional net-

works. arXiv Preprint arXiv, 1411, 4280.

Tompson,J.J. et al. (2014b). Joint training of a convolutional network and a

graphical model for human pose estimation. In: Advances in Neural

Information Processing Systems, pp. 1799–1807.

Whitaker,J.W. et al. (2015) Predicting the human epigenome from DNA

motifs. Nat. Methods, 12, 265–272.

Zhou,J. and Troyanskaya,O.G. (2015) Predicting effects of noncoding

variants with deep learning-based sequence model. Nat. Methods, 12,

931–934.

Convolutional neural network architectures for predicting DNA–protein binding i127


	btw255-TF1

