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Abstract

Motivation: Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main

headings to citations, is crucial for many important tasks in biomedical text mining and information

retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side.

For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library

of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which

cannot capture semantic and context-dependent information well.

Methods: We propose DeepMeSH that incorporates deep semantic information for large-scale

MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side

challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both

sparse and dense semantic representations. The MeSH side challenge is solved by using the ‘learn-

ing to rank’ framework of MeSHLabeler, which integrates various types of evidence generated

from the new semantic representation.

Results: DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler

and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations.

Availability and Implementation: The software is available upon request.

Contact: zhusf@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Medical Subject Headings (MeSH) is a comprehensive controlled vo-

cabulary, which has been developed and maintained by National

Library of Medicine (NLM), resulting in already 27 455 MeSH main

headings (MHs) (http://www.nlm.nih.gov/pubs/factsheets/mesh.html)

by 2015. One important usage of MeSH is to index citations in

MEDLINE (NCBI Resource Coordinators, 2015; Nelson et al.,

2004), to catalog documents, books as well as audiovisuals recorded

in NLM. Currently one citation in MEDLINE is indexed by approxi-

mately 13 MHs on average. MeSH has also been used in many other

applications in biomedical text mining and information retrieval, such

as query expansion (Lu et al., 2010; Stokes et al., 2010), document

clustering (Gu et al., 2013; Huang et al., 2011b; Zhu et al., 2009a,b)

and document searching (Peng et al., 2015). Thus accurate MeSH

indexing of biomedical documents is crucial for the biomedical re-

searchers in formulating novel scientific hypothesis and discovering

new knowledge.

Currently, human curators in NLM assign most relevant MeSH

headings to documents, resulting in that 806 326 MEDLINE cit-

ations were indexed in 2015 (http://www.nlm.nih.gov/bsd/bsd_key.

html). This work is very precious but clearly laborious, since to

index an article, curators need to review the full text of the corres-

ponding MEDLINE article, which is time consuming and prohibi-

tively expensive For example, the average cost of annotating one

MEDLINE article is estimated to be around $9.4 (Mork et al.,

2013), meaning a huge total cost for indexing around one million
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documents per year. Also MEDLINE is rapidly growing, it would be

more challenging for manual annotation to index all coming docu-

ments on time.

To address this problem, NLM has developed an automatic

MeSH indexing software, Medical Text Indexer (MTI), to assist

MeSH curators. MTI recommends suitable MHs to each MEDLINE

citation using the title and abstract as input (Aronson et al., 2004;

Mork et al., 2014). MTI consists of two main components:

MetaMap Indexing (MMI) and PubMed Related Citations (PRC).

MMI extracts biomedical concepts from title and abstract, and then

map them to corresponding MHs, while PRC attempts to find simi-

lar MEDLINE citations using a modified k-nearest neighbor (KNN)

algorithm, PubMed Related Articles (PRA) (Lin and Wilbur, 2007).

The MHs of these similar citations are then extracted and combined

with the MHs by MMI. After some post-processing steps, such as

applying indexing rules, a ranked list of MHs is recommended to the

MeSH indexers.

From a machine learning viewpoint, automatic MeSH indexing

can be considered as a large-scale multi-label classification problem

(Liu et al., 2015), where each MH is a class label and each citation

(instance) has multiple MHs. To address this multi-label classifica-

tion problem, there are two main challenging aspects on the MeSH

(label) and citation (instance) sides. First, on the MeSH (label) side,

a large number of MHs have a highly biased distribution. For ex-

ample, out of all 27 455 MHs, the most frequent MH, ‘Humans’,

appears more than eight million times in the whole MEDLINE cit-

ations with abstracts, while the 20 000th frequent MH, ‘Hypnosis,

Anesthetic’, appears only around 200 times. In addition, the number

of annotated MHs for each citation varies greatly, ranging from

more than 30 to less than 5. These aspects make the problem very

challenging to estimate an effective and efficient prediction model

for multi-label classification. Second, on the citation (instance) side,

complicated semantics of biomedical documents cannot be effect-

ively captured by a simple bag of words (BOW) approach, because a

huge number of domain phrases, concepts and abbreviations exist in

the biomedical literature. For example, similar concepts can be rep-

resented by different words, while the same word may have very dif-

ferent meanings depending upon the contexts. More concretely,

‘malignancy’, ‘tumor’ and ‘cancer’ are all very close concepts to

each other, while ‘CAT’ can represent different genes, depending on

organisms (Chen et al., 2004). Similarly, the same abbreviation is

used as totally different concepts occasionally. For example, ‘CCC’

stands for Continuous Curvilinear Capsulorhexis in one citation

(PMID:25291748), but Continuous Circular Course in another cit-

ation (PMID:23618326). However, simple BOW representation ig-

nores the order of words and can hardly capture word semantics. In

fact, using BOW, it would be very hard to distinguish different con-

cepts represented by the same word, and also difficult to build con-

nections between two different words representing similar concepts.

Thus similar citations based on BOW representation may have to-

tally different MHs. Table 1 gives a typical example, where a cit-

ation of interest is PMID:25236620, an article about cytopathology

fellowship. Surprisingly, if one uses BOW, the most similar citation

to PMID:25236620 among three articles in Table 1 becomes

PMID:23416813, which is about the diagnosis of adult orbital

masse by different techniques, although these two citations share

only one MH, ‘Humans’. The reason that this inaccurate similarity

between two citations exists is: the term ‘cytopathology’ appears fre-

quently in PMID:25236620 and also ‘cytopathologically’ and ‘cyto-

pathological’ appear many times in PMID:23416813. These three

terms have the same stemmed form, causing them to be regarded as

the same term, and therefore leading to a very high similarity to

these two citations in terms of BOW.

Many studies have been carried out to tackle the challenging

problem of automatic MeSH indexing based on different principles,

such as k-nearest neighbor (KNN) (Trieschnigg et al., 2009), Naive

Bayes (Jimeno-Yepes et al., 2012b), support vector machine (SVM)

(Jimeno-Yepes et al., 2012a), Learning to Rank (LTR) (Huang et al.,

2011a; Liu et al., 2015; Mao and Lu, 2013), deep learning (Jimeno-

Yepes et al., 2014; Rios and Kavuluru, 2015) and multi-label learn-

ing (Liu et al., 2015; Tsoumakas et al., 2013). MeSHLabeler is a

state-of-the-art automatic MeSH indexing algorithm, which won

the first place in the large-scale MeSH indexing task of both

BioASQ2 and BioASQ3 competition (http://bioasq.org) (Liu et al.,

2015; Tsatsaronis et al., 2015). To address the distribution bias

problem on the MH side, MeSHLabeler improves the performance

of indexing MeSH by using a large number of different types of evi-

dence regarding MH. These evidences are nicely integrated by using

Table 1. Typical example to show how well D2V-TFIDF works

PMID Title MH BOW DSR-BOW DSR MH

25236620 Cytopathology fellowship

milestones.

Accreditation; Clinical Competence;

Cytodiagnosis; Education, Medical,

Graduate; Fellowships and Scholarships;

Humans; Pathology; United States.

– – – –

23416813 Comparison of computed tomo-

graphic and cytopathological

findings in the evaluation of

adult orbital mass.

Adult; Aged; Aged, 80 and over; Biopsy,

Fine-Needle; Eye Neoplasms; Humans;

Middle Aged; Orbital Diseases; Orbital

Neoplasms; Orbital Pseudotumor;

Prospective Studies; Sensitivity and

Specificity; Tomography, X-Ray

Computed; Young Adult.

0.5032 0.3620 0.2208 0.0476

23597252 Fellowship training in pediatric

pathology: a guide for program

directors.

Education, Medical, Graduate; Fellowships

and Scholarships; Humans; Pathology;

Pediatrics.

0.2315 0.3930 0.5545 0.4444

24576024 The pathology milestones and the

next accreditation system.

Accreditation; Clinical Competence;

Education, Medical, Graduate; Humans;

Pathology; United States.

0.43813 0.4935 0.5489 0.7500

BOW is ‘bag of words’, DSR is ‘deep semantic representation’ (equivalent to ‘document to vector’ (D2V)) and MH is ‘MeSH main heading’. The last four col-

umns show the similarity scores against PMID:25236620.
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the framework of LTR. However, MeSHLabeler as well as other

cutting-edge methods have not considered the problem on the cit-

ation (instance) side, and even MeSHLabeler still uses classic BOW

representations, such as unigram and bigram. Recently, from the

context of machine learning, the concept of dense semantic represen-

tation, such as Word2Vec (W2V), Word2Phrase (W2P) and

Document2Vec (D2V), has been proposed to capture semantic and

context information of text (Bengio et al., 2003; Le and Mikolov,

2014; Mikolov et al., 2013; Mitchell and Lapata, 2010; Socher

et al., 2012, 2013). This new concept brings an opportunity to im-

prove the performance of automatic MeSH indexing from the cit-

ation side.

Specifically, we have developed DeepMeSH to address the large-

scale MeSH indexing problem. Instead of using rather shallow

BOW representation, DeepMeSH incorporates deep semantic repre-

sentation into MeSHLabeler to improve the performance of auto-

matic indexing MeSH over large-scale document data. In particular,

DeepMeSH uses a new dense semantic representation, D2V-TFIDF,

which has both features of ‘document to vector’ (D2V) and ‘term

frequency with inverse document frequency’ (TFIDF), meaning that

D2V-TFIDF is more effective than individual D2V and TFIDF to

find similar MEDLINE documents. Again Table 1 shows a typical

result of using D2V-TFIDF. Regarding the citation in question,

PMID:25236620, if we use dense semantic representation (DSR)

only, PMID:23597252 can be selected as a highly similar citation,

while if we consider both DSR and BOW (which is equivalent to

D2V-TFIDF), another citation PMID:24576024 is more similar to

PMID:25236620 than the other two citations. Importantly, this re-

sult is consistent with the similarity computed by using MHs only,

as shown in the last column of Table 1. PMID:24576024 has the

largest number of common MHs with PMID:25236620 among

three articles in Table 1. Another point is that we use not only sim-

ple but rather diverse evidence in terms of dense semantic represen-

tation, following the framework of MeSHLabeler. That is,

DeepMeSH takes advantage of new dense semantic representation

to address the problem of the instance side and the MeSHLabeler

framework to address the challenge on the label side. We validated

the performance advantage of DeepMeSH by using BioASQ3 bench-

mark data with 6000 citations. DeepMeSH achieved the Micro F-

measure of 0.6323, which is around 12% higher than that of 0.5637

by MTI and 2% higher than that of 0.6218 by MeSHLabeler.

2 Related work

Many studies for the problem of automatic MeSH indexing have used

a relatively small- or middle-sized training data, or focus on only a

small number of MHs. For example, NLM researchers explored the

performance of several different machine learning algorithms, such as

SVM, naive Bayes and AdaBoost, over a dataset of only around 300

000 citations (Jimeno-Yepes et al., 2012b, 2013). Rios and Kavuluru

(2015) build Convolutional Neural Network (CNN) models for 29

MHs using around a further smaller dataset of 9000 citations. A clear

limitation of these studies is that their approaches cannot be general-

ized to large-scale MeSH indexing in practice.

The BioASQ challenge provides a more realistic and practical

benchmark to advance the design of effective algorithms for large-

scale MeSH indexing (Tsatsaronis et al., 2015). Many effective algo-

rithms have emerged through the BioASQ challenge, such as

MetaLabeler (Tsoumakas et al., 2013), L2R (Huang et al., 2011a;

Mao and Lu, 2013) and MeSHLabeler (Liu et al., 2015). However,

all of them use the traditional shallow BOW representation. This is

inadequate for capturing the semantic and context information of

MEDLINE citations precisely, and therefore limits the performance

of these models. Recently to address the problem of BOW represen-

tation, dense semantic representation for texts has been proposed in

the machine learning domain (Bengio et al., 2003; Le and Mikolov,

2014; Mikolov et al., 2013). The performance of dense representa-

tion has, however, not yet been examined well in large-scale MeSH

indexing, with one exception, in which weighted ‘word to vector’

(W2V) for MeSH indexing was explored (Kosmopoulos et al.,

2015). The approach by (Kosmopoulos et al., 2015) is however ra-

ther primitive and not thorough enough to build a totally new ap-

proach for large-scale MeSH indexing. That is, they first use KNN

to find similar citations using a new semantic representation and

then the citations with high precision are just added to the results of

MTI, meaning a kind of addition to MTI. In fact, the performance

of such method was Micro F-measure of 0.575 on BioASQ2 data,

which is only around 1% improvement of 0.57 by MTI. However

this slight improvement sheds light on the possibility of exploring

more effective representation for citations and developing efficient

methods for integrating such representation to improve the perform-

ance of large-scale MeSH indexing.

3 Methods

3.1 Overview
The MeSH indexing problem is to assign a certain number of MHs

from the whole MHs list, which contains more than 27 000 terms,

to a new MEDLINE citation. MeSHLabeler solves this problem by

integrating multiple types of evidence generated from BOW repre-

sentation in the framework of LTR. In contrast, by keeping the

same, efficient framework of LTR, DeepMeSH integrates another

type of strong evidence generated from dense semantic representa-

tion. Specifically, for each citation, it first generates a dense semantic

vector, D2V and the classical TFIDF vector, and then concatenates

both to have the final vector representation, D2V-TFIDF. We train

binary classifiers of each MHs with D2V-TFIDF and also KNN

models. These trained models are finally used to recommend suit-

able MHs in the framework of LTR. Figure 1 shows the entire

framework of DeepMeSH.

3.2 Preliminary background
3.2.1 Citation representation: TFIDF and D2V

In BOW representation, each citation can be represented with a vec-

tor consisting of all terms in a controlled vocabulary. Term

frequency-inverse document frequency (TFIDF) is the most widely

used scheme to weight each term. TF is the term frequency in a

document and IDF is the inverse document frequency in the corpus.

The idea behind TFIDF is that terms that occur more frequently in a

particular document and also occur more in a subset of documents

only should be emphasized more. The weight of each term can then

be computed by the product of TF and IDF.

Document to vector (D2V) is a recently developed methodology

to realize dense semantic representation for documents (Le and

Mikolov, 2014). Given a document, both the document and words

in the document are represented by a dense continuous vector,

which are called ‘document embedding’ (DE) and ‘word embedding’

(WE). They are concatenated together to predict the next word in

the given context. In this representation, the ordering of words

when appearing in the document is kept, which makes D2V different

from TFIDF. In addition, no label information is required in D2V

representation learning.
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Word embedding (WE) can be further weighted by IDF as

follows:

P
i IDFi �WiP

i IDFi
; (1)

where Wi is the word embedding of the ith word and IDFi is the IDF

score of the ith word. We refer to the weight obtained by Eq. (1)

‘weighted word embedding’ (WWE). In addition, phrase embedding

(PE) can be obtained by treating phrase as single token in the train-

ing. Specifically, Word2Phrase (W2P) method identifies phrases

using a mutual information based approach and then learns its vec-

tor representation (Mikolov et al., 2013).

Also document embedding can be generated directly from word

or phrase embedding results. For example, we can compute the aver-

age of the word embedding of each word in a document, as the

document embedding. In our experiments, we use two different

ways to obtain document embeddings: W2V, which is document

embedding obtained in the above manner from word embedding

(WE), and weighted word to vector (WW2V), which is also obtained

similarly from WWE. Additionally, we use W2P and weighted W2P

(WW2P) obtained from phrase embedding (PE) and weighted phrase

embedding (WPE) for document embeddings.

3.2.2 Regular methods for large-scale MeSH indexing

1. Using global evidence: binary relevance

The main idea of binary relevance is to convert the problem of

predicting MHs for a given citation to multi-label classification and

further to a series of binary classification problems (Zhang and

Zhou, 2014), meaning a binary classifier for one label (MH). Given

a test instance (citation), we use all binary classifiers to predict

labels, i.e. MHs. MetaLabeler adopts the idea of binary relevance,

and further train a regression model to predict the number of MHs.

Given a test citation, assuming K be the number of predicted MHs,

all candidate MHs are ranked with respect to relevance scores pre-

dicted by MH classifiers. Finally, top K MHs are recommended.

Originally the relevance scores predicted by different MH classi-

fiers were not comparable theoretically, while this problem was

solved by using ‘normalized relevance’ (Liu et al., 2015).

2. Using local evidence: k-nearest neighbor (KNN)

For each test citation, we find k-nearest indexed neighbors based

on cosine similarity of their feature vectors. Then, these neighbor

citations and their similarities are used to score the candidate MHs.

The score of each MH can be calculated as follow:

ScoreKNN ¼
PKNN

i¼1 ðSi � BiÞPKNN

i¼1 Si

; (2)

where KNN is the number of most similar citations, Si is the similar-

ity score of the ith citation and Bi is a binary variable to indicate if

the candidate MH is annotated in the ith citation or not.

3.2.3 MeSHLabeler

MeSHLabeler consists of two major components, MeSHRanker and

MeSHNumber.

1. MeSHRanker

Given a test citation, MeSHRanker generates a candidate MH

list firstly, and then ranks all candidate MHs by considering multiple

types of evidence. The evidences can be mainly classified into five

groups: (i) Global evidence comes from all MH binary classifiers

and their improved algorithm with normalized relevance score,

which we call ‘global evidence’, since the whole MEDLINE citations

are used to train a binary classifier for each MH. (ii) Local evidence

refers to the scores from the most similar citations obtained by

KNN. (iii) MeSH dependency is specific to each candidate MH, by

which the MH-MH pair correlation by considering their co-

occurrence in MEDLINE is used. (iv) Pattern matching extracts the

MHs and their synonyms from the abstract and title of citation dir-

ectly. (v) Indexing rule comes from the result of MTI.

2. MeSHNumber

For each test citation, MeSHNumber predicts the number of

MHs by considering multiple features. These features are as follows:

(i) The number of annotated MHs of citations from the same journal

recently. (ii) The number of annotated MHs of k-nearest neighbor

(a) (b)

Generate Document2Vector

Generate TFIDF Vector

Improving 
large-scale 

MeSH 
indexing ...

Document Vector 
(D2V)

Improving large-scale MeSH

TFIDF Vector

Tokeniza�on & 
Steming

Extract Feature

Generate
D2V-TFIDF 

Vector

New Cita�on

Average/ 
Concatenate:

Classifier:

indexing

MeSHRanker MeSHNumber

Recommended MHs

Binary
Classiffica�on

KNN

Candidate MHs

Ranking Model

Ranked MHs

MeSHNumber 
Feature

SVR

Number of MHs

MH1 MH2 MHm

New Cita�on

TFIDF / D2V-TFIDF

Fig. 1. The work flow of (a) generating D2V-TFIDF and (b) DeepMeSH
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citations. (iii) The highest scores of the MH binary classifiers. (iv)

The highest scores of MeSHRanker. (v) The MH number predicted

by MetaLabeler. (vi) The number of MHs recommended by MTI.

Given a new citation, MeSHRanker returns a ranked MH list

and MeSHNumber predicts the number of MHs, m. Then the top m

MHs in the ranked list is returned as the final recommendation.

3.3 Proposed method: DeepMeSH
3.3.1 Generating TFIDF, D2V and D2V-TFIDF

Figure 1(a) illustrates the manner of generating TFIDF, D2V and

D2V-TFIDF, given a citation. TFIDF includes both unigrams and

bigrams, which are generated from the title and abstract of a citation.

Both W2V and D2V are trained by using neural network with one hid-

den layer based on stochastic gradient descent and back propagation.

The procedure of generating these representations for a given cit-

ation is: (i) we first generate vectors of D2V and TFIDF, (ii) normal-

ize the two feature vectors independently by using the unit length

and (iii) finally concatenate the two normalized vectors into a longer

vector, which we call D2V-TFIDF.

3.3.2 Using regular MeSH indexing methods with D2V and

D2V-TFIDF

D2V is a dense semantic representation generated by considering se-

mantic and context information in text, meaning that D2V can find

semantic similar citations even without shared words. This would

be helpful for identifying general MHs that are semantically related

to many citations. On the other hand, TFIDF is a sparse representa-

tion that is useful for mapping some very specific MHs strictly.

These two representations are complement to each other. D2V-

TFIDF concatenates the sparse and dense features together, and thus

includes both raw text information and semantic information, pro-

viding diverse evidence for MeSH indexing.

1. BCD2V-TFIDF: Binary Classification using D2V-TFIDF

Using the binary relevance approach, we can train binary classi-

fiers for any MH using D2V-TFIDF features. In fact in our experi-

ment, we used the latest one million MEDLINE citations to train

linear kernel SVM for each MH.

2. KNND2V-TFIDF: KNN using D2V-TFIDF

We can build KNN for any MH using D2V-TFIDF. In our ex-

periments, we first used the D2V-TFIDF vector for a given citation

to compute the cosine similarity score against the latest one million

MEDLINE citations. We then selected the k nearest citation for

MHs. Score KNN can be computed using Eq. (2).

3. KNND2V: KNN using D2V

Similar to KNND2V-TFIDF, D2V can be used to retrieve k-nearest

citations and again Score KNN can be computed using Eq. (2).

3.3.3 DeepMeSH: incorporate deep semantic information into

MeSHLabeler

Step 1: generate candidate MeSHs with different representations

The number of all MHs reaches 27 000, and most of them are ir-

relevant MHs to a particular citation. So we generate candidate

MHs only, which are considered to be more suitable to a given cit-

ation, by using the following three sources:

1. D2V-TFIDF: The top NBCD2V�TFIDF
in the ranked list by BCD2V-

TFIDF or top NKNND2V�TFIDF
in the ranked list by KNND2V�TFIDF.

2. TFIDF: The top NBCTFIDF
in the ranked list by BCTFIDF.

3. PRA: PRA is a modified KNN method by NLM (Lin and

Wilbur, 2007), and the top NPRA MHs by PRA.

We should note that this process of focusing on a small number

of MHs reduces both computation time and false positives, resulting

in performance improvement. These three sources contain individu-

ally unique information and complement to each other, so that

merging them would be reasonable to have a set of candidates cover-

ing diverse evidence.

Step 2: use MeSHRanker to rank MeSHs with D2V and D2V-

TFIDF related features

The candidate MHs are ranked by the LTR framework of

MeSHRanker. The difference from MeSHRanker is using not only

the raw text information (considered in MeSHRanker) but also the

semantic information, by using D2V. The input features used here

are classified into four types:

1. BCD2V-TFIDF score

2. KNND2V-TFIDF and KNND2V scores

3. MeSH frequency rank

We count the times of MH appearing in the MEDLINE, and

then rank MHs in the descending order. We add this informa-

tion as a feature into MeSHRanker that learns better to each

candidate MH.

4. Similarities of nearest neighbor by KNND2V-TFIDF and KNND2V

These two features indicate if the neighbor citations found by

KNND2V-TFIDF and KNND2V are credible.

Step 3: select the top ranked MHs to recommend as output

MeSHNumber provides the number to be recommended, m, and

the top m MHs in the ranked list by MeSHRanker are returned as

the final MHs to be recommended.

4 Experiments

4.1 Data
We downloaded 23 343 329 citations of MEDLINE/PubMed from

NLM in Nov 2014, before the BioASQ3 challenge. 13 156 128

indexed citations with both abstracts and titles were locally stored

as training data. For generating classical TFIDF features, we used

BioTokenizer to preprocess MEDLINE raw text (Jiang and Zhai,

2007). Both unigram and bigram features were used to represent

each citation. Similar to other work (Liu et al., 2015; Tsoumakas

et al., 2013), the features that appear less than 6 times were

removed. Finally, we obtained 112 674 unigram and 1 873 030

bigram features. Each citation was then represented by a very sparse

vector of 1 985 704 dimension with the TFIDF weighting scheme.

We sorted all downloaded citations by time. The latest 10 000

citations were used as validation set for tuning parameters of binary

classifiers. In addition, next latest 1 000 000 citations were used for

learning D2V and D2V-TFIDF representation and their correspond-

ing classifiers, since generating deep semantic representation is time

consuming, particularly if we use the whole MEDLINE. Also in pre-

liminary experiments, we found that the performance gain by using

the whole MEDLINE is very marginal. On the other hand, TFIDF

based binary classifiers, BCTFIDF, were trained with the whole

MEDLINE, because improved classification performance on the low

frequency MHs can be achieved with more training instances.

From BioASQ3, we obtained another dataset of 49 774 distinct

citations, which were randomly divided into three parts:

MeSHRanker training set (with 23 774 citations), MeSHNumber

training set (with 20 000 citations) and test set (with 6000 distinct
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citations). The same test set was used for all methods, including bin-

ary relevance approaches, KNN, MeSHLabeler and DeepMeSH.

4.2 Implementation and parameter setting
Several open source tools were used in the implementation of

DeepMeSH: RankLib (http://sourceforge.net/p/lemur/wiki/RankLib/)

to implement our LTR model, LambdaMart (Burges, 2010) and

LibSVM to implement support vector regression (SVR) (Chang and

Lin, 2011). Logistic regression and Linear SVM were implemented by

using LIBLINEAR (Fan et al., 2008). We used gensim (http://radimre

hurek.com/gensim) for the implementation of W2V, W2P and D2V.

We first transformed all text into lowercase. The continuous bag of

Words (CBOW) mode was then used to generate dense semantic rep-

resentation. The dimensions of all dense vectors were set to 200.

For all KNN, MH scores were computed from top 20 nearest

neighbors. NBCD2V�TFIDF
and NKNND2V�TFIDF

were set to 45 and 20, re-

spectively. NPRA and NBCTFIDF
were set to 50 and 40, respectively, fol-

lowing (Liu et al., 2015).

A server with four Intel XEON E5-4650 2.7 GHz CPU and 128

GB RAM was used. Learning all binary classifiers (including D2V-

TFIDF and TFIDF) for MHs and DeepMeSH required around one

week and two hours, respectively, and annotating new citations

needed around two or three hours over ten thousands citations.

4.3 Performance evaluation measure
Let K denote the size of all labels (MeSH headings), and N be the

number of instances (citations). Let yi and byi 2 f0;1g
K be the true

and predicted label for instance i, respectively. We mainly use three

different metrics based on F-measure to evaluate the performance of

different models.

• F-measure: EBF

EBF is the standard F-measure which can be computed as the har-

monic mean of standard precision (EBP) and recall (EBR), as follows:

EBF ¼ 1

N

XN
i¼1

EBFi; (3)

where

EBFi ¼
2 � EBPi � EBRi

EBPi þ EBRi
;

where

EBPi ¼
PK

k¼1 yk
i � byk

iPK
k¼1 �byk

i

EBRi ¼
PK

k¼1 yk
i byk

iPK
k¼1 yk

i

We note that we can compute EBP and EBR by summing EBPi

and EBRi, respectively, over all instances.

• Macro F-measure: MaF

MaF is the harmonic mean of macro-average precision (MaP)

and macro-average recall (MaR) as follows:

MaF ¼ 2 �MaP �MaR

MaPþMaR
(4)

The macro-average precision and recall are obtained by first

computing the precision for each label (MH) separately and then

averaging over all labels, as follows:

MaP ¼ 1

K

XK

k¼1

Pk MaR ¼ 1

K

XK

k¼1

Rk;

where

Pk ¼
PN

i¼1 yk
i � byk

iPN
i¼1 byk

i

Rk ¼
PN

i¼1 yk
i � byk

iPN
i¼1 yk

i

• Micro F-measure: MiF

MiF is the harmonic mean of micro-average precision (MiP) and

micro-average recall (MiR), as follows:

MiF ¼ 2 �MiP �MiR

MiPþMiR
; (5)

where

MiP ¼
PK

k¼1

PN
i¼1 yk

i � byk
iPK

k¼1

PN
i¼1 byk

i

MiR ¼
PK

k¼1

PN
i¼1 yk

i � byk
iPK

k¼1

PN
i¼1 yk

i

In addition, average label similarity is defined to measure the se-

mantic similarity between one citation and a set of citations. Given a

citation x, let X ¼ x1; . . . ;xKnn be a set of citations (for example, by

KNN), the average label similarity between X and x can be com-

puted as follows:

AvgSimilarity ¼ 1

KNN

XKNN

i¼1

Y \ Yi

Y [ Yi
; (6)

where KNN ¼ jXj, i.e. the number of nearest neighbors, Y is the set

of true MHs of citation x and Yi is the set of true MHs of ith citation

xi of X.

4.4 Experimental results
To compare the performance of different methods reliably, we gener-

ated 50 test datasets from all 6000 original test citations using boot-

strap with replacement. For examining the model performance over

large-scale data, all these 50 datasets consisted of 6000 citations.

Paired t-test was then used to evaluate the statistical significance of

performance improvement between the best performed method and

all other methods. P-values of smaller than 0.05 are considered as

statistically significant. We conducted four experiments: (i) the per-

formance of different representations, TFIDF, W2V, WW2V, W2P,

WW2P, D2V, W2V-TFIDF, WW2V-TFIDF, W2P-TFIDF, WW2P-

TFIDF, D2V-TFIDF were compared using KNN. W2V is obtained by

the average of ‘word embedding (WE)’ (described in Section 3.2.1) of

each word over all words in the document, and WW2V is computed

similarly by using ‘weighted word embedding’ (WWE), shown in Eq.

(1). Similarly, we obtain W2P and WW2P form phrase embedding

and weighted phrase embedding. To make a fair comparison, the best

deep semantic representation was selected to perform the following

experiments. (ii) The performance of binary relevance with selected

representations was compared. (iii) The performance of DeepMeSH

by incorporating the deep semantic information into the LTR frame-

work of MeSHRanker. For a fair comparison, the number of MHs

for all representations was predicted by MetaLabeler based on TFIDF

representation. (iv) The performance of DeepMeSH with the number

of MHs predicted by MeSHNumber was examined. Please note that

in BioASQ challenge, the systems are evaluated by micro F-measure,

MiF, which is also the focus of our system.

4.4.1 Performance comparison between different representations

by KNN

The average performance of each representation over 50 test data-

sets by KNN is presented in Table 2. For each performance metric,
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the best representation that statistically significantly outperformed

all other representations is highlighted in boldface (see the detailed

P-values in the supplementary materials). In the top part, the per-

formance of TFIDF and five dense semantic representations, W2V,

WW2V, W2P, WW2P and D2V were directly examined, while

in the bottom part, the performance of five joint representations

W2V-TFIDF, WW2V-TFIDF, W2P-TFIDF, WW2P-TFIDF and

D2V-TFIDF were compared. First, D2V-TFIDF achieved the best

performance out of all 11 representations in all 9 measures, particu-

larly for MiF, being 0.4831, followed by WW2P-TFIDF of 0.4814,

W2P-TFIDF of 0.4797, WW2V-TFIDF of 0.4647 and W2V-TFIDF

of 0.4570. Second, WW2V achieved the best MiF in six individual

representations, being 0.4521, followed by WW2P with 0.4435 and

TFIDF with 0.4412. Interestingly, although WW2V (WW2P) is just

a weighted W2V (W2P) by using IDF, the performance difference

between W2V (W2P) and WW2V (WW2P) was quite large. In fact,

MiF of W2P was 0.4066, while MiF of WW2P was 0.4435. Third,

based on the macro F-measure for individual representations,

TFIDF achieved the best MaF of 0.3109, meaning that traditional

BOW representation is suitable for finding infrequent MHs (since

macro F-measure weights the performance for infrequent MHs

more). Finally, the performance of all joint representations was sig-

nificantly better than their component representation under all

measures. For example, D2V-TFIDF achieved the highest MaF of

0.3313, which is higher than 0.3109 by TFIDF and 0.1576 by D2V.

This indicates that the traditional BOW representation and dense se-

mantic representation have a good complementary relationship, and

their combination improves the performance greatly.

Although D2V performed worse than WW2V, D2V-TFIDF out-

performed WW2V-TFIDF as well as all the other representations

significantly in all 9 measures. This result demonstrates high com-

plementary advantages between D2V and TFIDF. It also indicates

that, by incorporating important context information in biomedical

text, documents embedding can capture semantic information most

out of all these embeddings. Moreover, the better performance of

WW2P-TFIDF over WW2V-TFIDF suggests that phrase embedding

is more effective than word embedding in capturing semantic infor-

mation. Considering the performance advantage of D2V-TFIDF and

the complementarity between D2V and TFIDF, we use D2V-TFIDF,

D2V and TFIDF only in the following experiments.

4.4.2 Performance comparison between different representations

by binary relevance

Table 3 shows the comparison results on the average performance

of different representations on 50 test datasets using binary classifi-

cation (see the detailed P-values in the supplementary materials).

We used linear SVM for BCD2V and BCD2V-TFIDF, because of the per-

formance advantage over logistic regression (logistic regression was

used for BCTFIDF only). BCnormTFIDF is an alternative baseline,

which normalizes the prediction score of BCTFIDFbefore ranking the

candidate MHs. Experimental results show that BCD2V-TFIDF

achieved the best MiF of 0.6033, followed by BCnormTFIDFwith 0.

5772 and BCTFIDFwith 0.5638. The large performance difference be-

tween BCnormTFIDFand BCD2V-TFIDF highlights the advantage of

D2V-TFIDF over D2V and TFIDF.

4.4.3 Performance improvement of MeSHRanker by

incorporating deep semantic representation

Table 4 shows the average performance of MeSHRanker on the 50

test datasets by incorporating evidence generated by deep semantic

representation (see the detailed P-values in the supplementary mater

ials). The results of MTIDEF (the default version of MTI) and

BCD2V-TFIDF are presented as baselines. We first added the D2V

related features into the input features of LTR in MeSHRanker,

which corresponds to incorporate Step 2 of DeepMeSH into

MeSHRanker (See Section 3.3.3). This feature infusion improved

MiF of MeSHRanker from 0.6126 to 0.6216. We then focused on

selecting D2V related candidates using Step 1 of DeepMeSH, by

which the performance was further improved to 0.6224. Note that

then DeepMeSH can be generated by adding Step 3 (MeSHNumber,

See Section 3.3.3) to MeSHRanker further.

Table 2. Performance comparison of KNNs with different feature representation

Method MiP MiR MiF EBP EBR EBF MaP MaR MaF

KNNTFIDF 0.4369 0.4455 0.4412 0.4362 0.4547 0.4317 0.3274 0.2960 0.3109

KNNW2V 0.4133 0.4215 0.4174 0.4083 0.4216 0.4027 0.1438 0.1230 0.1326

KNNWW2V 0.4477 0.4565 0.4521 0.4444 0.4616 0.4394 0.2332 0.2126 0.2225

KNNW2P 0.4027 0.4106 0.4066 0.3968 0.4098 0.3914 0.1201 0.1018 0.1102

KNNWW2P 0.4392 0.4478 0.4435 0.4351 0.4515 0.4300 0.1970 0.1786 0.1873

KNND2V 0.4271 0.4355 0.4313 0.4207 0.4361 0.4156 0.1726 0.1450 0.1576

KNNW2V-TFIDF 0.4526 0.4615 0.4570 0.4516 0.4710 0.4472 0.3359 0.3027 0.3185

KNNWW2V-TFIDF 0.4602 0.4693 0.4647 0.4593 0.4793 0.4549 0.3412 0.3091 0.3244

KNNW2P-TFIDF 0.4750 0.4844 0.4797 0.4752 0.4951 0.4702 0.3371 0.3054 0.3205

KNNWW2P-TFIDF 0.4768 0.4862 0.4814 0.4764 0.4963 0.4714 0.3398 0.3095 0.3239

KNND2V-TFIDF 0.4784 0.4878 0.4831 0.4783 0.4983 0.4733 0.3468 0.3171 0.3313

Table 3. Comparison of binary relevance approaches with different features

Method MiP MiR MiF EBP EBR EBF MaP MaR MaF

BC D2V 0.4395 0.4482 0.4438 0.4339 0.4519 0.4294 0.1627 0.1706 0.1666

BCTFIDF 0.5584 0.5694 0.5638 0.5575 0.5892 0.5556 0.4662 0.4970 0.4811

BCnormTFIDF 0.5716 0.5829 0.5772 0.5704 0.5991 0.5667 0.4463 0.4402 0.4432

BCD2V-TFIDF 0.5974 0.6092 0.6033 0.5983 0.6280 0.5943 0.4741 0.4633 0.4686
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4.4.4 Performance comparison of DeepMeSH with MeSHLabeler

Table 5 shows the average performance of DeepMeSH on the

50 test datasets, comparing with MeSHLabeler and MTIDEF.

DeepMeSH achieved better performances than the two competing

methods in all nine measures. For example, DeepMeSH achieved the

best MiF of 0.6323, around 2% improvement over that of 0.6218

by MeSHLabeler and around 12% higher than that of 0.5637 by

MTIDEF. Note that all these performance improvements are statis-

tically significant. These results demonstrate the advantage of deep

semantic representation in large scale MeSH indexing, which is the

crucial difference between DeepMeSH and MeSHLabeler.

4.5 Result analysis
We explore the situation and the reason why deep semantic repre-

sentation, D2V-TFIDF, works well, from diverse viewpoints.

4.5.1 Distribution of MHs

We counted the number of occurrence of MHs in the training set

(1 000 000 citations) of D2V. By using the number of occurrences,

we split the MHs into five groups: [0, 100), [100, 500), [500, 1000),

[1000, 5000) and [5000, 1 000 000), where [0, 100) means the

group of MHs, each having the number of occurrences between

more than zero to 100. Figure 2(a) shows the MeSH distribution

and MeSH indexing distribution of the five groups. MeSH distribu-

tion is the ratio of MHs that appear in each group to all MHs, and

the MeSH indexing distribution is the ratio of occurrence of MH in

each group to all occurrence of all MHs in the whole training set.

We can easily see that most of MHs occur very rarely: more than

60% MHs occur less than 100 times, and the sum of annotation

with these MHs is just 4% of all annotation. On the other hand,

only 1% MHs occur more than 5000 times, and their total number

of occurrence is 47%.

4.5.2 Performance comparison among different MH groups

We compared the performance (by Average AUPR:Area under the

Precision-Recall curve, averaged over MHs in each group) of the

three representations: D2V, TFIDF and D2V-TFIDF, using KNN on

the five MH groups, generated in the last section. Figure 2(b) shows

that KNND2V-TFIDF achieved the best on all groups. KNND2V out-

performed KNNTFIDFin the most frequent MH group, and

KNNTFIDFoutperformed KNND2V in other groups. The difference

between KNND2V and KNNTFIDFwas the largest in the rare MH

group. In summary, D2V performed better than TFIDF for frequent

MHs, while TFIDF performed better than D2V for rare MHs,

implying the complementary advantages between D2V and TFIDF,

which made D2V-TFIDF perform the best in all MH groups.

4.5.3 Ratio of best performed MHs

We further compared the three representations, by the number

(ratio) of MHs which achieved the best performance by some repre-

sentation (with KNN) to all MHs in each group. Figure 2(c) shows

that between KNND2V and KNNTFIDF, KNND2V outperformed

KNNTFIDFin the most frequent group of MHs, while KNNTFIDF out-

performed KNND2V in infrequent groups. This result further empha-

sizes that D2V� TFIDF would be the most balanced representation

among the three.

4.5.4 Finding similar citations

Figure 2(d) shows the performance comparison among the three rep-

resentations for finding similar citations, where AvgSimilarity of the

Table 5. Performance comparison of DeepMeSH with MTIDEF and MeSHLabeler (P-values are shown in the parentheses)

Method MiP MiR MiF EBP EBR EBF MaP MaR MaF

MTIDEF 0.5753 0.5526 0.5637 0.5838 0.5737 0.5566 0.4939 0.5140 0.5037

(2.67E-85) (1.28E-75) (1.12E-86) (1.16E-81) (1.76E-73) (8.17E-85) (3.89E-69) (2.19E-41) (3.39E-63)

MeSHLabeler 0.6457 0.5995 0.6218 0.6480 0.6200 0.6145 0.5304 0.5216 0.5259

(9.87E-54) (1.43E-52) (4.67E-60) (3.24E-54) (1.97E-50) (1.49E-59) (3.92E-48) (5.25E-31) (4.18E-45)

DeepMeSH 0.6589 0.6077 0.6323 0.6623 0.6280 0.6251 0.5432 0.5262 0.5346

Table 4. Performance improvement of MeSHRanker by incorporating deep semantic representation

Method MiP MiR MiF EBP EBR EBF MaP MaR MaF

MTIDEF 0.5753 0.5526 0.5637 0.5838 0.5737 0.5566 0.4939 0.5140 0.5037

BCD2V-TFIDF 0.5974 0.6092 0.6033 0.5983 0.6280 0.5943 0.4741 0.4633 0.4686

MeSHRanker 0.6067 0.6187 0.6126 0.6091 0.6400 0.6053 0.5249 0.5400 0.5323

þ Step 2 of DeepMeSH 0.6156 0.6278 0.6216 0.6180 0.6492 0.6141 0.5361 0.5476 0.5418

þ Steps 1 and 2 of DeepMeSH 0.6164 0.6286 0.6224 0.6188 0.6501 0.6149 0.5380 0.5505 0.5442

(a) (b)

(c) (d)

Fig. 2. Comparison with different representation
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corresponding MH is plotted against the number of nearest neigh-

bors. The curve of KNND2V-TFIDF was always above the other two

representations clearly, indicating that similar citations found by

KNND2V-TFIDF have more common MHs and are more trustable

than other two representations.

4.5.5 Performance improvement examples

Figure 3(a) shows the improved values of average EBF by KNND2V-

TFIDF over KNNTFIDFfor citations with EBF of KNNTFIDFlower than

a certain cut-off (which is shown in x-axis). This figure clearly

shows the performance improvement is larger for citations with

lower EBF. Also Figure 3(b) shows the improvement of average EBF

by DeepMeSH over MeSHLabeler for again citations with lower

MeSHLabeler scores than a certain cut-off (corresponding to the x-

axis value). This also shows the improvement is larger for citations

with smaller EBF values.

4.5.6 Performance improvement in different languages

We further analyzed the performance improvement by DeepMeSH

from MeSHLabeler for each language. Since the datasets on non-

English language are too small to draw any conclusion, we only

show the result on English in Table 6. We can see that the perform-

ance improvement in English looks marginal but was clearly signifi-

cant, and also overall performance improvement was significant.

5 Conclusion and discussion

We have proposed an effective solution for large-scale MeSH index-

ing, for which the official solution, MTI, as well as all state-of-the-

art methods, use BOW representation, while BOW cannot capture

rich semantic information in large-scale biomedical documents. We

developed DeepMeSH, which effectively utilizes dense semantic rep-

resentation, and achieves around 12 and 2% improvement over

MTI and MeSHLabeler in both MiF and EBF. This improvement is

especially valuable, because MeSHLabeler already integrates a var-

iety of diverse evidence. The high performance of DeepMeSH can be

attributed to two factors: (i) the deep semantic representation, D2V-

TFIDF, that integrates the power of both dense representation,

D2V, and sparse representation, TFIDF. (ii) ‘learning to rank’ which

integrates diverse evidence smoothly and effectively.

An interesting discovery from our experiments on exploring the

reason of achieving the improved performance of D2V-TFIDF is the

complementarity between sparse and dense semantic representation.

This is especially true of TFIDF and D2V, where TFIDF performed

well on rare MHs, and D2V achieved high performance on frequent

MHs. It is not surprising that D2V-TFIDF, which can enjoy the com-

plementary advantage between TFIDF and D2V, outperformed TFIDF

and D2V under all performance measures. On the other hand, as also

shown by the result of (Kosmopoulos et al., 2015), which improved

the performance of MTI only slightly, applying dense semantic repre-

sentation only is not necessarily a good strategy. Our experiments fur-

ther clarified what kind of situations can have the most benefit from

that new representation, and citations annotated worse by sparse repre-

sentation gained the performance improvement more. This result is rea-

sonable and consistent with other experimental results we obtained.

Also our experiments indicate that D2V-TFIDF is a very useful

representation for finding semantically similar citations. Finding

similar citations is a core task in biomedical text mining for know-

ledge discovery, such as document searching, document clustering

and query expansion. Currently, the most widely used method for

finding similar citations practically in life science is PRA by NLM,

which is based on sparse representation. Thus our new representa-

tion will be useful for many applications including searching similar

citations and may find more promising applications as well.
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