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Abstract

Motivation: The alignment of sequencing reads to a transcriptome is a common and important

step in many RNA-seq analysis tasks. When aligning RNA-seq reads directly to a transcriptome (as

is common in the de novo setting or when a trusted reference annotation is available), care must

be taken to report the potentially large number of multi-mapping locations per read. This can pose

a substantial computational burden for existing aligners, and can considerably slow downstream

analysis.

Results: We introduce a novel concept, quasi-mapping, and an efficient algorithm implementing

this approach for mapping sequencing reads to a transcriptome. By attempting only to report the

potential loci of origin of a sequencing read, and not the base-to-base alignment by which it derives

from the reference, RapMap—our tool implementing quasi-mapping—is capable of mapping

sequencing reads to a target transcriptome substantially faster than existing alignment tools. The

algorithm we use to implement quasi-mapping uses several efficient data structures and takes ad-

vantage of the special structure of shared sequence prevalent in transcriptomes to rapidly provide

highly-accurate mapping information. We demonstrate how quasi-mapping can be successfully

applied to the problems of transcript-level quantification from RNA-seq reads and the clustering of

contigs from de novo assembled transcriptomes into biologically meaningful groups.

Availability and implementation: RapMap is implemented in Cþþ11 and is available as open-

source software, under GPL v3, at https://github.com/COMBINE- lab/RapMap.

Contact: rob.patro@cs.stonybrook.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The bioinformatics community has put tremendous effort into build-

ing a wide array of different tools to solve the read-alignment prob-

lem efficiently. These tools use many different strategies to quickly

find potential alignment locations for reads; for example, Bowtie

(Langmead et al., 2009), Bowtie 2 (Langmead and Salzberg, 2012),

BWA (Li and Durbin, 2009) and BWA-mem (Li, 2013) use variants

of the FM-index, while tools like the Subread aligner (Liao et al.,

2013), Maq (Li et al., 2008) and MrsFast (Hach et al., 2010) use

k-mer-based indices to help align reads efficiently. Because read

alignment is such a ubiquitous task, the goal of such tools is often to

provide accurate results as quickly as possible. Indeed, recent align-

ment tools like STAR (Dobin et al., 2013) demonstrate that rapid

alignment of sequenced reads is possible, and tools like HISAT (Kim

et al., 2015) demonstrate that this speed can be achieved with only

moderate memory usage. When reads are aligned to a collection of

reference sequences that share a substantial amount of sub-sequence

(near or exact repeats), a single read can have many potential

alignments, and considering all such alignment can be crucial for

downstream analysis (e.g. considering all alignment locations for a

read within a transcriptome for the purpose of quantification, Li

and Dewey (2011), or when attempting to cluster de novo assembled

contigs by shared multi-mapping reads, Davidson and Oshlack,

2014). However, reporting multiple potential alignments for each

read is a difficult task, and tends to substantially slow down even ef-

ficient alignment tools.

Yet, in many cases, all of the information provided by the align-

ments is not necessary. For example, in the transcript analysis tasks

mentioned above, simply the knowledge of the transcripts and pos-

itions to which a given read maps well is sufficient to answer the

questions being posed. In support of such ‘analysis-efficient’ compu-

tation, we propose a novel concept, called quasi-mapping, and an ef-

ficient algorithm implementing quasi-mapping (exposed in the

software tool RapMap) to solve the problem of mapping sequenced

reads to a target transcriptome. This algorithm is considerably faster

than state-of-the-art aligners, and achieves its impressive speed by

VC The Author 2016. Published by Oxford University Press. i192

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32, 2016, i192–i200

doi: 10.1093/bioinformatics/btw277

ISMB 2016

https://github.com/COMBINE- lab/RapMap
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw277/-/DC1
Deleted Text:  
Deleted Text: (
Deleted Text: )
Deleted Text: very 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://www.oxfordjournals.org/


exploiting the structure of the transcriptome (without requiring an

annotation), and eliding the computation of full-alignments (e.g.

CIGAR strings). Further, our algorithm produces mappings that

meet or exceed the accuracy of existing popular aligners under dif-

ferent metrics of accuracy. Finally, we demonstrate how the map-

pings produced by RapMap can be used in the downstream analysis

task of transcript-level quantification from RNA-seq data, by mod-

ifying the Sailfish (Patro et al., 2014) tool to take advantage of

quasi-mappings, as opposed to individual k-mer counts, for tran-

script quantification. We also demonstrate how quasi-mappings can

be used to effectively cluster contigs from de novo assemblies. We

show that the resulting clusterings are of comparable or superior ac-

curacy to those produced by recent methods such as CORSET

(Davidson and Oshlack, 2014), but that they can be computed

much more quickly using quasi-mapping.

2 Methods

The quasi-mapping concept, implemented in the tool RapMap, is a

new mapping technique to allow the rapid and accurate mapping of

sequenced fragments (single or paired-end reads) to a target tran-

scriptome. RapMap exploits a combination of data structures—a

hash table, suffix array (SA) and efficient rank data structure. It

takes into account the special structure present in transcriptomic ref-

erences, as exposed by the SA, to enable ultra-fast and accurate de-

termination of the likely loci of origin of a sequencing read. Rather

than a standard alignment, quasi-mapping produces what we refer

to as fragment mapping information. In particular, it provides, for

each query (fragment), the reference sequences (transcripts), strand

and position from which the query may have likely originated. In

many cases, this mapping information is sufficient for downstream

analysis. For example, tasks like transcript quantification, clustering

of de novo assembled transcripts and filtering of potential target

transcripts can be accomplished with this mapping information.

However, this method does not compute the base-to-base alignment

between the query and reference. Thus, such mappings may not be

appropriate in every situation in which alignments are currently

used (e.g. variant detection).

We note here that the concept of quasi-mapping shares certain

motivations with the notions of lightweight-alignment (Patro et al.,

2015) and pseudoalignment (Bray et al., 2016). Yet, all three

concepts—and the algorithms and data structures used to

implement them—are distinct and, in places, substantially different.

Lightweight-alignment scores potential matches based on approxi-

mately consistent chains of super-maximal exact matches shared be-

tween the query and targets. Therefore, it typically requires some

more computation than the other methods, but allows the reporting

of a score with each returned mapping and a more flexible notion of

matching. Pseudoalignment, as implemented in Kallisto, refers only

to the process of finding compatible targets for reads by determining

approximately matching paths in a colored De Bruijn graph of a

pre-specified order. Among compatible targets, extra information

concerning the mapping (e.g. position and orientation) can be ex-

tracted post hoc, but this requires extra processing, and the resulting

mapping is no longer technically a pseudoalignment. Quasi-mapping

seeks to find the best mappings (targets and positions) for each read,

and does so (approximately) by finding minimal collections of dy-

namically sized, right-maximal, matching contexts between target

and query positions. Quasi-mapping is inspired by both lightweight-

alignment (Patro et al. (2015)) and pseudoalignment (Bray et al.,

2016), and while each of these approaches provide some insight into

the problems of alignment and mapping, they represent distinct con-

cepts and exhibit unique characteristics in terms of speed and accur-

acy, as demonstrated below (We do not compare against

lightweight-alignment here, as no stand-alone implementation of

this approach is currently available).

2.1 An algorithm for Quasi-mapping
The algorithm we use for quasi-mapping makes use of two main

data structures, the generalized SA (Manber and Myers, 1993)

SA[T] of the transcriptome T, and a hash table h mapping each k-

mer occurring in T to its SA interval (by default k ¼ 31).

Additionally, we must maintain the original text T on which the SA

was constructed, and the name and length of each of the original

transcript sequences. T consists of a string in which all transcript se-

quences are joined together with a special separator character.

Rather than designating a separate terminator $i for each reference

sequence in the transcriptome, we make use of a single separator $,

and maintain an auxiliary rank data structure, which allows us to

map from an arbitrary position in the concatenated text to the index

of the reference transcript in which it appears. We use the rank9b al-

gorithm and data structure of Vigna (2008) to perform the rank op-

eration quickly.

Quasi-mapping determines the mapping locations for a query

read r through repeated application of (i) determining the next hash

table k-mer that starts past the current query position, (ii) comput-

ing the maximum mappable prefix (MMP) of the query beginning

with this k-mer and then (iii) determining the next informative pos-

ition (NIP) by performing a longest common prefix (LCP) query on

two specifically chosen suffixes in the SA.

The algorithm begins by hashing the k-mers of r, from left-to-

right (a symmetric procedure can be used for mapping the reverse-

complement of a read), until some k-mer ki—the k-mer starting at

position i within the read—is present in h and maps to a valid SA

interval. We denote this interval as I kið Þ ¼ b; e½ Þ . Because of the lex-

icographic order of the suffixes in the SA, we immediately know

that this k-mer is a prefix of all of the suffixes appearing in the given

interval. However, it may be possible to extend this match to some

longer substring of the read beginning with ki. In fact, the longest

substring of the read that appears in the reference and is prefixed by

ki is exactly the MMP (Dobin et al., 2013) of the suffix of the read

beginning with ki. We call this MMPi, and note that it can be found

using a slight variant of the standard SA binary search (Manber and

Myers, 1993) algorithm. For speed and simplicity, we implement

the ‘simple accelerant’ binary search variant of Gusfield (1997).

Because we know that any substring that begins with ki must reside

in the interval [b,e), we can restrict the MMPi search to this region

of the SA, which is typically small.

After determining the length of MMPi within the read, one could

begin the search for the next mappable SA interval at the position fol-

lowing this MMP. However, though the current substring of the read

will differ from all of the reference sequence suffixes at the base fol-

lowing MMPi, the suffixes occurring at the lower and upper bounds

of the SA interval corresponding to MMPi may not differ from each

other (see Fig. 1). That is, if I MMPið Þ ¼ b0; e0½ Þ is the SA interval cor-

responding to MMPi, it is possible that jLCP T SA b0½ �½ � ;ð
T SA e0 � 1½ �½ � ÞÞ j > jMMPij . In this case, it is most likely that the

read and the reference sequence bases following MMPi disagree as the

result of a sequencing error, not because the (long) MMP discovered

between the read and reference is a spurious match. Thus, beginning

the search for the next MMP at the subsequent base in the read may

not be productive, as the matches for this substring of the query may
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not be informative—that is, such a search will likely return the same

(relative) positions and set of transcripts. To avoid querying for such

substrings, we define and make use of the notion of the NIP. The

notion of the NIP in the algorithm we present for quasi-mapping is

motivated by the ‘k-mer skipping’ approach adopted in Kallisto (Bray

et al., 2016), though the manner in which this information is obtained

is different (as are actual positions themselves), since the NIPs com-

puted for quasi-mapping depend on the preceding matching context,

which is of a dynamic and variable length. For a MMPi, with

I MMPið Þ ¼ b0; e0½ Þ , we define NIPðMMPiÞ ¼
jLCP T SA b0½ �½ � ;T SA e0 � 1½ �½ � Þð Þ j þ 1. Intuitively, the NIP of prefix

MMPi is designed to return the next position in the query string where

a SA search is likely to yield a set of transcripts different from those

contained in I MMPið Þ. To compute the LCP between two suffixes

when searching for the NIP, we use the ‘direct min’ algorithm of Ilie

et al. (2010). We found this to be the fastest approach. Additionally,

it does not require the maintenance of an LCP array or other auxiliary

tables aside from the standard SA.

Given the definitions we have explained above, we can summar-

ize the quasi-mapping procedure as follows (an illustration of the

mapping procedure is provided in Fig. 1). First, a read is scanned

from left to right (a symmetric procedure can be used for mapping

the reverse-complement of a read) until a k-mer ki is encountered

that appears in h. A lookup in h returns the SA interval I kið Þ corres-

ponding to the substring of the read consisting of this k-mer. Then,

the procedure described above is used to compute MMPi and

‘ ¼ NIP(MMPi). The search procedure then advances to position i

þ‘� k in the read, and again begins hashing the k-mers it encoun-

ters. This process of determining the MMP and NIP of each pro-

cessed k-mer and advancing to the NIP in the read continues until

the NIP exceeds position lr � k where lr is the length of the read r.

The result of applying this procedure to a read is a set

S ¼ f q0; o0; b0; e0½ Þð Þ; q1;o1; b1; e1½ Þð Þ; . . .g of query positions,

MMP orientations and SA intervals, with one such triplet corres-

ponding to each MMP.

The final set of mappings is determined by a consensus mechan-

ism. Specifically, the algorithm reports the intersection of transcripts

appearing in all hits—i.e. the set of transcripts that appear (in a

consistent orientation) in every SA interval appearing in S. These

transcripts, and the corresponding strand and location on each, are

reported as quasi-mappings of this read. This lightweight consensus

mechanism is inspired by Kallisto (Bray et al., 2016), though certain

differences exist (e.g. quasi-mapping requires all hits to be orienta-

tion-consistent, and, since transcript identifiers are obtained from

generalized transcriptome positions via a rank calculation, the map-

ping positions for each hit—and therefore, each read—are immedi-

ately available, rather than decodable as auxiliary information).

These mappings are reported in a samtools-compatible format in

which the relevant information (e.g. target id, position, strand, pair

status) is computed from the mapping. We note that alternative con-

sensus mechanisms, both more and less stringent, are easy to enforce

given the information contained in the hits (e.g. ensuring that the

hits are co-linear with respect to both the query and reference can be

done by passing RapMap the -c flag, and d-consistency (Patro et al.,

2015) can also be easily enforced). However, below, we consider

this simple consensus mechanism.

Intuitively, RapMap’s combination of speed and accuracy result

from the manner in which it exploits the nature of exactly repeated

sequence that is prevalent in transcriptomes (either as a result of al-

ternative splicing or paralogous genes). In addition to efficient

search for MMPs and NIPs, the SA allows RapMap to encode exact

matches between the query and many potential transcripts effi-

ciently (in the form of ‘hits’). This is because all reference locations

for a given MMP appear in consecutive entries of the SA, and can be

encoded efficiently by simply recording the SA interval correspond-

ing to this MMP. By aggressively filtering the hits to determine the

set of ‘best’ matching transcripts and positions, RapMap is able to

quickly discard small matches that are unlikely to correspond to a

correct mapping. Similarly, the large collection of exact matches

that appear in the reported mapping are likely to appear in the align-

ment (were the actual alignments to be computed). In some sense,

the success of the strategy adopted by RapMap further validates the

claim of Liao et al. (2013) that the seed-and-vote paradigm can be

considerably more efficient than the seed-and-extend paradigm, as

RapMap adopts neither of these paradigms directly, but its ap-

proach is more similar to the former than the latter.

Fig. 1. The transcriptome (consisting of transcripts t1; . . . ; t6) is converted into a $-separated string, T, on which a suffix array, SA[T], and a hash table, h, are con-

structed. The mapping operation begins with a k-mer (here, k¼3) mapping to an interval b; e½ Þ in SA[T]. Given this interval and the read, MMPi and NIP(MMPi)

are calculated as described in section 2. The search for the next hashable k-mer begins k bases before NIP(MMPi)
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In the next section, we analyze how this algorithm for quasi-

mapping, as described above, compares with other aligners in terms

of speed and mapping accuracy.

3 Mapping speed and accuracy

To test the practical performance of quasi-mapping, we compared

RapMap against a number of existing tools, and analyzed both the

speed and accuracy of these tools on synthetic and experimental

data. Benchmarking was performed against the popular aligners

Bowtie 2 (Langmead and Salzberg, 2012) (v2.2.6) and STAR (Dobin

et al., 2013) (v2.5.0c) and the recently introduced pseudoalignment

procedure used in the quantification tool Kallisto (Bray et al., 2016)

(v0.42.4). All experiments were scripted using Snakemake (Köster

and Rahmann, 2012) and performed on a 64-bit linux server with

256 GB of RAM and 4 � 6-core Intel Xeon E5-4607 v2 CPUs run-

ning at 2.60 GHz. Wall-clock time was recorded using the time

command.

In our testing we find that Bowtie 2 generally performs well in

terms of reporting the true read origin among its set of multi-

mapping locations. However, it takes considerably longer and tends

to return a larger set of multi-mapping locations than the other

methods. In comparison with Bowtie 2, STAR is substantially faster

but somewhat less accurate. RapMap achieves accuracy comparable

or superior to Bowtie 2, while simultaneously being much faster

than even STAR. Kallisto is similar to (slightly slower than)

RapMap in terms of single-threaded speed, and exhibits accuracy

similar to that of STAR. For both RapMap and Kallisto, simply

writing the output to disk tends to dominate the time required for

large input files with significant multi-mapping (though we elimin-

ate this overhead when benchmarking). This is due, in part, to the

verbosity of the standard SAM format in which results are reported,

and suggests that it may be worth developing a more efficient and

succinct output format for mapping information.

3.1 Speed and accuracy on synthetic data
To test the accuracy of different mapping and alignment tools in a

scenario where we know the true origin of each read, we generated

data using the Flux Simulator (Griebel et al., 2012). This synthetic

dataset was generated for the human transcriptome from an annota-

tion taken from the ENSEMBL (Cunningham et al., 2015) database

consisting of 86 090 transcripts corresponding to protein-coding

genes. The dataset consists of �48 million 76 bp, paired-end reads.

The detailed parameters used for the Flux Simulator can be found in

Supplementary Appendix 1.2.

When benchmarking these methods, reads were aligned directly

to the transcriptome, rather than to the genome. This was done be-

cause we wish to benchmark the tools in a manner that is applicable

when the reference genome may not even be known (e.g. in de novo

transcriptomics). The parameters of STAR (see Supplementary

Appendix 1.1) were adjusted appropriately for this purpose (e.g. to

dis-allow introns). Similarly, Bowtie 2 was also used to align reads

directly to the target transcriptome; the parameters for Bowtie 2 are

given in Supplementary Appendix 1.1.

3.1.1 Mapping speed

We wish to measure, as directly as possible, just the time required by

the mapping algorithms of the different tools. Thus, when bench-

marking the runtime of different methods, we do not save the result-

ing alignments to disk. Further, to mitigate the effect of ‘outliers’ (a

small number of reads which map to a large number of low-

complexity reference positions), we bound the number of different

transcripts to which a read can map to be 200.

Additionally, we have also benchmarked Kallisto, but have not

included the results in Figure 2, as the software, unlike the other

methods, does not allow multi-threaded execution if mappings are

being reported. Thus, we ran Kallisto with a single thread, using the

–pseudobam flag and redirecting output to /dev/null to avoid disk

overhead. Kallisto requires 17.87 m to map the 48M simulated

reads, which included<1 m of quantification time. By comparison,

RapMap required 11.65 m to complete with a single thread.

Finally, we note Kallisto, STAR and RapMap require 2–3� the

memory of Bowtie 2, but all of the methods tested here exhibit rea-

sonable memory usage. The synthetic set of 48 million reads can be

mapped to an index of the entire human transcriptome on a typical

laptop with 8 GB of RAM.

As Figure 2 illustrates, RapMap outperforms both Bowtie 2 and

STAR in terms of speed by a substantial margin, and finishes map-

ping the reads with a single thread faster than STAR and Bowtie 2

with 10 threads. We consider varying the number of threads used by

RapMap and STAR to demonstrate how performance scales with

the number of threads provided. On this dataset, RapMap quickly

approaches peak performance after using only a few threads. We be-

lieve that this is not owing to limits on the scalability of RapMap,

but rather because the process is so quick that, for a dataset of this

size, simply reading the index constitutes a large (and growing) frac-

tion of the total runtime (dotted line) as the number of threads is

increased. Thus, we believe that the difference in runtime between

RapMap and the other methods may be even larger for datasets con-

sisting of a large number of reads, where the disk can reach peak ef-

ficiency and the multi-threaded input parser (we use the parser from

the Jellyfish (Marçais and Kingsford, 2011) library) can provide in-

put to RapMap quickly enough to make use of a larger number of

threads. Because running Bowtie 2 with each potential number of

threads on this dataset is time-consuming, we only consider Bowtie

2’s runtime using 10 threads.

3.1.2 Mapping accuracy

Because the Flux Simulator records the true origin of each read, we

make use of this information as ground truth data to assess the ac-

curacy of different methods. However, as a single read may have

multiple, equally good alignments with respect to the transcriptome,

care must be taken in defining accuracy-related terms appropriately.

Fig. 2. The time taken by Bowtie 2, STAR and RapMap to process the syn-

thetic data using varying numbers of threads. RapMap processes the data

substantially faster than the other tools, while providing results of compar-

able or better accuracy
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A read is said to be correctly mapped by a method (a true positive) if

the set of transcripts reported by the mapper for this read contains

the true transcript. A read is said to be incorrectly mapped by a

method (a false positive) if it is mapped to some set of 1 or more

transcripts, none of which are the true transcript of origin. Finally, a

read is considered to be incorrectly un-mapped by a method (a false

negative) if the method reports no mappings, but the transcript of

origin is in the reference. Given these definitions, we report preci-

sion, recall, F1-Score and false discovery rate (FDR) in Table 1 using

the standard definitions of these metrics. Additionally, we report the

average number of ‘hits-per-read’ (hpr) returned by each of the

methods. Ideally, we want a method to return the smallest set of

mappings that contains the true read origin. However, under the

chosen definition of a true-positive mapping, the number of reported

mappings is not taken into account, and a result is considered a true

positive so long as it contains the actual transcript of origin. The hpr

metric allows one to assess how many extra mappings, on average,

are reported by a particular method.

As expected, Bowtie 2— perhaps the most common method of

directly mapping reads to transcriptomes— performs well in terms

of precision and recall. However, we find that RapMap yields simi-

lar (in fact, slightly better) precision and recall. STAR and Kallisto

obtain similar precision to Bowtie 2 and RapMap, but have lower

recall. STAR and Kallisto perform similarly in general, though

Kallisto achieves a lower (better) FDR than STAR. Taking the F1-

score as a summary statistic, we observe that all methods perform

reasonably well, and that, in general, alignment-based methods do

not seem to be more accurate than mapping-based methods. We

also observe that RapMap yields accurate mapping results that

match or exceed those of Bowtie 2.

Additionally, we tested the impact of noisy reads (i.e. reads not

generated from the indexed reference) on the accuracy of the

different mappers and aligners. To create these background reads,

we use a model inspired by (Gilbert et al., 2004), in which reads are

sampled from nascent, un-spliced transcripts. The details of this ex-

periment are included in Supplementary Appendix 1.3.

3.2 Speed and concordance on experimental data
We also explore the concordance of RapMap with different map-

ping and alignment approaches using experimental data from the

study of Cho et al. (2014) (NCBI GEO accession SRR1293902).

The sample consists of �26 million 75 bp, paired-end reads

sequenced on an Illumina HiSeq.

Because we do not know the true origin of each read, we have in-

stead examined the agreement between the different tools (see

Fig. 3). Intuitively, two tools agree on the mapping locations of a

read if they align/map this read to the same subset of the reference

transcriptome (i.e. the same set of transcripts). More formally, we

define the elements of our universe, U, to be tuples consisting of a

read identifier and the set of transcripts returned by a particular

tool. For example, if, for read ri, tool A returns alignments to tran-

scripts ft1; t2; t3g then eAi ¼ ri; ft1; t2; t3gð Þ 2 U. Similarly, if tool B

maps read ri to transcripts ft2; t3; t4g then eBi ¼ ri; ft2; t3; t4gð Þ 2 U.

Here, tools A and B do not agree on the mapping of read ri. Given a

universe U thusly defined, we can use the normal notions of set inter-

section and difference to explore how different subsets of methods

agree on the mapping locations of the sequenced reads. These con-

cordance results are presented in Figure 3, which uses a bar plot to

show the size of each set of potential intersections between the re-

sults of the tools we consider. In Figure 3 the dot matrix below the

bar plot identifies the tools whose results are intersected to produce

the corresponding bar. Tools producing mappings and alignments

are denoted with black and red dots and bars, respectively. The left

bar plot shows the size of the unique tuples produced by each tool

(alignments/mappings that do not match with any other tool). The

right bar plot shows the total number of tuples produced by each

tool, and well as the concordance among all different subsets of

tools.

Under this measure of agreement, RapMap and Kallisto appear

to agree on the exact same transcript assignments for the largest

number of reads. Further, RapMap and Kallisto have the largest

pairwise agreements with the aligners (STAR and Bowtie 2)—that

is, the traditional aligners exactly agree more often with these tools

than with each other. It is important to note that one possible reason

Table 1. Accuracy of aligners/mappers under different metrics

Metric Bowtie 2 Kallisto RapMap STAR

Reads aligned 47 579 567 44 804 857 47 613 536 44 711 604

Recall 97.41 91.60 97.49 91.35

Precision 98.31 97.72 98.48 97.02

F1-score 97.86 94.56 97.98 94.10

FDR 1.69 2.28 1.52 2.98

Hits per read 5.98 5.30 4.30 3.80

Fig. 3. Mapping agreement between subsets of Bowtie 2, STAR, Kallisto andRapMap.
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we see (seemingly) low agreement between Bowtie 2 and other

methods is because the transcript alignment sets reported by Bowtie

2 are generally larger (i.e. contain more transcripts) than those re-

turned by other methods, and thus fail to qualify under our notion

of agreement. This occurs, partially, because RapMap and Kallisto

(and to some extent STAR) do not tend to return sub-optimal multi-

mapping locations. However, unlike Bowtie 1, which provided an

option to return only the best ‘stratum’ of alignments, there is no

way to require that Bowtie 2 return only the best multi-mapping lo-

cations for a read. We observe similar behavior for Bowtie 2 (i.e.

that it returns a larger set of mapping locations) in the synthetic tests

as well, where the average number of hits per read is higher than for

the other methods (see Table 1). In terms of runtime, RapMap,

STAR and Bowtie 2 take 3, 26 and 1020 min, respectively, to align

the reads from this experiment using four threads. We also observed

a similar trend in terms of the average number of hits per read here

as we did in the synthetic dataset. The average number of hits per

read on these data were 4.56, 4.68, 4.21 and 7.97 for RapMap,

Kallisto, STAR and Bowtie 2, respectively.

4 Application of quasi-mapping for transcript
quantification

While mapping cannot act as a stand-in for full alignments in all

contexts, one problem where similar approaches have already pro-

ven useful is transcript abundance estimation. Recent work (Bray

et al., 2016; Patro et al., 2014, 2015; Zhang and Wang, 2014) has

demonstrated that full alignments are not necessary to obtain accur-

ate quantification results. Rather, simply knowing the transcripts

and positions where reads may have reasonably originated is suffi-

cient to produce accurate estimates of transcript abundance. Thus,

we have chosen to apply quasi-mapping to transcript-level quantifi-

cation as an example application, and have implemented our modifi-

cations as an update to the Sailfish (Patro et al., 2014) software,

which we refer to as quasi-Sailfish. These changes are present in the

Sailfish software from version 0.7 forward. Here, we compare this

updated method to the transcript-level quantification tools RSEM

(Li et al., 2010), Tigar2 (Nariai et al., 2014) and Kallisto (Bray

et al., 2016), the last of which is based on the pseudoalignment con-

cept mentioned above.

4.1 Transcript quantification
In an RNA-seq experiment, the underlying transcriptome consists of

M transcripts and their respective counts. The transcriptome can be

represented as a set X ¼ fðt1; . . . ; tMÞ; ðc1; . . . ; cMÞg, where ti denotes

the nucleotide sequence of transcript i and ci denotes the number of

copies of ti in the sample. The length of transcript ti is denoted by li.

Under ideal, uniform, sampling conditions (i.e. without considering

various types of experimental bias), the probability of drawing a

fragment from a transcript ti is proportional to its nucleotide frac-

tion (Li et al., 2010) denoted by gi ¼ ciliPM
j¼1 cjlj

.

If we normalize the gi for each transcript by its length li, we ob-

tain a measure of the relative abundance of each transcript called

the transcript fraction (Li et al., 2010), which is given by

si ¼
gi
liP

j¼1
gi

li

.

When performing transcript-level quantification, g and s are gen-

erally the quantities we are interested in inferring. Because they are

directly related, knowing one allows us to directly compute the

other. Below, we describe our approach to approximating the

estimated number of reads originating from each transcript, from

which we estimate s, and subsequently transcripts per million

(TPM).

4.2 Quasi-mapping-based Sailfish
Using the quasi-mapping procedure provided by RapMap as a li-

brary, we have updated the Sailfish (Patro et al., 2014) software to

make use of quasi-mapping, as opposed to individual k-mer count-

ing, for transcript-level quantification. In the updated version of

Sailfish, the index command builds the quasi-index over the refer-

ence transcriptome as described in Section 2. Given the index and a

set of sequenced reads, the quant command quasi-maps the reads

and uses the resulting mapping information to estimate transcript

abundances.

To reduce the memory usage and computational requirements of

the inference procedure, quasi-Sailfish reduces the mapping informa-

tion to a set of equivalence classes over sequenced fragments. These

equivalence classes are similar to those used in Nicolae et al. (2011),

except that the position of each fragment within a transcript is not

considered when defining the equivalence relation. Specifically, any

fragments that map to exactly the same set of transcripts are placed

into the same equivalence class. Following the notation of Patro

et al. (2015), the equivalence classes are denoted as C ¼ fC1; C2; . . .g,
and the count of fragments associated with equivalence class Cj is

given by dj. Associated with each equivalence class Cj is an ordered

collection of transcript identifiers tj ¼ tj1; tj2; . . .
� �

, which is simply

the collection of transcripts to which all equivalent fragments in this

class map. We call tj the label of class Cj.

4.2.1 Inferring transcript abundances

The equivalence classes C and their associated counts and labels are

used to estimate the number of fragments originating from each

transcript. The estimated count vector is denoted by a, and ai is the

estimated number of reads originating from transcript ti. In quasi-

Sailfish, we use the variational Bayesian expectation maximization

(VBEM) algorithm to infer the parameters (the estimated number of

reads originating from each transcript) that maximize a variational

objective. Specifically, we maximize a simplified version of the vari-

ational objective of Nariai et al. (2013).

The VBEM update rule can be written as a simple iterative up-

date in terms of the equivalence classes, their counts and the prior

(a0). The iterative update rule for the VBEM is:

auþ1
i ¼ a0 þ

X
Cj2C

dj

ecu
i 1bliX

tk2tj

ecu
k 1blk

0
BB@

1
CCA; (1)

where

cu
i ¼ Wða0 þ au

i Þ �Wð
X

k

a0 þ au
kÞ (2)

and Wð�Þ is the digamma function. Here, bli is the effective length of

transcript ti, computed as in Li et al. (2010). To determine the final

estimated counts—a—Equation (1) is iterated until convergence.

The estimated counts are considered to have converged when no

transcript has estimated counts differing by >1% between succes-

sive iterations.

Given a, we compute the TPM for transcript i as
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TPMi ¼ 106

aibliP
j
ajblj
: (3)

Sailfish outputs, for each transcript, its name, length, effective

length, TPM and the estimated number of reads originating from it.

4.3 Quantification performance comparison
We compared the accuracy of quasi-Sailfish (Sailfish v0.9.0; q-

Sailfish in Table 2) to the transcript-level quantification tools RSEM

(Li et al., 2010) (v1.2.22), Tigar 2 (Nariai et al., 2014) (v2.1) and

Kallisto (Bray et al., 2016) (v0.42.4) using six different accuracy

metrics and data from two different simulation pipelines. One of the

simulated datasets was generated with the Flux Simulator (Griebel

et al., 2012), and is the same dataset used in Section 3 to assess map-

ping accuracy and performance on synthetic data. The other dataset

was generated using the RSEM simulator via the same methodology

adopted by Bray et al. (2016). That is, RSEM was run on sample

NA12716_7 of the Geuvadis RNA-seq data (Lappalainen et al.,

2013) to learn model parameters and estimate true expression. The

learned model was then used to generate the simulated dataset,

which consists of 30 million 75 bp paired-end reads.

We measure the accuracy of each method based on the estimated

versus true number of reads originating from each transcript, and

consider six different metrics of accuracy: proportionality correl-

ation (Lovell et al., 2015), Spearman correlation, the true positive

error fraction (TPEF), the true positive median error (TPME), the

mean absolute relative difference (MARD) and the weighted mean

absolute relative difference (wMARD). Detailed definitions for the

last four metrics are provided in Supplementary Appendix 1.5.

Each of these metrics captures a different notion of accuracy,

and all are reported to provide a more comprehensive perspective on

quantifier accuracy. The first two metrics—proportionality and

Spearman correlation—provide a global notion of how well the esti-

mated and true counts agree, but are fairly coarse measures. The

TPEF assesses the fraction of transcripts where the estimate is differ-

ent from the true count by more than some nominal fraction (here

10%). Unlike TPEF, the TPME metric takes into account the direc-

tion of the mis-estimate (i.e. is it an over or under-estimate of the

true value?). However, both metrics are assessed only on truly ex-

pressed transcripts, and so provide no insight into the tendency of a

quantifier to produce false positives.

The absolute relative difference (ARD) metric has the benefit of

being defined on all transcripts as opposed to only those that are

truly expressed and ranges from 0 (lowest) to 2 (highest). Because

the values of this metric are tightly bounded, the aggregate metric,

MARD, is not dominated by high expression transcripts.

Unfortunately, it therefore has limited ability to capture the magni-

tude of mis-estimation. The wMARD metric attempts to account for

the magnitude of mis-estimation, while still trying to ensure that the

measure is not completely dominated by high expression transcripts.

This is done by scaling each ARDi value by the logarithm of the

expression.

Table 2 shows the performance of all four quantifiers, under all

six metrics, on both datasets. While all methods seem to perform

reasonably well, some patterns emerge. RSEM seems to perform

well in terms of the correlation metrics, but less well in terms of the

TPEF, TPME and wMARD metrics (specifically in the Flux

Simulator-generated dataset). This is likely a result of the lower

mapping rate obtained on this data by RSEM’s strict Bowtie 2 par-

ameters. Tigar 2 generally performs well under a broad range of

metrics, and produces highly accurate results. However, it is by far

the slowest method considered here, and requires over a day to com-

plete on the Flux simulator data and almost 7 h to complete on the

RSEM-sim data given 16 threads (and not including the time

required for Bowtie 2 alignment of the reads). Finally, both quasi-

Sailfish and Kallisto perform well in general under multiple different

metrics, with quasi-Sailfish tending to produce somewhat more ac-

curate estimates. Both of these methods also completed in a matter

of minutes on both datasets.

One additional pattern that emerges is that the RSEM-sim data

appears to present a much simpler inference problem compared with

the Flux Simulator data. One reason for this may be that the RSEM-

sim data are ‘clean’—yielding concordant mapping rates well over

99%, even under RSEM’s strict Bowtie 2 mapping parameters. As

such, all methods tend to perform well on these data, and there is

comparatively little deviation between the methods under most

metrics.

For completeness, we also provide (in Supplementary Appendix

1.4) the results, under all of these metrics, where the true and pre-

dicted abundances are considered in terms of TPM rather than num-

ber of reads. We find that the results are generally similar, with the

exception that TIGAR 2 performs considerably worse under the

TPM measure.

5 Application of quasi-mapping for clustering
de novo assemblies

Estimating gene-expression from RNA-seq reads is an especially

challenging task when no reference genome is present. Typically,

this problem is solved by performing de novo assembly of the RNA-

seq reads, and subsequently mapping these reads to the resulting

contigs to estimate expression. Owing to sequencing errors and arti-

facts, and genetic variation and repeats, de novo assemblers often

fragment individual isoforms into separate assembled contigs.

Davidson and Oshlack (2014) argue that better differential expres-

sion results can be obtained in de novo assemblies if contigs are first

Table 2. Performance evaluation of different tools along with quasi-enabled sailfish (q-Sailfish) with other tools on synthetic data generated

by Flux simulator and RSEM simulator

Metric Flux simulation RSEM-sim simulation

Kallisto RSEM q-Sailfish Tigar 2 Kallisto RSEM q-Sailfish Tigar 2

Proportionality corr. 0.74 0.78 0.75 0.77 0.91 0.93 0.91 0.93

Spearman corr. 0.69 0.73 0.70 0.72 0.91 0.93 0.91 0.93

TPEF 0.77 0.96 0.60 0.59 0.53 0.49 0.53 0.50

TPME �0.24 �0.37 �0.10 �0.09 0.00 �0.01 0.00 0.00

MARD 0.36 0.29 0.31 0.26 0.29 0.25 0.29 0.23

wMARD 4.68 5.23 4.45 4.35 1.00 0.88 1.01 0.94
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clustered into groups. They present a tool, CORSET, to perform this

clustering, and compare their approach to existing tools such as CD-

HIT (Fu et al., 2012). CD-HIT compares the sequences (contigs) dir-

ectly, and clusters them by sequence similarity. CORSET, alterna-

tively, aligns reads to contigs (allowing multi-mapping) and defines

a distance between each pair of contigs based on the number of

multi-mapping reads shared between them, and the changes in esti-

mated expression inferred for these contigs under different condi-

tions. Hierarchical agglomerative clustering is then performed on

these distances to obtain a clustering of contigs.

Here, we show how RapMap can be used for the same task, by

taking an approach similar to that of CORSET. First, we map the

RNA-seq reads to the target contigs and simultaneously construct

equivalence classes over the mapped fragments as in Section 4. We

construct a weighted, undirected graph from these equivalence

classes as follows. Given a set of contigs c and the equivalence

classes C, we construct G ¼ ðV;EÞ such that V ¼ c, and

E ¼ ffu; vgj9j : u; v 2 tjg. We define the weight of edge fu; vg as

wðu; vÞ ¼ Ru;v

min Ru ;Rvð Þ. Here Ru is the total number of reads belonging

to all equivalence classes in which contig u appears in the label. Rv is

defined analogously. Ru;v is the total sum of reads in all equivalence

classes for which contigs u and v appear in the label. Given the un-

directed graph G, we use the Markov Cluster Algorithm, as imple-

mented in MCL (Van Dongen, 2000), to cluster the graph.

To benchmark the time and accuracy of our clustering scheme

compared with CD-HIT and CORSET, we used two datasets from

the CORSET paper (Davidson and Oshlack, 2014). The first dataset

consists of 231 million human reads in total, across two conditions,

each with three replicates (as originally described by Trapnell et al.,

2013). The second dataset, from yeast, was originally published by

Nookaew et al. (2012) and consists 36 million reads, grown in two

different conditions with three replicates each. For both of these

datasets, we consider clustering the contigs of the corresponding de

novo assemblies, which were generated using Trinity (Grabherr

et al., 2011).

To measure accuracy, we consider the precision and recall

induced by a clustering with respect to the true genes from which

each contig originates. Assembled contigs were mapped to anno-

tated transcripts using BLAT (Kent, 2002), and labeled with their

gene of origin. A pair of contigs from the same cluster is regarded as

true positive (tp) if they are from the same gene in the ground truth

set. Similarly, a pair is a false positive (fp) if they are not from same

gene but are clustered together. A pair is a false negative (fn) if they

are from same gene but not predicted to be in the same cluster and

all the remaining pairs are true negatives (tn). With these definitions

of tp, fp, tn and fn we can define precision and recall in standard

manner. As shown in Table 3, when considering both precision and

recall, RapMap (quasi-mapping) enabled clustering performs sub-

stantially better than CD-HIT and similar to CORSET. RapMap

enabled clustering takes 8 min and 2 min to cluster the human and

yeast datasets respectively—which is substantially faster than the

other tools. To generate the timing results above, CD-HIT was run

with 25 threads. The time recorded for CORSET consists of both

the time required to align the reads using Bowtie 2 (using 25

threads) and the time required to perform the actual clustering,

which is single threaded. The time recorded for RapMap enabled

clustering consists of the time required to quasi-map the reads, build

the equivalence classes and construct the graph (using 25 threads),

plus the time required to cluster the graph with MCL (using a single

thread). Overall, on these datasets, RapMap-enabled clustering ap-

pears to provide comparable or better clusterings than existing

methods, and produces these clusterings much more quickly.

6 Discussion and conclusion

In this article we have argued for the usefulness of our novel ap-

proach, quasi-mapping, for mapping RNA-seq reads. More gener-

ally, we suspect that read mapping, wherein sequencing reads are

assigned to reference locations, but base-to-base alignments are not

computed, is a broadly useful tool. The speed of traditional aligners

like Bowtie 2 and STAR is limited by the fact that they must produce

optimal alignments for each location to which a read is reported to

align.

In addition to showing the speed and accuracy of quasi-mapping

directly, we apply it to two problems in transcriptome analysis.

First, we have updated the Sailfish software to make use of the

quasi-mapping information produced by RapMap, rather than dir-

ect k-mer counts, for purposes of transcript-level abundance estima-

tion. This update improves both the speed and accuracy of Sailfish,

and also reduces the complexity of its codebase. We demonstrate,

on synthetic data generated via two different simulators, that the re-

sulting quantification estimates have accuracy comparable with

state-of-the-art tools. We also demonstrate the application of

RapMap to the problem of clustering de novo assembled contigs, a

task that has been shown to improve expression quantification and

downstream differential expression analysis (Davidson and

Oshlack, 2014). RapMap can produce clusterings of comparable or

superior accuracy to those of existing tools, and can do so much

more quickly.

However, RapMap is a stand-alone mapping program, and need

not be used only for the applications we describe here. We expect

that quasi-mapping will prove a useful and rapid alternative to

alignment for tasks ranging from filtering large read sets (e.g. to

check for contaminants or the presence or absence of specific tar-

gets) to more mundane tasks like quality control and, perhaps, even

to related tasks like metagenomic and metatranscriptomic classifica-

tion and abundance estimation.

We hope that the quasi-mapping concept, and the availability of

RapMap and the efficient and accurate mapping algorithms it ex-

poses, will encourage the community to explore replacing alignment

with mapping in the numerous scenarios where traditional align-

ment information is unnecessary for downstream analysis.
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Table 3. Performance of CORSET, CD-HIT and RapMap enabled

clustering (R-CL) on yeast and human data

Metric Human Yeast

CORSET CD-HIT R-CL CORSET CD-HIT R-CL

precision 0.96 0.96 0.95 0.36 0.41 0.36

recall 0.56 0.37 0.60 0.63 0.36 0.71

time (min) 957 268 8 23 5 2
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