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Abstract

Motivation: Underrepresentation of racial groups represents an important challenge and major

gap in phenomics research. Most of the current human phenomics research is based primarily on

European populations; hence it is an important challenge to expand it to consider other population

groups. One approach is to utilize data from EMR databases that contain patient data from diverse

demographics and ancestries. The implications of this racial underrepresentation of data can be

profound regarding effects on the healthcare delivery and actionability. To the best of our know-

ledge, our work is the first attempt to perform comparative, population-scale analyses of disease

networks across three different populations, namely Caucasian (EA), African American (AA) and

Hispanic/Latino (HL).

Results: We compared susceptibility profiles and temporal connectivity patterns for 1988 diseases

and 37 282 disease pairs represented in a clinical population of 1 025 573 patients. Accordingly, we

revealed appreciable differences in disease susceptibility, temporal patterns, network structure and

underlying disease connections between EA, AA and HL populations. We found 2158 significantly

comorbid diseases for the EA cohort, 3265 for AA and 672 for HL. We further outlined key disease

pair associations unique to each population as well as categorical enrichments of these pairs.

Finally, we identified 51 key ‘hub’ diseases that are the focal points in the race-centric networks and

of particular clinical importance. Incorporating race-specific disease comorbidity patterns will pro-

duce a more accurate and complete picture of the disease landscape overall and could support

more precise understanding of disease relationships and patient management towards improved

clinical outcomes.

Contacts: rong.chen@mssm.edu or joel.dudley@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Design, comparison and analytics of disease networks can inform

epidemiology and disease biology (Barabasi and Oltvai, 2004;

Feldman et al., 2008; Zanzoni et al., 2009). Comparative network

analyses and network inference have helped in understanding the

relative risk of various diseases and characterize their shared disease

architectures (Barabasi et al., 2011; Cassidy-Bushrow et al., 2011;

Goh et al., 2007; Lee et al., 2008; Li et al., 2013, 2014, 2015b;

Zhou et al., 2014). Global disease network analyses utilizing biolo-

gical databases and patient data from electronic medical records
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(EMR) have emerged as a powerful modality for understanding the

complexity of disease relationships (Jensen et al., 2012; Shameer

et al., 2014). Incorporating findings from disease networks has been

used to inform disease repurposing (Dudley et al., 2011c), develop

therapeutics (Schadt et al., 2009) and improve patient safety

(Stewart et al., 2007). Phenomics (Bilder et al., 2009) aim to map

and understand the system of phenotypes and their interactions—

where in clinical studies a phenotype can include a trait (e.g. height),

lab test (e.g. cholesterol levels) or disease (e.g. rheumatoid arthritis).

The catalog of phenome-wide associations, which evaluate phe-

nomic correlations of genotypes, is rapidly growing and currently

being leveraged for drug development and drug repositioning

(Denny et al., 2010; Hall et al., 2014; Namjou et al., 2014). We re-

cently used EMR-wide phenomic information to identify: shared

genetic architectures of various diseases (Glicksberg et al., 2015; Li

et al., 2014; Suthram et al., 2010), sub-types of type-2 diabetes (Li

et al., 2015a), drug repurposing for various indications (Dudley

et al., 2011a; Shameer et al., 2015), disease progression patterns

through data stream visualization (Badgeley et al., 2016; Shameer

et al., 2016), disease risk estimations (Nead et al., 2016), and

genomics-informed, personalized therapy (Dudley et al., 2011b,

2015).

Similar to the current situation in genomics research, racial

groups and related factors remain understudied in phenomics. Most

of the current human phenomics research is based primarily on

populations of European background. Thus, compiling and analyz-

ing data from EMR databases that contains patient data from di-

verse demographics and racial groups remains a priority. It is clear

that racial background represents an overt source of variability in

disease risk and mortality (Trepka et al., 2015). Traditionally, clin-

icians are required to ‘bridge the inferential gap’, or make clinical

decisions for one racial group based on data from another, due to

lack of knowledge. Accordingly, the implications of this racial

underrepresentation of data can be profound with regard to health-

care delivery and actionability. For example, a previous study found

that African American women were twice as likely, and Hispanic

women were 50% as likely, to be readmitted to the hospital within

30 days of vaginal or cesarean delivery, even when controlling for

socioeconomic status (Aseltine et al., 2015). Systematic analysis of

phenomic data represented in a racially and demographically diverse

patient population could reveal precise patterns and further under-

standing of disease relationships, risk and comorbidity.

Previous studies put forth several approaches for the phenomic

study of clinical populations. Blair et al. (2013) utilized data from

the Centers for Medicare and Medicaid Services (CMS) Databases,

multiple hospitals across the United States, and the population regis-

try of Denmark (n¼110 million) to discover comorbidity patterns

across complex and Mendelian diseases. This work, however, was

mainly focused comparing certain types of diseases (i.e. Mendelian

and complex diseases) and did not fully investigate the disease space.

Hidalgo et al. (2009) created a more expansive phenotype disease

network (CMS data, n¼30 million) that incorporated demographic

factors, such as sex and race into the analytics. The authors revealed

disparate disease patterns and network connectivity that was due to

race, but only between Caucasian and African American popula-

tions. Jensen et al. (2014) extended the field of disease network re-

search by using timescale data to define temporal disease trajectories

in a Danish clinical cohort (n¼6.2 million). The researchers were

successfully able to identify clusters of diseases that consistently

manifested in particular order (i.e. disease trajectories). These trajec-

tories, however, were built specifically on European population data

and may not extend to other racial groups.

These studies, while powerful and pioneering, did not suffi-

ciently address the issue of racial diversity in their disease networks

partially due to limitations of their datasets. As such, a particular

concern is a lack of representation of Mexican Americans and other

Hispanic Americans in healthcare analytics (L�opez-Candales et al.,

2015). As indicated by Hidalgo et al., there is a significant disparity

in network structure between racial populations. However, prior

phenomic studies have not evaluated racially diverse populations in

depth. In the current study, we propose to combine many of the

powerful approaches developed in the previous studies and leverage

a racially diverse hospital population to compare disease network

structure and connectivity between Caucasian, African American

and Hispanic/Latino populations. To the best of our knowledge, our

work is the first attempt to perform comparative, population-scale

analyses of disease networks across three different populations

within the same hospital cohort.

2 Methods

We present a schematic of our study design and approach in

Figure 1.

2.1 Data sources
2.1.1 Clinical cohort

We performed disease-related analyses on patients from the Mount

Sinai Hospital (MSH) located in New York City, NY. The unique

location of MSH engenders a diverse racial patient population. The

Mount Sinai Data Warehouse which houses all the clinical data, cur-

rently has 4 034 924 unique patients (as of February 2015), over 16

million patient visits recorded, over 1.7 billion patient encounters,

and over 46 million International Classification of Diseases (ICD)-9

code cases documented. We performed the following extensive pre-

processing and filtering steps of the clinical data from the EMR.

1. We excluded individuals that did not have a healthcare visit

since 2003, when the EMR was implemented into the MSH

system.

2. We included individuals with a reported sex and age.

3. We only included individuals with self-identified races of

Caucasian (White) [EA], African American (Black) [AA] or

Hispanic/Latino [HL].

4. For all individuals with recorded death, we excluded individuals

without an age of death. Of these individuals, we used their date

of death as their current age as to not confound subsequent

analyses.

5. In compliance with Protected Health Information (PHI) and

Health Insurance Portability and Accountability Act (HIPPA),

we censored the ages of individuals<18 or>90 years old to

those limits.

After these filtering steps, a total of 1 025 573 individuals remained

for analysis. The mean age within the population is 47.19 6 24.3

years. The population contained 443 816 (43.27%) Males and 581

757 (56.73%) Females. The race breakdown of the population is as

follows: 621 827 (60.63%) EA 223 915 (21.83%) AA and 179 831

(17.53%) HL.

2.1.2 Disease classification sources

At the time of this analysis, the MSH EMR system used ICD-9 codes

for billing and recording diagnoses. As the ICD-9-CM classification

system is fraught with challenges (Hazlewood, 2003), particularly

when dealing with rare and/or recently discovered diseases, we
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utilized a curated ontology of established and documented mappings

for clinical studies. Disease Ontology (Schriml et al., 2012) (DO;

July 15th, 2015 release) is an open-source repository that integrates

phenotype information relating to human diseases.

The Healthcare Cost and Utilization Project (HCUP) has de-

veloped Clinical Classifications Software (CCS) (HCUP Clinical

Classifications Software (CCS) for ICD-9-CM, 2006–2009), which

we used to characterize the individually mapped diseases into

broader categories. In the current study, we used the ‘Single-Level

Diagnosis’ terms for categorization, which has 202 different catego-

ries. For enrichment analyses, we further only kept categories that

contained at least 5 diseases, which left 93 categories. The full list of

diseases, their respective ICD-9 codes, classification categories, as

well as frequencies in our population can be found in the

Supplementary materials. We present the disease frequencies (A)

and category composition (B) in Figure 2.

2.1.2 Disease filtration

The primary focus of the current study is to compare temporal dis-

ease connection patterns across races. Accordingly, we performed

several filtering steps on the raw list of 6545 disease terms to priori-

tize particular diseases of interest best suited for the analysis:

1. We only included diseases that mapped to at least one ICD-9

code.

2. We removed all diseases that were top-level, parent disease cate-

gories (e.g. endocrine system disease).

3. We only kept diseases if there were �10 affected individuals

from each racial group in our cohort.

These filtering steps resulted in a list of 1198 diseases. To assess

connectivity between diseases, we then compiled pairs of diseases

from this list that underwent further curation steps. We filtered

the raw list of all possible 759 528 disease-pair combinations as

following:

4. We kept a disease pair only if there were �10 individuals from

each racial group with both diseases in our cohort.

5. We removed disease pairs in which one disease was a complete

subset of another.

There were 37 282 disease pairs remaining after these filtering steps.

2.2 Statistical analyses
2.2.1 Deriving race-specific disease dynamics

For each disease of interest, we assessed if and to what extent demo-

graphic factors, namely race, play a role in defining morbidity, when

controlling for other potentially associated factors. Specifically, we

ran a logistic regression adjusting for sex, age and race and assessed

if any demographic covariate was significantly associated with dis-

ease risk (Eq. 1).

P diseasejbr raceþ bs sexþ ba ageð Þ (1)

Fig. 1. Workflow of the current study. We outline steps taken in our study

from data organization and statistical methodologies to network analytics

Fig. 2. Disease and category frequency. We show for A disease counts (log10)

overall and by EA, AA and HL cohorts. We show for B the distribution of the

number of diseases encompassed within each of the 93 used CCS disease

categories
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where br is categorical piecewise (Caucasian, African American,

Hispanic/Latino), ba is a continuous constant per year and bs is bin-

ary piecewise Female/Male

As such, for each disease we compared the effect of race using

the EA population as a baseline for disease susceptibility.

2.2.2 Disease pair temporal patterns

With the filtered disease pairs compiled, we then sought to deter-

mine whether each disease pair had temporal directionality, or spe-

cifically whether one disease consistently preceded the other. For the

overlapping individuals that are afflicted with both diseases in each

pair, we tabulated per patient the ordering of their pathogeneses.

Specifically, we compared the number of patient instances where

one disease preceded the other and vice versa or if they were re-

corded during the same encounter. We took earliest instance record-

ing date for each disease. If one disease more frequently predated

the other, we calculated the cumulative binomial probability that

the precedence occurs significantly more often than by chance (Eq.

2). For each disease pair, we made the assumption that there was a

50% chance that one disease can occur before the other.

P X � rð Þ ¼
n

r

 !
� pr � qn�r (2)

where n is the number of individuals with both diseases, r is number

of instances where one disease predates the other, p is the probabil-

ity of success (0.5) and q is the probability of failure (0.5).

2.2.3 Comorbidity calculation

While one disease may statistically precede another, it does not ne-

cessarily mean they have a direct relationship. Accordingly, for each

disease pair with significant directionality identified by the previous

step, we next determined whether there was significant comorbidity

in the clinical population. Specifically, for each of these 37 282 dis-

ease pairs, we performed a logistic regression estimating the contri-

bution the prior disease (i.e. the ‘predictor’ disease) has for risk of

developing subsequent sequelae (i.e. the ‘response’ disease) (Eq. 3)

for each population separately.

P disease response½ �jbd disease predictor½ � þ ba ageþ bs sexð Þ (3)

where bd is binary Yes/No, ba is a continuous constant per year, bs is

binary piecewise Female/Male

2.3 Disease network construction and comparative

analytics
Using results from the previous analyses, we generated population-

specific disease networks using the Cytoscape (Shannon et al.,

2003) platform (v3.3.0). These networks are comprised of directed

connections between source and target disease pairs found to be

significant in terms of both temporal directionality and connectiv-

ity for individual race populations, using b as edge weight. We

then performed network metric analyses for each population net-

work using the NetworkAnalyzer (Doncheva et al., 2012) plugin

for Cytoscape. Using these generated metric statistics, we com-

pared each population networks to determine network structure

concordance via metrics (e.g. closeness centrality). Specifically, we

performed a one-way analysis of variance (ANOVA) between the

metrics for race-cohort networks. We then performed Tukey HSD

test on significant results to determine which race networks

differed.

2.3.1 Disease hub identification and categorical enrichments

For each population, we identified ‘hubs’ of connectivity, which are

focal points in the network that have many outgoing connections.

We defined hubs as diseases that have at least 10 outgoing disease

connections: specifically, any predictor disease in a pair (i.e. those

that predate the latter) that is significantly connected to at least 10

diseases within a population.

We then evaluated the different composition of the results be-

tween populations using the 93 different categories of diseases. We

first determined whether the identified hub diseases for each popula-

tion were enriched for any of these categories. We then performed

the same analysis on predictor (i.e. earlier) and response (i.e. later)

diseases in the significant disease pairs in each population.

Specifically, for hub, source and target diseases significant for each

population, we performed a one-way Fisher’s exact test comparing

the amount of overlap with diseases of each category.

3 Results

For the current study, we calculated disease connectivity patterns

for a 1198 diseases in a large, ethnically diverse EMR cohort with 3

well-represented populations and compared across race-specific

networks.

3.1 Effect of race on disease susceptibility prediction
Using the EA cohort as a baseline, we first determined how race af-

fects susceptibility of each of the 1198 diseases while controlling for

age and sex factors compared to AA and HL. In total, we found that

a large portion, 968 (81%), of these diseases had some race contri-

bution (Bonferroni corrected P<4.2 � 10205) to pathogenesis (Eq.

1). The corresponding trends of race association with disease risk

along with selected examples are displayed in Figure 3.

We found 731 diseases (61%) for which EA and AA individuals

had significantly different risks of affliction, 369 of which were not

associated with the HL population. Effect sizes, in terms of b,

ranged from �3.70 to 4.12 with positive values indicating increased

risk for AA individuals and vice versa. Our data suggests that the

AA population is more susceptible to disease acquisition overall: out

of the significant associations a large proportion, 580 (79%), were

positively associated with AA.

Compared to the AA population, there were fewer diseases sig-

nificantly associated with altered risk profiles for HL individuals.

Only 599 (30%) of the diseases were associated with HL cohort and

237 of which were not associated with AA risk. The effect sizes

ranged from �3.55 to 2.66, with a fewer number of diseases, 182

(30%), at increased prevalence in HL which is the opposite of the

trend for the AA population.

3.2 Directionality of race-specific temporal disease pairs
We first determined (Eq. 2) which of the 37 282 disease pairs had

significant temporal directionality (i.e. a pair in which one disease

significantly precedes the other) for EA, AA and HL populations

separately (P<1.42 � 10�06). For EA, we found 2333 (6.61%) sig-

nificant temporally related disease pairs, 3311 (9.38%) for AA and

691 (1.96%) for HL. In total, across all population, we found 6336

(5.99%) disease pairs that were significantly related temporally.

3.3 Race-specific disease pair connectivity patterns
Within each population, for each disease pair that we determined to

have significant directionality, we then evaluated (Eq. 3.) whether

and to what extent they were connected (P<1.42 � 10�06).

i104 B.S.Glicksberg et al.



We present the relative distribution of significant disease pairs be-

tween each population in Figure 4. We also highlight select pairs

unique to each race in Table 1.

We further determined the relative timescale of the latencies be-

tween disease pairs across all populations. Specifically, for all sig-

nificantly comorbid disease pairs common among all racial groups

(n¼464), we determined the average latency from the pathogenesis

of the first disease to developing the latter within each racial group.

The average latency between diseases was 1.67 6 0.62 years for EA,

2.35 6 0.94 years for AA and 1.75 6 0.76 years for HL.

3.4 Race-specific network dynamics
Using the results from the previous sections, we generated unique

disease networks for each race cohort as displayed in Figure 5A/B/C.

In addition to the varying disease patterns across the cohorts, there

were also significant differences in the composition of the networks,

which we show in Table 2. Full descriptions of these metrics can be

found in the documentation for the Cytoscape NetworkAnalyzer

package.

3.5 Population-specific disease hubs
In total, across all populations, we identified 51 unique diseases that

were hubs. Many of these hubs were so in multiple populations with

9 being hubs in all 3 populations. We found 7 diseases that were

hubs only in the EA population, 24 only in AA population and none

that were unique to the HL population. We present the sub-network

of hub diseases significant to each population, along with their first

neighbor connections in Figure 5D.

3.6 Disease categorical enrichment of connectivity

results between populations
From our network connectivity results, we determined whether hub,

source (i.e. predictor) and target (i.e. response) diseases significant to

each population were enriched for any of the 93 disease categories.

3.6.1 Hub disease categorical enrichment

In total, we found 14 nominally significant (p<0.05) disease

category-hub enrichments. The hubs of all 3 cohorts were most

highly enriched for ‘Diabetes mellitus with complications’ (EA:

P¼7.0 � 10�04, odds ratio¼23.42; AA: P¼8.0 � 10�04,

OR¼28.2; HL: P¼7.0 � 10�03, OR¼84.9).

Furthermore, the EA hubs were enriched for ‘Mood disorders’

(P¼0.01, OR¼18.72), ‘Esophageal disorders’ (P¼0.01,

OR¼18.7) and ‘Thyroid disorders’ (P¼0.04, OR¼7.7). While the

AA hubs were similarly enriched for ‘Mood disorders’ (P¼0.03,

OR¼11.0) and ‘Esophageal disorders’ (P¼0.03, OR¼11.0), they

were also enriched for ‘Asthma disorders’ (P¼0.01, OR¼11.0),

‘Allergic reactions’ (P¼0.03, OR¼9.1), ‘Anxiety disorders’

(P¼0.03, OR¼9.1) and ‘Other gastrointestinal disorders’

(P¼0.04, OR¼7.8). The HL hubs only were enriched for ‘Asthma

disorders’ (P¼0.04, OR¼37.1) and ‘Complications of surgical pro-

cedures or medical care’ (P¼0.04, OR¼37.1).

3.6.2 Source disease categorical enrichment

Next, we determined categorical enrichment for source diseases in

significant pairs in each race population. Within the EA disease net-

work, there were 136 significant source diseases, 144 for AA and 33

for HL. The source diseases of each race were significantly enriched

for ‘Diabetes mellitus with complications’ (EA: P¼0.02, odds

ratio¼8.0; AA: P¼0.02, OR¼15.1; HL: P¼4.0 � 10�04,

OR¼38.9) and ‘Mood disorders’ (EA: P¼0.04, odds ratio¼6.0;

AA: P¼5.0 � 10�03, OR¼10.1; HL: P¼6.0 � 10�04, OR¼29.2).

For the EA cohort, source diseases were also enriched for

‘Diseases of white blood cells’ (P¼0.02, OR¼8.0), ‘Esophageal

disorders’ (P¼0.04, OR¼6.0) and ‘Thyroid disorders’ (P¼0.02,

OR¼4.5). The source diseases of the AA population were likewise

enriched for ‘Thyroid disorders’ (P¼3.4 � 10�03, OR¼5.8) but

also for ‘Epilepsy/Convulsions’ (P¼5.0 � 10�03, OR¼10.1),

‘Mycoses’ (P¼0.04, OR¼3.15) and ‘Pulmonary heart diseases’

(P¼0.01, OR¼11.3). Like the EA cohort, HL source diseases were

enriched for ‘Esophageal disorders’ (P¼0.01, OR¼15.0).

Additionally, we found enrichment for ‘Asthma diseases’ (P¼7.0 �
10�03, OR¼25.1) and ‘Other inflammatory skin conditions’

(P¼0.04, OR¼7.5).
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Fig. 3. Disease susceptibility profiles based on racial group. We present here

the distribution of diseases (with highlighted examples) that have statistically

significant (Bonferroni corrected P< 4.2 � 10�05) differences in risk profiles

for AA and HL cohorts compared to EA. The race beta values refer to effect

size of race when controlling for age and sex with positive values indicating

increased risk compared to EA and vice versa
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Fig. 4. Distribution of significantly connected disease pairs by racial cohort.

We show the amount of disease pairs that were significantly temporally

related and comorbid for all racial groups (P< 1.42 � 10�06 criteria for both)
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3.6.3 Target disease categorical enrichment

Finally, we analyzed categorical enrichment of target diseases,

which are the direct connections from source diseases. Overall there

were more target diseases than source: 319 target diseases for EA,

454 for AA and 178 for HL. The only disease category significantly

enriched in target diseases of all races was ‘Mycoses’ (EA: P¼7.0 �
10�04, odds ratio¼23.42; AA: P¼8.0 � 10�04, OR¼28.2; HL:

P¼7.0 � 10�03, OR¼84.9).

We found that ‘Diseases of white blood cells’ (P¼4.5 � 10�02,

OR¼5.6) and ‘Retinal detachments/defects/vascular occlusions/reti-

nopathies’ (P¼0.01, OR¼2.7) were the only other categories en-

riched for EA target diseases. For AA, we discovered that ‘Retinal

detachments/defects/vascular occlusions/retinopathies’ (P¼3.0 �
10�04, OR¼4.6) was also significantly enriched along with

‘Cataract diseases’ (P¼0.03, OR¼8.4) ‘Glaucoma diseases’

(P¼7.0 � 10�03, OR¼6.8) and ‘Other diseases of kidney and ur-

eters’ (P¼0.02, OR¼4.5). The HL population had a similar target

disease enrichment profile to AA with categorical enrichments of

‘Cataract diseases’ (P¼4.5 � 10�02, OR¼5.8), ‘Glaucoma dis-

eases’ (P¼8.8 � 10�03, OR¼5.9). The HL cohort also had enrich-

ments in ‘Diabetes mellitus with complications’ (P¼4.5 � 10�02,

OR¼5.8), ‘Gastritis and duodenitis’ (P¼0.03, OR¼8.8) and

‘Hypertension with complications and secondary hypertension’

(P¼0.01, OR¼7.9).

4 Discussion

The results from the current study provide illustrative examples of

the extent disease susceptibility and connectivity patterns differ be-

tween race cohorts, formalizing the need for race-specific risk assess-

ment. Overall, the cross-race individual disease profiles are

consistent with known data and expectations (Fig. 3), which is im-

portant for implications that can inform follow-up studies.

More importantly, our results are in line with findings from

related studies. In particular, our findings for the disease temporal

patters in the EA cohort are consistent with the disease trajectories

identified by Jensen et al. (2014). Direct comparison of results be-

tween our study and theirs is difficult, however, namely due to use

of non-identical statistical methodologies and ontological disease

mappings (ICD-9 versus ICD-10). Regardless, several similarities

are apparent: firstly, the raw number of disease pairs with significant

temporal directionality is consistent between the two studies: there

were 4014 disease pairs with significant temporal directionality in

their study and 2333 in ours; the small difference of which can par-

tially be explained by sample size discrepancies. Furthermore, the

authors identified related clusters of trajectories that are akin to

hubs of the current study. While there are discrepancies, many focal

disease points overlap: Type 2 Diabetes (T2D), for instance, was

involved in many trajectories in their study and was a central hub in

our EA cohort with 101 Bonferroni-corrected sequellae. Outcome

diseases in the Jensen et al. T2D network included ‘retinal disorder’

which corresponds to many target diseases found in ours, including

dry-eye syndrome, retinal drusen, peripheral retinal degeneration,

and retinal edema. ‘Chronic renal failure’ and ‘Unspecified renal

failure’ were also outcome diseases, which overlap with target dis-

eases such as impaired renal function disease, benign hypertensive

renal disease and secondary hyperparathyroidism of renal origin

found in our network. Chronic obstructive pulmonary disease, an-

other cluster disease, was found to have similar temporal patterns as

well, including ‘Angina’ as a predictor disease (angina pectoris in

our results) and ‘Unspecified chronic bronchitis’ as an outcome dis-

ease (bronchitis in ours).

Comparing our results to those of the Hidalgo et al. study using

network approaches to study human phenotype serves as a source to

validate our AA and EA networks. In their study, they found certain

disease combinations that were differentially comorbid in black

(AA) and white (EA) populations, many of which are validated in

our findings. They demonstrate that heart diseases, including ‘mitral

valve disorders’ and ‘mitral and aortic valve stenosis’ were more

comorbid in white males than black males. Similarly, we found both

aortic valve disease and mitral valve disease to be hubs in only the

EA network. Interestingly, they show that ‘other peripheral vascular

disease’ was connected to diseases across networks for both races

and we also identified that the same disease is a hub for both these

populations. Hidalgo et al. further demonstrate that ‘diabetes’ and

‘hypertension’ were more comorbid in black males than white

males. While, in our study, both diseases were found to be hubs for

both EA and AA networks, they were more highly connected (dia-

betes mellitus: 102 connections for EA versus 187 for AA and

Table 1. Temporal directionality and connectivity significance of selected disease pairs unique to each race cohort

Pop. Disease 1 Disease 2 P-val b

EA Thyroid cancer Postsurgical hypothyroidism <6.4E�324 5.25

EA Lymphosarcoma Aplastic anemia <6.4E�324 3.42

EA Ulcerative colitis Intestinal obstruction <6.4E�324 3.27

EA Toxic diffuse goiter Postsurgical hypothyroidism 1.3E�153 3.11

EA Familial hypercholesterolemia Acute cystitis <6.4E�324 3.09

AA Diabetes mellitus, type 2 Diabetic cataract 2.1E�16 5.73

AA Hyperthyroidism Toxic diffuse goiter <6.4E�324 5.10

AA Chronic ulcer of skin Osteomyelitis 1.4E�235 4.96

AA Hypertension IgA glomerulonephritis 6.4E�75 4.09

AA HIV disease Esophageal candidiasis <6.4E�324 3.87

HL Diabetes mellitus, type 1 Clostridium difficile colitis 3.3E�73 2.51

HL Benign essential hypertension Phobic disorder 5.1E�28 2.25

HL Coronary artery disease ARDS 1.7E�61 1.89

HL Generalized anxiety disorder Anemia 3.1E�64 1.72

HL Major depressive disorder Decubitus ulcer 2.1E�42 1.67

For each population, we determined which temporally related disease pairs had Bonferroni-corrected significant connectivity (P< 1.42 � 10�06). We present

particular disease pairs of interest from among the top-25 associations for each population, ranked by effect size. Effect size, or b, can be interpreted as the odds

ratio of disease 2 occurring given disease 1, holding age and sex constant.
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hypertension: 233 connections for EA versus 377 for AA) in our AA

cohort than the EA network. ‘Respiratory abnormality’ was also

more comorbid for black males in their study, which can be seen as

corresponding to asthma-related disorder categorical enrichments in

our identified AA hubs. Taken together, the concordance of results

between these two studies and ours is extremely encouraging and

provides support for the methodologies employed in the current

paper and the ensuing HL cohort network discovery.

4.1 Race-centric disease connectivity and network

composition disparities
As shown in Table 2, there are noticeable differences between the

disease networks, not only between EA and AA or HL but also be-

tween AA and HL. Metric differences in average clustering coeffi-

cient and eccentricity (which reflects maximum length between one

node and its connections) between all races reaffirms that disease

patterns vary considerably in different racial backgrounds, despite

population size. Significant differences between AA and HL network

composition emphasizes that it is not enough to merely compare EA

versus ‘other’ races: disease networks of each racial group requires

substantial, individualized investigation.

Another interesting component of comparative analyses of these

three networks is the identification of what diseases are common

sequelae for each race. We reveal categories of diseases that are en-

riched only for the HL population. Of particular interest is ‘gastritis

and duodenitis’ which is known to have higher incidence in

Hispanic populations, which could possibly be due to increased

rates of H. pylori infection (Dehesa et al., 1991). As gastritis can

lead to gastric carcinoma, the diseases that predate it can serve as

early warning signs.

4.2 Impact on healthcare delivery
Identifying diseases that are hubs within a network, especially those

that are specific to certain racial groups, can highlight focal areas

that warrant particular clinical attention. We show that while dis-

eases may be abundant in multiple populations (Fig. 5D), some dis-

eases are hubs only for certain populations. It is clear that the AA

population has the most hub diseases both overall and unique to the

population, which reflects an increased disease burden.

We found, for example, that Type 1 Diabetes (T1D) is a hub dis-

ease for only the AA cohort, although there were some interesting

associations in the other populations (e.g. T1D to clostridium diffi-

cile colitis in HL). There has been thorough and extensive research

on the impact of T1D on the AA population and which has shown

that the AA population indeed has higher incidence rates (Mayer-

David et al., 2009). Results from our hub analysis can extend be-

yond the simple observation of increased T1D risk in AA to actually

illuminate the subsequent disease pathogeneses specific to AA

including many eye-related diseases, such as background diabetic

retinopathy, blindness, borderline glaucoma, dry eye syndrome, ret-

inal edema and senile cataract. Knowledge of these associations can

be passed along to patients in this group so they can be aware of

increased risk for such complications. Furthermore, there are several

AA-specific disease hubs that are not as well established in the litera-

ture: diaper rash, constipation and diarrhea are all seemingly mild

conditions but, as we show, can lead to a number of disorders, par-

ticularly in the AA population.

Findings from these network analytics can suggest clinical prac-

tice considerations. The AA network, for example, has significantly

higher local interconnectivity scores (e.g. clustering coefficient,

neighborhood connectivity) compared to both EA and HL.

Furthermore, we have shown that AA individuals have, on average,

relatively longer latencies between disease comorbidity onsets.

While one could interpret the longer latencies between diseases to

slower progression or attribute them to less frequent patient visits,

these findings nonetheless could inform clinical treatment strategies:

if an AA patient is diagnosed with a highly interconnected disease,

such as Hepatitis C, the clinician might strongly urge proximate

follow-up visits for active screening of comorbid diseases and con-

sideration of preventative or prophylactic treatment. Similar prac-

tices are already implemented in the clinic for certain diseases: the

2016 American Diabetes Association Guidelines (American

Diabetes Association, 2016) recommend recurrent T2D screening

visits for individuals who have hypertension and/or are of a ‘high-

risk race/ethnicity’, even if they are completely asymptomatic.

The HL network, on the other hand, consistently has lower

scores relating to connectivity and clustering (e.g. clustering coeffi-

cient, in-degree, neighborhood connectivity and stress). While this

pattern may reflect a unique, sparser phenotypic landscape and

lower overall disease burden, it may serve as a reminder of clinical

underrepresentation and the need for community outreach (see:

‘Limitations’).

4.3 Limitations
An obvious limitation of the current study is the respective size of

the HL population in our analysis. Although the AA cohort was not

much larger (21.8% versus 17.5%), it is clear that the AA popula-

tion was more represented in the disease space (Fig. 2). Another

limitation is the type of information available in the EMR data. Our

results highlight differences in population disease risk patterns, that

in some cases are likely indicative of other potentially confounding

factors not captured in the EMR data, such as language barriers, ac-

cess to healthcare or important environmental or socioeconomic

factors.

Table 2. Metric statistic results across race-specific networks

Metric EA AA HL P-value EA/AA (p) EA/HL (p) AA/HL (p) Trend

Closeness centrality 0.2760.38 0.2160.35 0.1660.37 2.0E�03 0.04 2.00E�03 0.28

Clustering coefficient 0.0560.09 0.0860.1 0.0160.05 1.07E�14 1.00E-03 2.10E�06 4.94E�324

Eccentricity 0.7861.18 0.6961.21 0.2160.50 1.80E�08 0.42 1.37E�08 9.95E�07

Edge count 11.34623.94 13.3633.54 6.86615.06 2.30E�02 0.55 0.16 0.02

In-degree 5.6767.89 6.6568.16 3.4363.1 1.98E�06 0.13 1.73E�03 9.03E�07

Neighborhood connectivity 109.22666.37 289.766111.47 69.08634.72 2.97E�77 4.94E-324 5.16E�07 4.94E�324

Out-degree 5.67623.46 6.65633.31 3.43615.48 0.38 – – – –

Stress 8.55643.08 13.13664.38 0.2961.7 1.1E�02 0.38 0.15 8.00E�03

We determined significant differences (italicized) in network structure across EA, AA and HL networks using a one-ANOVA to compare average metric statistics for

race-cohort networks (P< 0.05). We then performed Tukey HSD test on significant results to determine specifically which races differed from one another (P< 0.05).
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Another possible reason for the sparser HL disease network

could be due to a higher heterogeneity of the underlying HL popula-

tion structure. Studies have indeed shown that while Hispanic/

Latino populations are traditionally combined into a single ethnic

group (as in the current study), there is extensive diversity in terms

of cultural backgrounds and genetic ancestry (Gonzalez et al.,

2005), which might be masking associations in our networks.

4.4 Future directions
The discovery of unique disease sequelae between race populations

is a promising start, but it reveals how much more has to be done to

generate a broader understanding of disease susceptibility patterns

across diverse populations. An obvious, urgent need is to introduce

and incorporate data from population groups that are almost com-

pletely absent in phenomics space, such as Native Americans and

Pacific Islanders. As illustrated by the aforementioned example of

HL population diversity, there is a clear need to better stratify po-

tentially overgeneralized cohorts. This can be facilitated by

increased sample sizes, more accurate demographic reporting in the

EMR and incorporating genetic ancestry.

Many other population-scale factors would be important to

compare across race-centric disease networks. One particular direc-

tion warranting further investigation is an examination of the laten-

cies between disease pairs across populations beyond overall

average. Accordingly, by including encounter information and visit

frequency, we might be able to identify factors underlying racial

group latency discrepancies for each particular pair of comorbid dis-

eases, which may help inform clinical practices.

Furthermore, researchers (Patel et al., 2015) recently demon-

strated intricate links between socioeconomic factors, health out-

comes and disease risk. Environment-Wide Association Studies

(EWAS) (Patel et al., 2010) have shown the dynamic relationship be-

tween disease risk, environmental exposures and genetic profiles.

Combining phenomics, subtleties of phenocopies, disease genetics

and environmental exposures by zip code within the current dataset

can bring us further towards a framework for establishing stratified

precise comorbidity networks for personalized medicine.
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