Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 29;72(Pt 5):741–746. doi: 10.1107/S2056989016006848

Crystal structures of tetra­methyl­ammonium (2,2′-bi­pyridine)­tetra­cyanidoferrate(III) trihydrate and poly[[(2,2′-bi­pyridine-κ2 N,N′)di-μ2-cyanido-dicyanido(μ-ethyl­enedi­amine)(ethyl­enedi­amine-κ2 N,N′)­cadmium(II)iron(II)] monohydrate]

Songwuit Chanthee a, Wikorn Punyain a, Supawadee Namuangrak b, Kittipong Chainok c,*
PMCID: PMC4908514  PMID: 27308032

The cyanide complex [N(CH3)4][Fe(2,2′-bipy)(CN)4]·3H2O (2,2′-bipy is 2,2′-bi­pyridine) was synthesized as a building block for the construction of a new two-dimensional cyanide-bridged Fe–Cd bimetallic coordination polymer, [Fe(2,2′-bipy)(CN4)Cd(en)2]·H2O, in which ethyl­enedi­amine (en) adopts both bridging and chelating coordination modes.

Keywords: crystal structure, cadmium, coordination polymers, cyanido complex, iron

Abstract

The crystal structures of the building block tetra­methyl­ammonium (2,2′-bi­pyridine-κ2 N,N′)tetra­cyanidoferrate(III) trihydrate, [N(CH3)4][Fe(CN)4(C10H8N2)]·3H2O, (I), and a new two-dimensional cyanide-bridged bimetallic coordination polymer, poly[[(2,2′-bi­pyridine-κ2 N,N′)di-μ2-cyanido-dicyanido(μ-ethyl­enedi­amine-κ2 N:N′)(ethyl­enedi­amine-κ2 N,N′)cadmium(II)iron(II)] monohydrate], [CdFe(CN)4(C10H8N2)(C2H8N2)2]·H2O, (II), are reported. In the crystal of (I), pairs of [Fe(2,2′-bipy)(CN)4] units (2,2′-bipy is 2,2′-bi­pyri­dine) are linked together through π–π stacking between the pyridyl rings of the 2,2′-bipy ligands to form a graphite-like structure parallel to the ab plane. The three independent water mol­ecules are hydrogen-bonded alternately with each other, forming a ladder chain structure with R 4 4(8) and R 6 6(12) graph-set ring motifs, while the disordered [N(CH3)4]+ cations lie above and below the water chains, and the packing is stabilized by weak C—H⋯O hydrogen bonds. The water chains are further linked with adjacent sheets into a three-dimensional network via O—H⋯O hydrogen bonds involving the lattice water mol­ecules and the N atoms of terminal cyanide groups of the [Fe(2,2′-bipy)(CN)4] building blocks, forming an R 4 4(12) ring motif. Compound (II) features a two-dimensional {[Fe(2,2′-bipy)(CN)4Cd(en)2]}n layer structure (en is ethyl­enedi­amine) extending parallel to (010) and constructed from {[Fe(2,2′-bipy)(CN)4Cd(en)]}n chains inter­linked by bridging en ligands at the Cd atoms. Classical O—H⋯N and N—H⋯O hydrogen bonds involving the lattice water mol­ecule and N atoms of terminal cyanide groups and the N—H groups of the en ligands are observed within the layers. The layers are further connected via π–π stacking inter­actions between adjacent pyridine rings of the 2,2′-bipy ligands, completing a three-dimensional supra­molecular structure.

Chemical context  

Over the past several decades, hexa­cyanido­metallate anions, [M(CN)6]n (n = 2–4), have been used extensively as building blocks for the design and construction of a large number of high-dimensional cyanide-bridged bimetallic coordination polymers because of their ability to act as multidentate ligands to link numerous metal atoms through all six cyanide groups (Ohba & Ōkawa, 2000; Smith et al., 2000; Berlinguette et al., 2005). The highly insoluble three-dimensional Prussian blue and its more soluble Prussian blue analogues are perhaps the best known examples of this class of compounds, which are obtained by reacting the building block [M(CN)6]3– with octa­hedrally coordinated transition metal ions (Buser et al., 1977). The inclusion of a bidentate chelating ligand (L) such as 2,2′-bi­pyridine (2,2′-bipy) or 1,10-phenanthroline (1,10-phen) in cyanide-containing building blocks of general formula [M(L)(CN)4]n (n = 2, 3) instead of [M(CN)6]n has been a recent development in the field of low-dimensionality cyanide-bridged bimetallic coordination compounds (Lescouëzec et al., 2001; Laza­rides et al., 2007). The aromatic ligand L does not just block two coordination sites of the central atom, to yield one- and two-dimensional polymeric compounds, but also helps to stabilize the assembly as well as stabilizing the dimensionality of the three-dimensional supra­molecular structures through aromatic π–π stacking inter­actions (Lescouëzec et al., 2002; Toma et al., 2004). It is also known that the non-coordinating nitro­gen atoms of the cyanide groups can act as hydrogen-bond acceptors to self-assemble into various supra­molecular architectures (Xiang et al., 2009). graphic file with name e-72-00741-scheme1.jpg graphic file with name e-72-00741-scheme2.jpg

As part of our search for novel cyanide-bridged bimetallic coordination polymers, we herein describe the synthesis and crystal structure of [N(CH3)4][Fe(CN)4(C10H8N2)]·3H2O (I) building block and a new two-dimensional cyanide-bridged cadmium–iron(II) bimetallic coordination polymer, [CdFe(CN4)(C10H8N2)(C2H8N2)2]·H2O (II), in which ethylenedi­amine (en) adopts both bridging and chelating coordination modes.

Structural commentary  

The asymmetric unit of (I) consists of one [Fe(2,2′-bipy)(CN)4] anion, one disordered tetra­methyl­ammonium cation, [N(CH3)4]+ and three water mol­ecules, as displayed in Fig. 1. The FeIII ion is coordinated by two nitro­gen atoms from one 2,2′-bipy ligand and four cyanide carbon atoms in a distorted octa­hedral geometry. This distortion around the metal atom is defined by the sum of the octa­hedral angular deviations from 90° (Σ), in which the trigonal distortion angle = 0 for a perfect octa­hedron (Marchivie et al., 2005). In (I), Σ for twelve bond angles, viz, 5C—Fe—C, 6C—Fe—N and 1N—Fe—N, is 41.03°, confirming a distorted octa­hedral geometry around the central FeIII ion. Another factor accounting for the distortion form ideal octa­hedral geometry of the FeIII atom is the acute angle subtended by the chelating 2,2′-bipy ligand, viz. N5—Fe1—N6 = 81.14 (11)°. The three trans angles [viz. C1—Fe1—N5 = 175.01 (15), C2—Fe1—N6 = 175.52 (14) and C3—Fe1—C4 = 178.06 (15)°] are bent slightly from the ideal value of 180°. The iron atom and terminal cyanido groups, viz. [Fe1—C3≡N3 = 178.7 (3) and Fe1—C4≡N4 = 179.8 (4)°] are almost linear compared to the iron atom and the corresponding equatorial cyano groups [viz. Fe1—C1—N1 = 175.8 (4) and Fe1—C2—N2 = 176.6 (4)°]. This difference is probably caused by hydrogen bonding (see below). The Fe—C bond lengths range from 1.917 (4) to 1.969 (4) Å, whereas the Fe—N bond lengths are 1.981 (3) and 1.985 (3) Å. The whole mol­ecule of 2,2′-bipy ligand is planar with an r.m.s. deviation of 0.016 Å; the dihedral angle between the two pyridyl rings is 1.57 (18)°. Bond lengths and angles within the [Fe(2,2′-bipy)(CN)4] anion in (I) are in agreement with those reported for other cyanido and 2,2′-bipy-containing mononuclear iron(III) complexes such as K[Fe(2,2′-bipy)(CN)4]·H2O (Toma et al., 2002), PPh4[Fe(2,2′-bipy)(CN)4]·H2O (Lescouëzec et al., 2002) and AsPPh4[Fe(2,2′-bipy)(CN)4]·CH3CN (Toma et al., 2007).

Figure 1.

Figure 1

The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. Dashed lines indicate O—H⋯O hydrogen bonds. Covalent bonds in the major and minor parts of the disordered are shaded differently and H atoms have been omitted for clarity. The labelling scheme A and B applied to the aromatic rings is used to identify the rings in the subsequent discussion.

Compound (II) is a new cyanido-bridged Fe–Cd bimetallic coordination polymer synthesized using the precursor complex (I) as building block in which the FeIII precursor was reduced to FeII under the crystallization conditions. The asymmetric unit contains half each of an [Fe(2,2′-bipy)(CN)4] anion and a [Cd(en)2]2+ cation, with the mol­ecules lying across twofold rotation axes, Fig. 2. The coordination polyhedron of FeII ion is a distorted octa­hedron with a Σ of 28.90°. The Fe—C—N angles for both bridging [Fe1—C1—N1 = 178.15 (14)°] and terminal [Fe1—C2—N2 = 176.85 (16)°] cyanide groups deviate slightly from strict linearity. The Fe—Ccyanide bond lengths at 1.8950 (16) and 1.9363 (17) Å are slightly shorter than the Fe—N2,2′-bipy bond length, 1.9976 (14) Å. The CdII ion is six-coordinated by two N atoms from two cyanide groups, two N atoms from a chelating en ligand and two N atoms from two different bridging en ligands in a highly distorted octa­hedral geometry with a Σ of 108.08°. The Cd—N bond lengths and the N—Cd—N bond angles in (II) are in the range 2.3980 (15)–2.5046 (14) Å and 73.24 (5)–157.20 (5)°, respectively. These values are comparable to those observed in compounds (Et4N)[{Fe(CN)6}3{Cd(en)}4] (Maľarová et al., 2003), [Fe(CN)6Cd(en)2] (Fu & Wang, 2005) and [{Fe(CN)6}2{Cd(en)}3]·4H2O (Maľarová et al., 2006). Each [Fe(2,2′-bipy)(CN)4]2– anion uses two cyanide groups to link [Cd(en)]2+cations, forming a chain of [Fe(2,2′-bipy)(CN)4Cd(en)] units running parallel to the a axis. Along the b axis, adjacent chains are then inter­connected through the N atoms of the bridging en ligands at the Cd atoms into a two-dimensional layer of [Fe(2,2′-bipy)(CN)4Cd(en)2], as shown in Fig. 3. The layer contains hexa­nuclear cyclic [{Fe(CN)2}2{Cd(en)}2] units with an Fe⋯Cd distance through the cyanide bridge and a Cd⋯Cd distance through the en bridge of 5.1292 (7) and 7.6692 (12) Å, respectively. The MM distances across the cyclic windows vary from 5.5614 (10) to 14.0061 (10) Å.

Figure 2.

Figure 2

The structures of the molecular entities in (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. The pyridine ring labelled C is discussed in the text. [Symmetry codes: (i) 1 − x, y, Inline graphic − z; (ii) −x, y, Inline graphic − z.]

Figure 3.

Figure 3

A view of the layer structure of (II) along the b axis. 2,2′-Bipy mol­ecules and H atoms bonded to C and N atoms of the en ligands have been omitted for clarity.

Supra­molecular features  

The three-dimensional supra­molecular structure in (I) is the result of combinations of inter­molecular inter­actions including aromatic π–π stacking and hydrogen bonds. As can be seen in Fig. 4, pairs of [Fe(2,2′-bipy)(CN)4] mol­ecules are linked together through the parallel pyridyl rings of the 2,2′-bipy ligands to generate a graphite-like layers parallel to the ab plane. Within the sheets, the neighbouring pyridyl moieties related by an inversion centre are in a head-to-head arrangement with centroid (C g) to centroid distances of 4.005 (3) Å [inter­planar angle = 0.0 (4)°] and 3.903 (3) Å [inter­planar angle = 0.0 (3)°] for rings AA i and BB ii [symmetry codes: (i) −x, 2 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z], respectively. The FeIII⋯FeIII separations along the π–π stacking of parallel rings AA i and rings BB ii are 8.2821 (12) and 8.4572 (13) Å, respectively. The adjacent pyridyl rings A and B iii [symmetry code: (iii) x − 1, y, z] related by translation parallel to the a axis are arranged alternately in a head-to-tail manner with a C gC g distance of 3.865 (2) Å [inter­planar angle = 1.51 (12)°] and an FeIII⋯FeIII separation of 6.8690 (9) Å.

Figure 4.

Figure 4

A view of the two-dimensional anionic [Fe(2,2′-bipy)(CN)4] graphite-like sheet structure in (I), parallel to the ab plane, with π–π inter­actions shown as dashed lines. H atoms have been omitted for clarity.

A notable feature of (I) is the self-assembly of the tetra­meric (H2O)4 and hexa­meric (H2O)6 subunits into (H2O)10 units [the dihedral angle between the best plane of the (H2O)4 and (H2O)6 subunits is 55.2 (2)°]; neighbouring units are further joined together, giving rise to ladder-like water chains running parallel to the a axis. As can be seen from Fig. 5, the water mol­ecules at O1, O1i, O2, and O2i (for symmetry code see Table 1) form centrosymmetric cyclic tetra­meric units through classical O—H⋯O hydrogen bonds with an Inline graphic(8) ring motif according to graph-set notation. In this unit, each water monomer acts as a single donor and a single acceptor of hydrogen bonds, and the four water mol­ecules are perfectly coplanar (mean deviation of all non-hydrogen atoms = 0.00 Å). The average O⋯O distance in (I) is 2.805 Å. This value is comparable to the average distances for the gas-phase water tetra­mer (D2O)4 (2.78 Å; Liu et al., 1996), liquid water (2.85 Å; Belch & Rice, 1987) and other tetra­meric water units in the solid state (2.81 Å; Tao et al., 2004, and 2.83 Å; Long et al., 2004). The average O⋯O⋯O angle is 90°, which is similar to those of the cyclic water tetra­mer found in liquid water and in the crystal host of metal–organic frameworks, [Cu(adipate)(4,4-bipy)]·2H2O (Long et al., 2004) and [Cd3(pbtz)3(DMF)4(H2O)2]·4DMF·4H2O (Tao et al., 2004).

Figure 5.

Figure 5

Self-assembly of the water tetra­mer (H2O)4 and hexa­mer (H2O)6 by O—H⋯O hydrogen bonds into the ladder-like chain, and representation of O—H⋯N hydrogen bonds between the water chain and anionic [Fe(2,2′-bipy)(CN)4] units. See Table 1 for symmetry codes.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C17A—H17C⋯O2i 0.96 2.50 3.112 (11) 122
O3—H3A⋯N4 0.84 (1) 2.00 (1) 2.841 (5) 178 (5)
O1—H1A⋯N1 0.84 (1) 2.03 (1) 2.859 (5) 176 (7)
O3—H3B⋯O1ii 0.85 (1) 1.89 (1) 2.736 (6) 174 (7)
O2—H2A⋯O3 0.84 (1) 1.87 (2) 2.709 (6) 172 (7)
O2—H2B⋯O1 0.84 (1) 1.98 (1) 2.818 (7) 177 (14)
O1—H1B⋯O2iii 0.84 (1) 2.02 (6) 2.792 (8) 152 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

The hexa­meric water unit has crystallographically imposed inversion symmetry. The six water mol­ecules O1i, O1ii, O2, O2iii, O3, and O3iii (for symmetry codes, see Table 1) are almost coplanar with a mean deviation of 0.025 Å. Similar to the situation in the tetra­meric water unit, each water mol­ecule acts as both a single hydrogen-bond donor and acceptor, and is simultaneously involved in classical O—H⋯O inter­actions, leading to a cyclic Inline graphic(12) hydrogen-bonding motif with an average O⋯O distance of 2.786 Å. This value is slightly shorter than the average distance for the tetra­meric unit and liquid water; however, it is comparable with the distance in ice I h (2.74 Å; Eisenberg & Kauzmann, 1969) and water trapped in a metal–organic framework (2.78 Å; Ghosh & Bharadwaj, 2003). The average O⋯O⋯O angle in the planar hexa­meric unit is 120°, deviating considerably from the corresponding value of 109.3° in hexa­gonal ice (Fletcher, 1970). Another remarkable feature in (I) is that the ladder-like water chains are incorporated with the aromatic π–π stacking graphite-like layers through classical O—H⋯N hydrogen bonds involving the lattice water mol­ecules (O1 and O3) and the N atoms of the cyanido groups (N1 and N4), forming an Inline graphic(12) ring motif. In addition, the [N(CH3)]+ cations lie above and below the water chains and take part in the formation of weak C—H⋯O hydrogen bonds with the water mol­ecule.

For (II), classical O—H⋯N and N—H⋯O hydrogen bonds involving the lattice water mol­ecules and N atoms of terminal cyanide groups and the N—H group of the en ligands are observed within a layer, Table 2. The layers are further linked together into a three-dimensional network via π–π stacking between adjacent pyridyl rings with C gC g distances of 4.2925 (18) [inter­planar angle = 1.55 (18)°] and 4.0642 (18) Å [inter­planar angle = 0.0 (3)°] for rings CC iv and CC v [symmetry codes: (iv) 2 − x, y, Inline graphic − z; (v) Inline graphic − x, Inline graphic − y, 1 − z], respectively, Fig. 6.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O1i 0.89 2.20 3.0726 (18) 167
O1—H1⋯N2 0.87 (1) 1.99 (1) 2.8045 (19) 156 (2)

Symmetry code: (i) Inline graphic.

Figure 6.

Figure 6

A portion of the crystal packing in (II) viewed in the bc plane showing π–π stacking inter­actions (dashed lines).

Synthesis and crystallization  

The building block N(CH3)4[Fe(2,2′-bipy)(CN)4]·3H2O (I) was prepared following the procedure described for PPh4[Fe(2,2′-bipy)(CN)4]·H2O (Lescouëzec et al., 2002), except that tetra­methyl­ammonium chloride was used instead of tetra­phenyl­phospho­nium chloride. Dark-red single crystals of (I) suitable for structure determination were obtained by recrystallization from water and methanol (1:1, v/v). Analysis calculated for C18H26FeN7O: C, 48.66; H, 5.90; N, 22.07%. Found: C, 48.66; H, 5.90; N, 22.07%.

For the synthesis of (II), Cd(NO3)2·4H2O (0.062 g, 0.2 mmol) and ethyl­enedi­amine (stock solution, 0.01 ml, 0.2 mmol) were dissolved in distilled H2O (4 ml), and this was pipetted into one side of an H-tube. N(CH3)4[Fe(2,2′-bipy)(CN)4]·3H2O (0.089 g, 0.2 mmol) was dissolved in distilled H2O (4 ml), and this was pipetted into the other side arm of the H-tube. The H-tube (15 ml capacity) was then carefully filled with distilled H2O. Slow diffusion in the dark for three weeks yielded dark-yellow plate-shaped crystals of (II) suitable for X-ray crystallographic analysis. Analysis calculated for C18H26CdFeN10O: C, 38.15; H, 4.62; N, 24.72%. Found: C, 38.18; H, 4.60; N, 24.68%.

Refinement  

Crystal data, data collection, and structure refinement details are summarized in Table 3. H atoms bonded to C and N atoms were placed at calculated positions and refined using a riding-model approximation, with C—H = 0.93 (aromatic), 0.96 (meth­yl) or 0.97 (methyl­ene) Å and N—H = 0.89 Å, and with U iso(H) = 1.5U eq(C) for methyl groups and 1.2U eq(C, N) otherwise. For (I), the water-H atoms were located in a difference Fourier map and refined with distance restraints: O—H = 0.84 (1) Å and H⋯H = 1.39 (2) Å with U iso(H) = 1.5U eq(O). For (II), the water-H atoms were refined with restraints of O—H = 0.82 (1) Å with U iso(H) = 1.5U eq(O). The tetra­metyl­ammonium cation in (I) exhibits rotational positional disorder in three of the methyl groups, and was refined with occupancy factors of 0.440 (6) for C16A, C17A and C18A, and 0.560 (6) for atoms C16B, C17B, and C18B. Anisotropic displacement parameters of all atoms were restrained using enhanced rigid-bond restraints (RIGU command, s.u.’s 0.001 Å2; Thorn et al., 2012). The restraint SADI was also used for the disordered tetra­metyl­ammonium cation.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula (C4H12N)[Fe(CN)4(C10H8N2)]·3H2O [CdFe(CN)4(C10H8N2)(C2H8N2)2]·H2O
M r 444.31 566.74
Crystal system, space group Triclinic, P Inline graphic Monoclinic, C2/c
Temperature (K) 296 296
a, b, c (Å) 6.8690 (9), 11.9405 (16), 14.2731 (17) 7.4184 (14), 28.534 (5), 11.094 (2)
α, β, γ (°) 104.107 (4), 99.695 (4), 92.235 (4) 90, 109.143 (6), 90
V3) 1115.2 (2) 2218.3 (7)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.71 1.65
Crystal size (mm) 0.22 × 0.16 × 0.08 0.30 × 0.26 × 0.14
 
Data collection
Diffractometer Bruker APEXII D8 QUEST CMOS Bruker APEXII D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014) Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.691, 0.745 0.633, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 20120, 3982, 3015 51158, 2757, 2478
R int 0.072 0.038
(sin θ/λ)max−1) 0.599 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.142, 1.04 0.020, 0.046, 1.07
No. of reflections 3982 2757
No. of parameters 321 146
No. of restraints 87 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.59 0.47, −0.47

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989016006848/bg2584sup1.cif

e-72-00741-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006848/bg2584Isup2.hkl

e-72-00741-Isup2.hkl (218.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016006848/bg2584IIsup3.hkl

e-72-00741-IIsup3.hkl (151.6KB, hkl)

CCDC references: 1476008, 1476007

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported financially by a research career development grant (No. RSA5780056) from the Thailand Research Fund. SC acknowledges financial support from the Thailand Graduate Institute of Science and Technology (TGIST: TG-55–26-55–047M).

supplementary crystallographic information

(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Crystal data

(C4H12N)[Fe(CN)4(C10H8N2)]·3H2O Z = 2
Mr = 444.31 F(000) = 466
Triclinic, P1 Dx = 1.323 Mg m3
a = 6.8690 (9) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.9405 (16) Å Cell parameters from 9941 reflections
c = 14.2731 (17) Å θ = 3.0–36.4°
α = 104.107 (4)° µ = 0.71 mm1
β = 99.695 (4)° T = 296 K
γ = 92.235 (4)° Block, orange
V = 1115.2 (2) Å3 0.22 × 0.16 × 0.08 mm

(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Data collection

Bruker APEXII D8 QUEST CMOS diffractometer 3982 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus 3015 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromator Rint = 0.072
Detector resolution: 10.5 pixels mm-1 θmax = 25.2°, θmin = 3.0°
ω and φ scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −14→14
Tmin = 0.691, Tmax = 0.745 l = −16→17
20120 measured reflections

(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.9213P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3982 reflections Δρmax = 0.72 e Å3
321 parameters Δρmin = −0.59 e Å3
87 restraints

(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Special details

Experimental. Absorption correction: SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0760 before and 0.0587 after correction. The Ratio of minimum to maximum transmission is 0.9266. The λ/2 correction factor is 0.00150.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.66815 (7) 0.18786 (4) 0.33212 (4) 0.03351 (19)
N1 0.3698 (6) 0.2365 (4) 0.1661 (3) 0.0673 (11)
N2 0.8300 (7) 0.0198 (4) 0.1707 (3) 0.0754 (12)
N3 0.4210 (6) −0.0265 (3) 0.3445 (3) 0.0589 (9)
N4 0.9261 (6) 0.3973 (3) 0.3139 (3) 0.0596 (10)
N5 0.8717 (4) 0.1745 (2) 0.4441 (2) 0.0316 (6)
N6 0.5553 (4) 0.2840 (2) 0.4410 (2) 0.0329 (6)
C1 0.4755 (6) 0.2152 (3) 0.2280 (3) 0.0458 (9)
C2 0.7745 (6) 0.0849 (4) 0.2313 (3) 0.0467 (10)
C3 0.5079 (5) 0.0512 (3) 0.3399 (2) 0.0353 (8)
C4 0.8320 (6) 0.3212 (4) 0.3207 (3) 0.0415 (9)
C5 1.0370 (5) 0.1194 (3) 0.4385 (3) 0.0368 (8)
H5 1.0615 0.0823 0.3768 0.044*
C6 1.1713 (5) 0.1153 (3) 0.5197 (3) 0.0420 (9)
H6 1.2849 0.0764 0.5132 0.050*
C7 1.1364 (6) 0.1694 (3) 0.6109 (3) 0.0456 (9)
H7 1.2248 0.1668 0.6672 0.055*
C8 0.9667 (6) 0.2285 (3) 0.6182 (3) 0.0449 (9)
H8 0.9404 0.2664 0.6793 0.054*
C9 0.8387 (5) 0.2298 (3) 0.5336 (3) 0.0341 (8)
C10 0.6566 (5) 0.2913 (3) 0.5321 (3) 0.0346 (8)
C11 0.5933 (6) 0.3533 (3) 0.6147 (3) 0.0460 (9)
H11 0.6665 0.3583 0.6769 0.055*
C12 0.4214 (6) 0.4078 (3) 0.6046 (3) 0.0495 (10)
H12 0.3767 0.4498 0.6597 0.059*
C13 0.3164 (6) 0.3992 (3) 0.5119 (3) 0.0458 (10)
H13 0.1994 0.4353 0.5034 0.055*
C14 0.3861 (5) 0.3368 (3) 0.4321 (3) 0.0388 (8)
H14 0.3139 0.3308 0.3696 0.047*
N7 0.7782 (5) 0.1799 (3) 0.9466 (2) 0.0597 (8)
C15 0.7397 (8) 0.0530 (4) 0.9254 (4) 0.0789 (12)
H15A 0.7621 0.0296 0.9859 0.118*
H15B 0.8272 0.0161 0.8838 0.118*
H15C 0.6048 0.0307 0.8928 0.118*
C16A 0.901 (2) 0.1995 (11) 0.8753 (9) 0.078 (2) 0.440 (6)
H16A 0.8350 0.1608 0.8099 0.116* 0.440 (6)
H16B 1.0272 0.1693 0.8889 0.116* 0.440 (6)
H16C 0.9202 0.2811 0.8809 0.116* 0.440 (6)
C16B 0.7816 (19) 0.2208 (9) 0.8579 (6) 0.081 (2) 0.560 (6)
H16D 0.6484 0.2199 0.8237 0.121* 0.560 (6)
H16E 0.8551 0.1709 0.8158 0.121* 0.560 (6)
H16F 0.8436 0.2984 0.8760 0.121* 0.560 (6)
C17A 0.5779 (14) 0.2172 (11) 0.9193 (10) 0.085 (2) 0.440 (6)
H17A 0.4813 0.1690 0.9361 0.128* 0.440 (6)
H17B 0.5497 0.2105 0.8499 0.128* 0.440 (6)
H17C 0.5729 0.2964 0.9542 0.128* 0.440 (6)
C17B 0.6394 (16) 0.2374 (9) 1.0058 (8) 0.091 (2) 0.560 (6)
H17D 0.6423 0.3177 1.0052 0.137* 0.560 (6)
H17E 0.6766 0.2312 1.0721 0.137* 0.560 (6)
H17F 0.5079 0.2011 0.9789 0.137* 0.560 (6)
C18A 0.846 (2) 0.2542 (10) 1.0479 (6) 0.080 (2) 0.440 (6)
H18A 0.8136 0.3322 1.0500 0.120* 0.440 (6)
H18B 0.9863 0.2531 1.0664 0.120* 0.440 (6)
H18C 0.7803 0.2253 1.0927 0.120* 0.440 (6)
C18B 0.9780 (11) 0.1987 (8) 1.0119 (7) 0.0764 (19) 0.560 (6)
H18D 1.0251 0.2790 1.0273 0.115* 0.560 (6)
H18E 1.0690 0.1522 0.9787 0.115* 0.560 (6)
H18F 0.9678 0.1770 1.0715 0.115* 0.560 (6)
O3 1.0432 (6) 0.5315 (3) 0.1904 (3) 0.0675 (9)
O1 0.3484 (7) 0.4452 (4) 0.1018 (4) 0.0881 (12)
O2 0.6905 (8) 0.5827 (5) 0.1007 (4) 0.1151 (16)
H3A 1.007 (7) 0.491 (3) 0.226 (3) 0.076 (16)*
H1A 0.360 (10) 0.384 (3) 0.120 (4) 0.12 (2)*
H3B 1.134 (9) 0.500 (6) 0.162 (5) 0.19 (4)*
H2A 0.795 (6) 0.561 (6) 0.129 (5) 0.15 (3)*
H2B 0.588 (7) 0.543 (9) 0.103 (9) 0.28 (7)*
H1B 0.296 (16) 0.432 (6) 0.042 (2) 0.23 (6)*

(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0330 (3) 0.0381 (3) 0.0315 (3) 0.0052 (2) 0.0066 (2) 0.0119 (2)
N1 0.064 (3) 0.084 (3) 0.055 (2) 0.008 (2) −0.008 (2) 0.031 (2)
N2 0.082 (3) 0.089 (3) 0.053 (2) 0.024 (2) 0.025 (2) 0.003 (2)
N3 0.055 (2) 0.056 (2) 0.066 (2) −0.0004 (19) 0.0092 (19) 0.0178 (19)
N4 0.054 (2) 0.060 (2) 0.077 (3) 0.0019 (19) 0.019 (2) 0.035 (2)
N5 0.0305 (15) 0.0323 (15) 0.0343 (15) 0.0044 (12) 0.0081 (13) 0.0111 (13)
N6 0.0304 (15) 0.0314 (16) 0.0389 (16) 0.0045 (12) 0.0072 (13) 0.0119 (13)
C1 0.047 (2) 0.051 (2) 0.041 (2) 0.0047 (19) 0.0058 (19) 0.0161 (19)
C2 0.048 (2) 0.053 (2) 0.036 (2) 0.0061 (19) 0.0045 (19) 0.0080 (19)
C3 0.0358 (19) 0.039 (2) 0.0297 (18) 0.0055 (17) 0.0033 (15) 0.0075 (16)
C4 0.038 (2) 0.052 (2) 0.038 (2) 0.0141 (18) 0.0082 (17) 0.0172 (18)
C5 0.0346 (19) 0.037 (2) 0.042 (2) 0.0053 (15) 0.0102 (16) 0.0131 (16)
C6 0.0337 (19) 0.041 (2) 0.057 (2) 0.0072 (16) 0.0088 (18) 0.0224 (19)
C7 0.041 (2) 0.053 (2) 0.046 (2) 0.0026 (18) −0.0016 (18) 0.026 (2)
C8 0.045 (2) 0.054 (2) 0.037 (2) 0.0031 (18) 0.0056 (18) 0.0144 (18)
C9 0.0322 (18) 0.0364 (19) 0.0345 (18) 0.0009 (15) 0.0042 (15) 0.0121 (15)
C10 0.0330 (18) 0.0348 (19) 0.0382 (19) 0.0023 (15) 0.0096 (16) 0.0116 (16)
C11 0.050 (2) 0.050 (2) 0.037 (2) 0.0049 (19) 0.0113 (18) 0.0074 (18)
C12 0.048 (2) 0.046 (2) 0.054 (3) 0.0067 (19) 0.024 (2) 0.0024 (19)
C13 0.037 (2) 0.037 (2) 0.067 (3) 0.0083 (17) 0.017 (2) 0.0128 (19)
C14 0.0310 (18) 0.039 (2) 0.049 (2) 0.0039 (16) 0.0074 (17) 0.0156 (17)
N7 0.0690 (19) 0.0535 (17) 0.0545 (17) 0.0007 (15) 0.0077 (15) 0.0133 (14)
C15 0.089 (3) 0.0683 (19) 0.078 (3) 0.0004 (17) 0.014 (2) 0.0188 (17)
C16A 0.092 (4) 0.069 (4) 0.074 (4) 0.003 (3) 0.023 (3) 0.018 (3)
C16B 0.100 (5) 0.076 (4) 0.067 (3) −0.001 (4) 0.010 (3) 0.024 (3)
C17A 0.084 (3) 0.085 (4) 0.079 (4) 0.012 (3) 0.006 (2) 0.012 (3)
C17B 0.100 (4) 0.097 (4) 0.081 (4) 0.024 (3) 0.024 (3) 0.023 (3)
C18A 0.086 (5) 0.081 (4) 0.065 (2) −0.006 (3) 0.010 (2) 0.008 (2)
C18B 0.082 (3) 0.068 (4) 0.074 (3) 0.002 (2) 0.004 (2) 0.015 (3)
O3 0.075 (2) 0.068 (2) 0.070 (2) 0.0046 (18) 0.0206 (19) 0.0325 (18)
O1 0.083 (3) 0.089 (3) 0.116 (4) 0.025 (2) 0.035 (3) 0.058 (3)
O2 0.078 (3) 0.146 (4) 0.142 (4) 0.012 (3) 0.006 (3) 0.084 (4)

(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Geometric parameters (Å, º)

Fe1—N5 1.981 (3) N7—C16B 1.468 (6)
Fe1—N6 1.985 (3) N7—C17A 1.482 (7)
Fe1—C1 1.917 (4) N7—C17B 1.460 (7)
Fe1—C2 1.917 (4) N7—C18A 1.486 (7)
Fe1—C3 1.969 (4) N7—C18B 1.498 (6)
Fe1—C4 1.969 (4) C15—H15A 0.9600
N1—C1 1.132 (5) C15—H15B 0.9600
N2—C2 1.142 (5) C15—H15C 0.9600
N3—C3 1.105 (5) C16A—H16A 0.9600
N4—C4 1.127 (5) C16A—H16B 0.9600
N5—C5 1.339 (4) C16A—H16C 0.9600
N5—C9 1.349 (4) C16B—H16D 0.9600
N6—C10 1.348 (4) C16B—H16E 0.9600
N6—C14 1.346 (4) C16B—H16F 0.9600
C5—H5 0.9300 C17A—H17A 0.9600
C5—C6 1.367 (5) C17A—H17B 0.9600
C6—H6 0.9300 C17A—H17C 0.9600
C6—C7 1.370 (5) C17B—H17D 0.9600
C7—H7 0.9300 C17B—H17E 0.9600
C7—C8 1.391 (5) C17B—H17F 0.9600
C8—H8 0.9300 C18A—H18A 0.9600
C8—C9 1.372 (5) C18A—H18B 0.9600
C9—C10 1.475 (5) C18A—H18C 0.9600
C10—C11 1.379 (5) C18B—H18D 0.9600
C11—H11 0.9300 C18B—H18E 0.9600
C11—C12 1.373 (6) C18B—H18F 0.9600
C12—H12 0.9300 O3—H3A 0.840 (10)
C12—C13 1.374 (6) O3—H3B 0.847 (10)
C13—H13 0.9300 O1—H1A 0.836 (10)
C13—C14 1.371 (5) O1—H1B 0.838 (10)
C14—H14 0.9300 O2—H2A 0.842 (10)
N7—C15 1.475 (5) O2—H2B 0.840 (10)
N7—C16A 1.481 (7)
N5—Fe1—N6 81.14 (11) C15—N7—C17A 102.4 (6)
C1—Fe1—N5 175.01 (15) C15—N7—C18A 122.6 (6)
C1—Fe1—N6 95.97 (14) C15—N7—C18B 101.2 (5)
C1—Fe1—C2 86.42 (17) C16A—N7—C17A 108.8 (8)
C1—Fe1—C3 92.47 (15) C16A—N7—C18A 114.0 (8)
C1—Fe1—C4 87.33 (16) C16B—N7—C15 112.9 (5)
C2—Fe1—N5 96.73 (14) C16B—N7—C18B 111.8 (7)
C2—Fe1—N6 175.52 (14) C17A—N7—C18A 102.4 (8)
C2—Fe1—C3 86.72 (16) C17B—N7—C15 110.2 (6)
C2—Fe1—C4 91.34 (17) C17B—N7—C16B 112.9 (7)
C3—Fe1—N5 91.57 (13) C17B—N7—C18B 107.1 (6)
C3—Fe1—N6 89.39 (13) N7—C15—H15A 109.5
C4—Fe1—N5 88.73 (13) N7—C15—H15B 109.5
C4—Fe1—N6 92.55 (13) N7—C15—H15C 109.5
C4—Fe1—C3 178.06 (15) H15A—C15—H15B 109.5
C5—N5—Fe1 126.4 (2) H15A—C15—H15C 109.5
C5—N5—C9 118.4 (3) H15B—C15—H15C 109.5
C9—N5—Fe1 115.1 (2) N7—C16A—H16A 109.5
C10—N6—Fe1 115.3 (2) N7—C16A—H16B 109.5
C14—N6—Fe1 126.3 (3) N7—C16A—H16C 109.5
C14—N6—C10 118.3 (3) H16A—C16A—H16B 109.5
N1—C1—Fe1 175.8 (4) H16A—C16A—H16C 109.5
N2—C2—Fe1 176.6 (4) H16B—C16A—H16C 109.5
N3—C3—Fe1 178.7 (3) N7—C16B—H16D 109.5
N4—C4—Fe1 179.8 (4) N7—C16B—H16E 109.5
N5—C5—H5 118.7 N7—C16B—H16F 109.5
N5—C5—C6 122.7 (3) H16D—C16B—H16E 109.5
C6—C5—H5 118.7 H16D—C16B—H16F 109.5
C5—C6—H6 120.5 H16E—C16B—H16F 109.5
C5—C6—C7 119.1 (3) N7—C17A—H17A 109.5
C7—C6—H6 120.5 N7—C17A—H17B 109.5
C6—C7—H7 120.5 N7—C17A—H17C 109.5
C6—C7—C8 119.1 (4) H17A—C17A—H17B 109.5
C8—C7—H7 120.5 H17A—C17A—H17C 109.5
C7—C8—H8 120.6 H17B—C17A—H17C 109.5
C9—C8—C7 118.8 (4) N7—C17B—H17D 109.5
C9—C8—H8 120.6 N7—C17B—H17E 109.5
N5—C9—C8 121.9 (3) N7—C17B—H17F 109.5
N5—C9—C10 114.4 (3) H17D—C17B—H17E 109.5
C8—C9—C10 123.7 (3) H17D—C17B—H17F 109.5
N6—C10—C9 114.0 (3) H17E—C17B—H17F 109.5
N6—C10—C11 121.6 (3) N7—C18A—H18A 109.5
C11—C10—C9 124.4 (3) N7—C18A—H18B 109.5
C10—C11—H11 120.2 N7—C18A—H18C 109.5
C12—C11—C10 119.5 (4) H18A—C18A—H18B 109.5
C12—C11—H11 120.2 H18A—C18A—H18C 109.5
C11—C12—H12 120.5 H18B—C18A—H18C 109.5
C11—C12—C13 119.0 (4) N7—C18B—H18D 109.5
C13—C12—H12 120.5 N7—C18B—H18E 109.5
C12—C13—H13 120.4 N7—C18B—H18F 109.5
C14—C13—C12 119.2 (4) H18D—C18B—H18E 109.5
C14—C13—H13 120.4 H18D—C18B—H18F 109.5
N6—C14—C13 122.4 (4) H18E—C18B—H18F 109.5
N6—C14—H14 118.8 H3A—O3—H3B 109 (3)
C13—C14—H14 118.8 H1A—O1—H1B 112 (3)
C15—N7—C16A 105.4 (6) H2A—O2—H2B 112 (3)
Fe1—N5—C5—C6 179.2 (3) C6—C7—C8—C9 0.5 (6)
Fe1—N5—C9—C8 −179.9 (3) C7—C8—C9—N5 0.8 (6)
Fe1—N5—C9—C10 −0.3 (4) C7—C8—C9—C10 −178.8 (3)
Fe1—N6—C10—C9 2.4 (4) C8—C9—C10—N6 178.2 (3)
Fe1—N6—C10—C11 −178.8 (3) C8—C9—C10—C11 −0.5 (6)
Fe1—N6—C14—C13 178.2 (3) C9—N5—C5—C6 1.2 (5)
N5—C5—C6—C7 0.1 (5) C9—C10—C11—C12 179.7 (3)
N5—C9—C10—N6 −1.4 (4) C10—N6—C14—C13 1.4 (5)
N5—C9—C10—C11 179.8 (3) C10—C11—C12—C13 −0.1 (6)
N6—C10—C11—C12 1.0 (6) C11—C12—C13—C14 −0.1 (6)
C5—N5—C9—C8 −1.7 (5) C12—C13—C14—N6 −0.5 (6)
C5—N5—C9—C10 178.0 (3) C14—N6—C10—C9 179.6 (3)
C5—C6—C7—C8 −1.0 (6) C14—N6—C10—C11 −1.6 (5)

(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C17A—H17C···O2i 0.96 2.50 3.112 (11) 122
O3—H3A···N4 0.84 (1) 2.00 (1) 2.841 (5) 178 (5)
O1—H1A···N1 0.84 (1) 2.03 (1) 2.859 (5) 176 (7)
O3—H3B···O1ii 0.85 (1) 1.89 (1) 2.736 (6) 174 (7)
O2—H2A···O3 0.84 (1) 1.87 (2) 2.709 (6) 172 (7)
O2—H2B···O1 0.84 (1) 1.98 (1) 2.818 (7) 177 (14)
O1—H1B···O2iii 0.84 (1) 2.02 (6) 2.792 (8) 152 (11)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z.

(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Crystal data

[CdFe(CN)4(C10H8N2)(C2H8N2)2]·H2O F(000) = 1144
Mr = 566.74 Dx = 1.697 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 7.4184 (14) Å Cell parameters from 9748 reflections
b = 28.534 (5) Å θ = 3.0–30.3°
c = 11.094 (2) Å µ = 1.65 mm1
β = 109.143 (6)° T = 296 K
V = 2218.3 (7) Å3 Block, dark red
Z = 4 0.3 × 0.26 × 0.14 mm

(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Data collection

Bruker APEXII D8 QUEST CMOS diffractometer 2757 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus 2478 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromator Rint = 0.038
Detector resolution: 10.5 pixels mm-1 θmax = 28.3°, θmin = 3.0°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −38→37
Tmin = 0.633, Tmax = 0.746 l = −14→14
51158 measured reflections

(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.020 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0207P)2 + 2.0817P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.004
2757 reflections Δρmax = 0.47 e Å3
146 parameters Δρmin = −0.47 e Å3
2 restraints

(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Special details

Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0955 before and 0.0483 after correction. The Ratio of minimum to maximum transmission is 0.8480. The λ/2 correction factor is 0.00150.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 1.0000 0.49884 (2) 0.7500 0.02579 (6)
Fe1 0.5000 0.37467 (2) 0.7500 0.02273 (7)
N4 0.75926 (17) 0.48296 (5) 0.56872 (12) 0.0267 (3)
H4A 0.7937 0.4917 0.5024 0.032*
H4B 0.7400 0.4521 0.5632 0.032*
N3 0.3184 (2) 0.32132 (5) 0.68950 (13) 0.0302 (3)
N1 0.8094 (2) 0.44919 (5) 0.85021 (13) 0.0322 (3)
N5 0.9225 (2) 0.56629 (5) 0.85229 (14) 0.0366 (3)
H5A 0.7964 0.5699 0.8271 0.044*
H5B 0.9639 0.5621 0.9365 0.044*
C8 0.5794 (2) 0.50634 (5) 0.56058 (14) 0.0268 (3)
H8A 0.5983 0.5400 0.5636 0.032*
H8B 0.5425 0.4975 0.6336 0.032*
C1 0.6899 (2) 0.42120 (5) 0.81322 (14) 0.0247 (3)
N2 0.5958 (3) 0.37056 (6) 0.49974 (16) 0.0510 (4)
C2 0.5568 (2) 0.37319 (5) 0.59168 (15) 0.0304 (3)
C7 0.3972 (3) 0.27812 (6) 0.71567 (17) 0.0359 (4)
C3 0.1298 (3) 0.32437 (7) 0.62837 (18) 0.0397 (4)
H3 0.0746 0.3539 0.6117 0.048*
C4 0.0142 (3) 0.28557 (8) 0.5892 (2) 0.0524 (5)
H4 −0.1158 0.2891 0.5466 0.063*
C9 1.0114 (3) 0.60852 (6) 0.82011 (18) 0.0441 (4)
H9A 1.1459 0.6092 0.8702 0.053*
H9B 0.9517 0.6363 0.8406 0.053*
C6 0.2860 (3) 0.23784 (7) 0.6780 (2) 0.0531 (5)
H6 0.3422 0.2084 0.6963 0.064*
C5 0.0941 (4) 0.24163 (8) 0.6142 (2) 0.0593 (6)
H5 0.0193 0.2150 0.5883 0.071*
O1 0.5000 0.40519 (9) 0.2500 0.0599 (6)
H1 0.510 (5) 0.3877 (6) 0.3156 (11) 0.093 (10)*

(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.01948 (8) 0.02751 (9) 0.02482 (9) 0.000 −0.00030 (6) 0.000
Fe1 0.02656 (15) 0.01792 (14) 0.02166 (14) 0.000 0.00513 (11) 0.000
N4 0.0199 (6) 0.0310 (7) 0.0259 (6) 0.0007 (5) 0.0030 (5) −0.0003 (5)
N3 0.0388 (8) 0.0243 (6) 0.0276 (7) −0.0063 (6) 0.0111 (6) −0.0029 (5)
N1 0.0300 (7) 0.0325 (7) 0.0321 (7) −0.0047 (6) 0.0074 (6) 0.0002 (6)
N5 0.0442 (9) 0.0326 (8) 0.0365 (8) 0.0031 (6) 0.0178 (7) 0.0032 (6)
C8 0.0190 (7) 0.0330 (8) 0.0239 (7) 0.0019 (6) 0.0009 (6) −0.0024 (6)
C1 0.0270 (7) 0.0246 (7) 0.0214 (7) 0.0042 (6) 0.0066 (6) 0.0024 (6)
N2 0.0791 (13) 0.0434 (9) 0.0369 (9) 0.0018 (9) 0.0277 (9) 0.0007 (7)
C2 0.0373 (8) 0.0218 (7) 0.0292 (8) −0.0003 (6) 0.0072 (7) 0.0009 (6)
C7 0.0507 (10) 0.0233 (8) 0.0370 (9) −0.0040 (7) 0.0188 (8) −0.0015 (7)
C3 0.0390 (10) 0.0344 (9) 0.0411 (10) −0.0077 (8) 0.0069 (8) −0.0013 (7)
C4 0.0465 (11) 0.0498 (12) 0.0560 (13) −0.0194 (9) 0.0100 (10) −0.0085 (10)
C9 0.0634 (13) 0.0291 (9) 0.0427 (11) −0.0014 (8) 0.0213 (9) −0.0030 (7)
C6 0.0699 (15) 0.0250 (9) 0.0675 (14) −0.0094 (9) 0.0265 (12) −0.0060 (9)
C5 0.0670 (15) 0.0395 (11) 0.0710 (15) −0.0264 (10) 0.0222 (12) −0.0154 (10)
O1 0.0733 (15) 0.0704 (15) 0.0342 (11) 0.000 0.0151 (11) 0.000

(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Geometric parameters (Å, º)

Cd1—N4i 2.2546 (13) N5—H5B 0.8900
Cd1—N4 2.2547 (13) N5—C9 1.473 (2)
Cd1—N1i 2.5046 (14) C8—C8iii 1.512 (3)
Cd1—N1 2.5045 (14) C8—H8A 0.9700
Cd1—N5i 2.3981 (15) C8—H8B 0.9700
Cd1—N5 2.3980 (15) N2—C2 1.150 (2)
Fe1—N3 1.9976 (14) C7—C7ii 1.465 (4)
Fe1—N3ii 1.9976 (14) C7—C6 1.396 (3)
Fe1—C1ii 1.8951 (16) C3—H3 0.9300
Fe1—C1 1.8950 (16) C3—C4 1.380 (3)
Fe1—C2ii 1.9362 (17) C4—H4 0.9300
Fe1—C2 1.9363 (17) C4—C5 1.376 (3)
N4—H4A 0.8900 C9—C9i 1.509 (4)
N4—H4B 0.8900 C9—H9A 0.9700
N4—C8 1.4681 (19) C9—H9B 0.9700
N3—C7 1.354 (2) C6—H6 0.9300
N3—C3 1.343 (2) C6—C5 1.370 (3)
N1—C1 1.163 (2) C5—H5 0.9300
N5—H5A 0.8900 O1—H1 0.865 (9)
N4i—Cd1—N4 156.82 (7) C3—N3—C7 118.18 (15)
N4i—Cd1—N1i 83.39 (5) C1—N1—Cd1 135.03 (12)
N4i—Cd1—N1 83.56 (5) Cd1—N5—H5A 109.6
N4—Cd1—N1 83.39 (5) Cd1—N5—H5B 109.6
N4—Cd1—N1i 83.56 (5) H5A—N5—H5B 108.1
N4i—Cd1—N5 88.96 (5) C9—N5—Cd1 110.25 (11)
N4—Cd1—N5i 88.96 (5) C9—N5—H5A 109.6
N4—Cd1—N5 109.92 (5) C9—N5—H5B 109.6
N4i—Cd1—N5i 109.91 (5) N4—C8—C8iii 111.91 (16)
N1—Cd1—N1i 111.12 (7) N4—C8—H8A 109.2
N5—Cd1—N1i 157.20 (5) N4—C8—H8B 109.2
N5i—Cd1—N1i 89.20 (5) C8iii—C8—H8A 109.2
N5i—Cd1—N1 157.20 (5) C8iii—C8—H8B 109.2
N5—Cd1—N1 89.20 (5) H8A—C8—H8B 107.9
N5—Cd1—N5i 73.24 (7) N1—C1—Fe1 178.15 (14)
N3—Fe1—N3ii 80.69 (8) N2—C2—Fe1 176.85 (16)
C1ii—Fe1—N3 94.13 (6) N3—C7—C7ii 114.47 (10)
C1—Fe1—N3ii 94.12 (6) N3—C7—C6 120.93 (18)
C1ii—Fe1—N3ii 174.82 (6) C6—C7—C7ii 124.60 (13)
C1—Fe1—N3 174.81 (6) N3—C3—H3 118.5
C1—Fe1—C1ii 91.06 (9) N3—C3—C4 122.95 (19)
C1ii—Fe1—C2 92.07 (6) C4—C3—H3 118.5
C1—Fe1—C2 89.69 (7) C3—C4—H4 120.5
C1ii—Fe1—C2ii 89.69 (7) C5—C4—C3 119.0 (2)
C1—Fe1—C2ii 92.07 (7) C5—C4—H4 120.5
C2ii—Fe1—N3ii 90.11 (6) N5—C9—C9i 110.03 (14)
C2—Fe1—N3ii 87.98 (6) N5—C9—H9A 109.7
C2—Fe1—N3 90.11 (6) N5—C9—H9B 109.7
C2ii—Fe1—N3 87.98 (6) C9i—C9—H9A 109.7
C2ii—Fe1—C2 177.49 (9) C9i—C9—H9B 109.7
Cd1—N4—H4A 108.8 H9A—C9—H9B 108.2
Cd1—N4—H4B 108.8 C7—C6—H6 120.0
H4A—N4—H4B 107.7 C5—C6—C7 120.1 (2)
C8—N4—Cd1 113.68 (9) C5—C6—H6 120.0
C8—N4—H4A 108.8 C4—C5—H5 120.6
C8—N4—H4B 108.8 C6—C5—C4 118.82 (19)
C7—N3—Fe1 115.19 (12) C6—C5—H5 120.6
C3—N3—Fe1 126.62 (12)
Cd1—N4—C8—C8iii −178.38 (14) C7—N3—C3—C4 −1.2 (3)
Cd1—N5—C9—C9i 43.1 (2) C7ii—C7—C6—C5 179.9 (2)
Fe1—N3—C7—C7ii 0.1 (2) C7—C6—C5—C4 −0.5 (4)
Fe1—N3—C7—C6 −179.70 (15) C3—N3—C7—C7ii −179.03 (18)
Fe1—N3—C3—C4 179.74 (15) C3—N3—C7—C6 1.2 (3)
N3—C7—C6—C5 −0.3 (3) C3—C4—C5—C6 0.4 (4)
N3—C3—C4—C5 0.4 (3)

Symmetry codes: (i) −x+2, y, −z+3/2; (ii) −x+1, y, −z+3/2; (iii) −x+1, −y+1, −z+1.

(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5—H5A···O1iii 0.89 2.20 3.0726 (18) 167
O1—H1···N2 0.87 (1) 1.99 (1) 2.8045 (19) 156 (2)

Symmetry code: (iii) −x+1, −y+1, −z+1.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Belch, A. C. & Rice, S. A. (1987). J. Chem. Phys. 86, 5676–5682.
  3. Berlinguette, C. P., Dragulescu-Andrasi, A., Sieber, A., Güdel, H.-U., Achim, C. & Dunbar, K. R. (2005). J. Am. Chem. Soc. 127, 6766–6779. [DOI] [PubMed]
  4. Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Buser, H. J., Schwarzenbach, D., Petter, W. & Ludi, A. (1977). Inorg. Chem. 16, 2704–2710.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Eisenberg, D. & Kauzmann, W. (1969). In The Structure and Properties of Water. Oxford University Press.
  8. Fletcher, N. H. (1970). In The Chemical Physics of Ice. Cambridge University Press.
  9. Fu, A.-Y. & Wang, D.-Q. (2005). Z. Kristallogr. New Cryst. Struct. 220, 501–502.
  10. Ghosh, S. K. & Bharadwaj, P. K. (2003). Inorg. Chem. 42, 8250–8254. [DOI] [PubMed]
  11. Lazarides, T., Easun, T. L., Veyne-Marti, C., Alsindi, W. Z., George, M. W., Deppermann, N., Hunter, C. A., Adams, H. & Ward, M. D. (2007). J. Am. Chem. Soc. 129, 4014–4027. [DOI] [PubMed]
  12. Lescouëzec, R., Lloret, F., Julve, M., Vaissermann, J. & Verdaguer, M. (2002). Inorg. Chem. 41, 818–826. [DOI] [PubMed]
  13. Lescouëzec, R., Lloret, F., Julve, M., Vaissermann, J., Verdaguer, M., Llusar, R. & Uriel, S. (2001). Inorg. Chem. 40, 2065–2072. [DOI] [PubMed]
  14. Liu, K., Cruzan, J. D. & Saykally, R. J. (1996). Science, 271, 929–933. [DOI] [PubMed]
  15. Long, L. S., Wu, Y. R., Huang, G. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 3798–3800. [DOI] [PubMed]
  16. Maľarová, M., Černák, J. & Massa, W. (2006). Acta Cryst. C62, m119–m121. [DOI] [PubMed]
  17. Maľarová, M., Kuchár, J., Černák, J. & Massa, W. (2003). Acta Cryst. C59, m280–m282. [DOI] [PubMed]
  18. Marchivie, M., Guionneau, P., Létard, J.-F. & Chasseau, D. (2005). Acta Cryst. B61, 25–28. [DOI] [PubMed]
  19. Ohba, M. & Ōkawa, H. (2000). Coord. Chem. Rev. 198, 313–328.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Smith, J. A., Galán-Mascarós, J.-R., Clérac, R. & Dunbar, K. R. (2000). Chem. Commun. pp. 1077–1078.
  23. Tao, J., Ma, Z.-J., Huang, R.-B. & Zheng, L.-S. (2004). Inorg. Chem. 43, 6133–6135. [DOI] [PubMed]
  24. Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.
  25. Toma, L. M., Delgado, F. S., Ruiz-Pérez, C., Carrasco, R., Cano, J., Lloret, F. & Julve, M. (2004). Dalton Trans. pp. 2836–2846. [DOI] [PubMed]
  26. Toma, L. M., Lescouëzec, R., Toma, L. D., Lloret, F., Julve, M., Vaissermann, J. & Andruh, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3171–3176.
  27. Toma, L. M., Lescouëzec, R., Uriel, S., Llusar, R., Ruiz-Pérez, C., Vaissermann, J., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 3690–3698. [DOI] [PubMed]
  28. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  29. Xiang, H., Wang, S.-J., Jiang, L., Feng, X.-L. & Lu, T.-B. (2009). Eur. J. Inorg. Chem. pp. 2074–2082.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989016006848/bg2584sup1.cif

e-72-00741-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006848/bg2584Isup2.hkl

e-72-00741-Isup2.hkl (218.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016006848/bg2584IIsup3.hkl

e-72-00741-IIsup3.hkl (151.6KB, hkl)

CCDC references: 1476008, 1476007

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES