The cyanide complex [N(CH3)4][Fe(2,2′-bipy)(CN)4]·3H2O (2,2′-bipy is 2,2′-bipyridine) was synthesized as a building block for the construction of a new two-dimensional cyanide-bridged Fe–Cd bimetallic coordination polymer, [Fe(2,2′-bipy)(CN4)Cd(en)2]·H2O, in which ethylenediamine (en) adopts both bridging and chelating coordination modes.
Keywords: crystal structure, cadmium, coordination polymers, cyanido complex, iron
Abstract
The crystal structures of the building block tetramethylammonium (2,2′-bipyridine-κ2 N,N′)tetracyanidoferrate(III) trihydrate, [N(CH3)4][Fe(CN)4(C10H8N2)]·3H2O, (I), and a new two-dimensional cyanide-bridged bimetallic coordination polymer, poly[[(2,2′-bipyridine-κ2 N,N′)di-μ2-cyanido-dicyanido(μ-ethylenediamine-κ2 N:N′)(ethylenediamine-κ2 N,N′)cadmium(II)iron(II)] monohydrate], [CdFe(CN)4(C10H8N2)(C2H8N2)2]·H2O, (II), are reported. In the crystal of (I), pairs of [Fe(2,2′-bipy)(CN)4]− units (2,2′-bipy is 2,2′-bipyridine) are linked together through π–π stacking between the pyridyl rings of the 2,2′-bipy ligands to form a graphite-like structure parallel to the ab plane. The three independent water molecules are hydrogen-bonded alternately with each other, forming a ladder chain structure with R 4 4(8) and R 6 6(12) graph-set ring motifs, while the disordered [N(CH3)4]+ cations lie above and below the water chains, and the packing is stabilized by weak C—H⋯O hydrogen bonds. The water chains are further linked with adjacent sheets into a three-dimensional network via O—H⋯O hydrogen bonds involving the lattice water molecules and the N atoms of terminal cyanide groups of the [Fe(2,2′-bipy)(CN)4]− building blocks, forming an R 4 4(12) ring motif. Compound (II) features a two-dimensional {[Fe(2,2′-bipy)(CN)4Cd(en)2]}n layer structure (en is ethylenediamine) extending parallel to (010) and constructed from {[Fe(2,2′-bipy)(CN)4Cd(en)]}n chains interlinked by bridging en ligands at the Cd atoms. Classical O—H⋯N and N—H⋯O hydrogen bonds involving the lattice water molecule and N atoms of terminal cyanide groups and the N—H groups of the en ligands are observed within the layers. The layers are further connected via π–π stacking interactions between adjacent pyridine rings of the 2,2′-bipy ligands, completing a three-dimensional supramolecular structure.
Chemical context
Over the past several decades, hexacyanidometallate anions, [M(CN)6]n− (n = 2–4), have been used extensively as building blocks for the design and construction of a large number of high-dimensional cyanide-bridged bimetallic coordination polymers because of their ability to act as multidentate ligands to link numerous metal atoms through all six cyanide groups (Ohba & Ōkawa, 2000 ▸; Smith et al., 2000 ▸; Berlinguette et al., 2005 ▸). The highly insoluble three-dimensional Prussian blue and its more soluble Prussian blue analogues are perhaps the best known examples of this class of compounds, which are obtained by reacting the building block [M(CN)6]3– with octahedrally coordinated transition metal ions (Buser et al., 1977 ▸). The inclusion of a bidentate chelating ligand (L) such as 2,2′-bipyridine (2,2′-bipy) or 1,10-phenanthroline (1,10-phen) in cyanide-containing building blocks of general formula [M(L)(CN)4]n− (n = 2, 3) instead of [M(CN)6]n− has been a recent development in the field of low-dimensionality cyanide-bridged bimetallic coordination compounds (Lescouëzec et al., 2001 ▸; Lazarides et al., 2007 ▸). The aromatic ligand L does not just block two coordination sites of the central atom, to yield one- and two-dimensional polymeric compounds, but also helps to stabilize the assembly as well as stabilizing the dimensionality of the three-dimensional supramolecular structures through aromatic π–π stacking interactions (Lescouëzec et al., 2002 ▸; Toma et al., 2004 ▸). It is also known that the non-coordinating nitrogen atoms of the cyanide groups can act as hydrogen-bond acceptors to self-assemble into various supramolecular architectures (Xiang et al., 2009 ▸).
As part of our search for novel cyanide-bridged bimetallic coordination polymers, we herein describe the synthesis and crystal structure of [N(CH3)4][Fe(CN)4(C10H8N2)]·3H2O (I) building block and a new two-dimensional cyanide-bridged cadmium–iron(II) bimetallic coordination polymer, [CdFe(CN4)(C10H8N2)(C2H8N2)2]·H2O (II), in which ethylenediamine (en) adopts both bridging and chelating coordination modes.
Structural commentary
The asymmetric unit of (I) consists of one [Fe(2,2′-bipy)(CN)4]− anion, one disordered tetramethylammonium cation, [N(CH3)4]+ and three water molecules, as displayed in Fig. 1 ▸. The FeIII ion is coordinated by two nitrogen atoms from one 2,2′-bipy ligand and four cyanide carbon atoms in a distorted octahedral geometry. This distortion around the metal atom is defined by the sum of the octahedral angular deviations from 90° (Σ), in which the trigonal distortion angle = 0 for a perfect octahedron (Marchivie et al., 2005 ▸). In (I), Σ for twelve bond angles, viz, 5C—Fe—C, 6C—Fe—N and 1N—Fe—N, is 41.03°, confirming a distorted octahedral geometry around the central FeIII ion. Another factor accounting for the distortion form ideal octahedral geometry of the FeIII atom is the acute angle subtended by the chelating 2,2′-bipy ligand, viz. N5—Fe1—N6 = 81.14 (11)°. The three trans angles [viz. C1—Fe1—N5 = 175.01 (15), C2—Fe1—N6 = 175.52 (14) and C3—Fe1—C4 = 178.06 (15)°] are bent slightly from the ideal value of 180°. The iron atom and terminal cyanido groups, viz. [Fe1—C3≡N3 = 178.7 (3) and Fe1—C4≡N4 = 179.8 (4)°] are almost linear compared to the iron atom and the corresponding equatorial cyano groups [viz. Fe1—C1—N1 = 175.8 (4) and Fe1—C2—N2 = 176.6 (4)°]. This difference is probably caused by hydrogen bonding (see below). The Fe—C bond lengths range from 1.917 (4) to 1.969 (4) Å, whereas the Fe—N bond lengths are 1.981 (3) and 1.985 (3) Å. The whole molecule of 2,2′-bipy ligand is planar with an r.m.s. deviation of 0.016 Å; the dihedral angle between the two pyridyl rings is 1.57 (18)°. Bond lengths and angles within the [Fe(2,2′-bipy)(CN)4]− anion in (I) are in agreement with those reported for other cyanido and 2,2′-bipy-containing mononuclear iron(III) complexes such as K[Fe(2,2′-bipy)(CN)4]·H2O (Toma et al., 2002 ▸), PPh4[Fe(2,2′-bipy)(CN)4]·H2O (Lescouëzec et al., 2002 ▸) and AsPPh4[Fe(2,2′-bipy)(CN)4]·CH3CN (Toma et al., 2007 ▸).
Figure 1.
The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. Dashed lines indicate O—H⋯O hydrogen bonds. Covalent bonds in the major and minor parts of the disordered are shaded differently and H atoms have been omitted for clarity. The labelling scheme A and B applied to the aromatic rings is used to identify the rings in the subsequent discussion.
Compound (II) is a new cyanido-bridged Fe–Cd bimetallic coordination polymer synthesized using the precursor complex (I) as building block in which the FeIII precursor was reduced to FeII under the crystallization conditions. The asymmetric unit contains half each of an [Fe(2,2′-bipy)(CN)4]− anion and a [Cd(en)2]2+ cation, with the molecules lying across twofold rotation axes, Fig. 2 ▸. The coordination polyhedron of FeII ion is a distorted octahedron with a Σ of 28.90°. The Fe—C—N angles for both bridging [Fe1—C1—N1 = 178.15 (14)°] and terminal [Fe1—C2—N2 = 176.85 (16)°] cyanide groups deviate slightly from strict linearity. The Fe—Ccyanide bond lengths at 1.8950 (16) and 1.9363 (17) Å are slightly shorter than the Fe—N2,2′-bipy bond length, 1.9976 (14) Å. The CdII ion is six-coordinated by two N atoms from two cyanide groups, two N atoms from a chelating en ligand and two N atoms from two different bridging en ligands in a highly distorted octahedral geometry with a Σ of 108.08°. The Cd—N bond lengths and the N—Cd—N bond angles in (II) are in the range 2.3980 (15)–2.5046 (14) Å and 73.24 (5)–157.20 (5)°, respectively. These values are comparable to those observed in compounds (Et4N)[{Fe(CN)6}3{Cd(en)}4] (Maľarová et al., 2003 ▸), [Fe(CN)6Cd(en)2] (Fu & Wang, 2005 ▸) and [{Fe(CN)6}2{Cd(en)}3]·4H2O (Maľarová et al., 2006 ▸). Each [Fe(2,2′-bipy)(CN)4]2– anion uses two cyanide groups to link [Cd(en)]2+cations, forming a chain of [Fe(2,2′-bipy)(CN)4Cd(en)] units running parallel to the a axis. Along the b axis, adjacent chains are then interconnected through the N atoms of the bridging en ligands at the Cd atoms into a two-dimensional layer of [Fe(2,2′-bipy)(CN)4Cd(en)2], as shown in Fig. 3 ▸. The layer contains hexanuclear cyclic [{Fe(CN)2}2{Cd(en)}2] units with an Fe⋯Cd distance through the cyanide bridge and a Cd⋯Cd distance through the en bridge of 5.1292 (7) and 7.6692 (12) Å, respectively. The M⋯M distances across the cyclic windows vary from 5.5614 (10) to 14.0061 (10) Å.
Figure 2.
The structures of the molecular entities in (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. The pyridine ring labelled C is discussed in the text. [Symmetry codes: (i) 1 − x, y,
− z; (ii) −x, y,
− z.]
Figure 3.
A view of the layer structure of (II) along the b axis. 2,2′-Bipy molecules and H atoms bonded to C and N atoms of the en ligands have been omitted for clarity.
Supramolecular features
The three-dimensional supramolecular structure in (I) is the result of combinations of intermolecular interactions including aromatic π–π stacking and hydrogen bonds. As can be seen in Fig. 4 ▸, pairs of [Fe(2,2′-bipy)(CN)4]− molecules are linked together through the parallel pyridyl rings of the 2,2′-bipy ligands to generate a graphite-like layers parallel to the ab plane. Within the sheets, the neighbouring pyridyl moieties related by an inversion centre are in a head-to-head arrangement with centroid (C g) to centroid distances of 4.005 (3) Å [interplanar angle = 0.0 (4)°] and 3.903 (3) Å [interplanar angle = 0.0 (3)°] for rings A⋯A i and B⋯B ii [symmetry codes: (i) −x, 2 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z], respectively. The FeIII⋯FeIII separations along the π–π stacking of parallel rings A⋯A i and rings B⋯B ii are 8.2821 (12) and 8.4572 (13) Å, respectively. The adjacent pyridyl rings A and B iii [symmetry code: (iii) x − 1, y, z] related by translation parallel to the a axis are arranged alternately in a head-to-tail manner with a C g⋯C g distance of 3.865 (2) Å [interplanar angle = 1.51 (12)°] and an FeIII⋯FeIII separation of 6.8690 (9) Å.
Figure 4.
A view of the two-dimensional anionic [Fe(2,2′-bipy)(CN)4]− graphite-like sheet structure in (I), parallel to the ab plane, with π–π interactions shown as dashed lines. H atoms have been omitted for clarity.
A notable feature of (I) is the self-assembly of the tetrameric (H2O)4 and hexameric (H2O)6 subunits into (H2O)10 units [the dihedral angle between the best plane of the (H2O)4 and (H2O)6 subunits is 55.2 (2)°]; neighbouring units are further joined together, giving rise to ladder-like water chains running parallel to the a axis. As can be seen from Fig. 5 ▸, the water molecules at O1, O1i, O2, and O2i (for symmetry code see Table 1 ▸) form centrosymmetric cyclic tetrameric units through classical O—H⋯O hydrogen bonds with an
(8) ring motif according to graph-set notation. In this unit, each water monomer acts as a single donor and a single acceptor of hydrogen bonds, and the four water molecules are perfectly coplanar (mean deviation of all non-hydrogen atoms = 0.00 Å). The average O⋯O distance in (I) is 2.805 Å. This value is comparable to the average distances for the gas-phase water tetramer (D2O)4 (2.78 Å; Liu et al., 1996 ▸), liquid water (2.85 Å; Belch & Rice, 1987 ▸) and other tetrameric water units in the solid state (2.81 Å; Tao et al., 2004 ▸, and 2.83 Å; Long et al., 2004 ▸). The average O⋯O⋯O angle is 90°, which is similar to those of the cyclic water tetramer found in liquid water and in the crystal host of metal–organic frameworks, [Cu(adipate)(4,4-bipy)]·2H2O (Long et al., 2004 ▸) and [Cd3(pbtz)3(DMF)4(H2O)2]·4DMF·4H2O (Tao et al., 2004 ▸).
Figure 5.
Self-assembly of the water tetramer (H2O)4 and hexamer (H2O)6 by O—H⋯O hydrogen bonds into the ladder-like chain, and representation of O—H⋯N hydrogen bonds between the water chain and anionic [Fe(2,2′-bipy)(CN)4]− units. See Table 1 ▸ for symmetry codes.
Table 1. Hydrogen-bond geometry (Å, °) for (I) .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C17A—H17C⋯O2i | 0.96 | 2.50 | 3.112 (11) | 122 |
| O3—H3A⋯N4 | 0.84 (1) | 2.00 (1) | 2.841 (5) | 178 (5) |
| O1—H1A⋯N1 | 0.84 (1) | 2.03 (1) | 2.859 (5) | 176 (7) |
| O3—H3B⋯O1ii | 0.85 (1) | 1.89 (1) | 2.736 (6) | 174 (7) |
| O2—H2A⋯O3 | 0.84 (1) | 1.87 (2) | 2.709 (6) | 172 (7) |
| O2—H2B⋯O1 | 0.84 (1) | 1.98 (1) | 2.818 (7) | 177 (14) |
| O1—H1B⋯O2iii | 0.84 (1) | 2.02 (6) | 2.792 (8) | 152 (11) |
Symmetry codes: (i)
; (ii)
; (iii)
.
The hexameric water unit has crystallographically imposed inversion symmetry. The six water molecules O1i, O1ii, O2, O2iii, O3, and O3iii (for symmetry codes, see Table 1 ▸) are almost coplanar with a mean deviation of 0.025 Å. Similar to the situation in the tetrameric water unit, each water molecule acts as both a single hydrogen-bond donor and acceptor, and is simultaneously involved in classical O—H⋯O interactions, leading to a cyclic
(12) hydrogen-bonding motif with an average O⋯O distance of 2.786 Å. This value is slightly shorter than the average distance for the tetrameric unit and liquid water; however, it is comparable with the distance in ice I
h (2.74 Å; Eisenberg & Kauzmann, 1969 ▸) and water trapped in a metal–organic framework (2.78 Å; Ghosh & Bharadwaj, 2003 ▸). The average O⋯O⋯O angle in the planar hexameric unit is 120°, deviating considerably from the corresponding value of 109.3° in hexagonal ice (Fletcher, 1970 ▸). Another remarkable feature in (I) is that the ladder-like water chains are incorporated with the aromatic π–π stacking graphite-like layers through classical O—H⋯N hydrogen bonds involving the lattice water molecules (O1 and O3) and the N atoms of the cyanido groups (N1 and N4), forming an
(12) ring motif. In addition, the [N(CH3)]+ cations lie above and below the water chains and take part in the formation of weak C—H⋯O hydrogen bonds with the water molecule.
For (II), classical O—H⋯N and N—H⋯O hydrogen bonds involving the lattice water molecules and N atoms of terminal cyanide groups and the N—H group of the en ligands are observed within a layer, Table 2 ▸. The layers are further linked together into a three-dimensional network via π–π stacking between adjacent pyridyl rings with C
g⋯C
g distances of 4.2925 (18) [interplanar angle = 1.55 (18)°] and 4.0642 (18) Å [interplanar angle = 0.0 (3)°] for rings C⋯C
iv and C⋯C
v [symmetry codes: (iv) 2 − x, y,
− z; (v)
− x,
− y, 1 − z], respectively, Fig. 6 ▸.
Table 2. Hydrogen-bond geometry (Å, °) for (II) .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N5—H5A⋯O1i | 0.89 | 2.20 | 3.0726 (18) | 167 |
| O1—H1⋯N2 | 0.87 (1) | 1.99 (1) | 2.8045 (19) | 156 (2) |
Symmetry code: (i)
.
Figure 6.
A portion of the crystal packing in (II) viewed in the bc plane showing π–π stacking interactions (dashed lines).
Synthesis and crystallization
The building block N(CH3)4[Fe(2,2′-bipy)(CN)4]·3H2O (I) was prepared following the procedure described for PPh4[Fe(2,2′-bipy)(CN)4]·H2O (Lescouëzec et al., 2002 ▸), except that tetramethylammonium chloride was used instead of tetraphenylphosphonium chloride. Dark-red single crystals of (I) suitable for structure determination were obtained by recrystallization from water and methanol (1:1, v/v). Analysis calculated for C18H26FeN7O: C, 48.66; H, 5.90; N, 22.07%. Found: C, 48.66; H, 5.90; N, 22.07%.
For the synthesis of (II), Cd(NO3)2·4H2O (0.062 g, 0.2 mmol) and ethylenediamine (stock solution, 0.01 ml, 0.2 mmol) were dissolved in distilled H2O (4 ml), and this was pipetted into one side of an H-tube. N(CH3)4[Fe(2,2′-bipy)(CN)4]·3H2O (0.089 g, 0.2 mmol) was dissolved in distilled H2O (4 ml), and this was pipetted into the other side arm of the H-tube. The H-tube (15 ml capacity) was then carefully filled with distilled H2O. Slow diffusion in the dark for three weeks yielded dark-yellow plate-shaped crystals of (II) suitable for X-ray crystallographic analysis. Analysis calculated for C18H26CdFeN10O: C, 38.15; H, 4.62; N, 24.72%. Found: C, 38.18; H, 4.60; N, 24.68%.
Refinement
Crystal data, data collection, and structure refinement details are summarized in Table 3 ▸. H atoms bonded to C and N atoms were placed at calculated positions and refined using a riding-model approximation, with C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 (methylene) Å and N—H = 0.89 Å, and with U iso(H) = 1.5U eq(C) for methyl groups and 1.2U eq(C, N) otherwise. For (I), the water-H atoms were located in a difference Fourier map and refined with distance restraints: O—H = 0.84 (1) Å and H⋯H = 1.39 (2) Å with U iso(H) = 1.5U eq(O). For (II), the water-H atoms were refined with restraints of O—H = 0.82 (1) Å with U iso(H) = 1.5U eq(O). The tetrametylammonium cation in (I) exhibits rotational positional disorder in three of the methyl groups, and was refined with occupancy factors of 0.440 (6) for C16A, C17A and C18A, and 0.560 (6) for atoms C16B, C17B, and C18B. Anisotropic displacement parameters of all atoms were restrained using enhanced rigid-bond restraints (RIGU command, s.u.’s 0.001 Å2; Thorn et al., 2012 ▸). The restraint SADI was also used for the disordered tetrametylammonium cation.
Table 3. Experimental details.
| (I) | (II) | |
|---|---|---|
| Crystal data | ||
| Chemical formula | (C4H12N)[Fe(CN)4(C10H8N2)]·3H2O | [CdFe(CN)4(C10H8N2)(C2H8N2)2]·H2O |
| M r | 444.31 | 566.74 |
| Crystal system, space group | Triclinic, P
|
Monoclinic, C2/c |
| Temperature (K) | 296 | 296 |
| a, b, c (Å) | 6.8690 (9), 11.9405 (16), 14.2731 (17) | 7.4184 (14), 28.534 (5), 11.094 (2) |
| α, β, γ (°) | 104.107 (4), 99.695 (4), 92.235 (4) | 90, 109.143 (6), 90 |
| V (Å3) | 1115.2 (2) | 2218.3 (7) |
| Z | 2 | 4 |
| Radiation type | Mo Kα | Mo Kα |
| μ (mm−1) | 0.71 | 1.65 |
| Crystal size (mm) | 0.22 × 0.16 × 0.08 | 0.30 × 0.26 × 0.14 |
| Data collection | ||
| Diffractometer | Bruker APEXII D8 QUEST CMOS | Bruker APEXII D8 QUEST CMOS |
| Absorption correction | Multi-scan (SADABS; Bruker, 2014 ▸) | Multi-scan (SADABS; Bruker, 2014 ▸) |
| T min, T max | 0.691, 0.745 | 0.633, 0.746 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 20120, 3982, 3015 | 51158, 2757, 2478 |
| R int | 0.072 | 0.038 |
| (sin θ/λ)max (Å−1) | 0.599 | 0.667 |
| Refinement | ||
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.053, 0.142, 1.04 | 0.020, 0.046, 1.07 |
| No. of reflections | 3982 | 2757 |
| No. of parameters | 321 | 146 |
| No. of restraints | 87 | 2 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.72, −0.59 | 0.47, −0.47 |
Supplementary Material
Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989016006848/bg2584sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006848/bg2584Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016006848/bg2584IIsup3.hkl
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This research was supported financially by a research career development grant (No. RSA5780056) from the Thailand Research Fund. SC acknowledges financial support from the Thailand Graduate Institute of Science and Technology (TGIST: TG-55–26-55–047M).
supplementary crystallographic information
(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Crystal data
| (C4H12N)[Fe(CN)4(C10H8N2)]·3H2O | Z = 2 |
| Mr = 444.31 | F(000) = 466 |
| Triclinic, P1 | Dx = 1.323 Mg m−3 |
| a = 6.8690 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 11.9405 (16) Å | Cell parameters from 9941 reflections |
| c = 14.2731 (17) Å | θ = 3.0–36.4° |
| α = 104.107 (4)° | µ = 0.71 mm−1 |
| β = 99.695 (4)° | T = 296 K |
| γ = 92.235 (4)° | Block, orange |
| V = 1115.2 (2) Å3 | 0.22 × 0.16 × 0.08 mm |
(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Data collection
| Bruker APEXII D8 QUEST CMOS diffractometer | 3982 independent reflections |
| Radiation source: microfocus sealed x-ray tube, Incoatec Iµus | 3015 reflections with I > 2σ(I) |
| GraphiteDouble Bounce Multilayer Mirror monochromator | Rint = 0.072 |
| Detector resolution: 10.5 pixels mm-1 | θmax = 25.2°, θmin = 3.0° |
| ω and φ scans | h = −8→8 |
| Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −14→14 |
| Tmin = 0.691, Tmax = 0.745 | l = −16→17 |
| 20120 measured reflections |
(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.142 | w = 1/[σ2(Fo2) + (0.0712P)2 + 0.9213P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max < 0.001 |
| 3982 reflections | Δρmax = 0.72 e Å−3 |
| 321 parameters | Δρmin = −0.59 e Å−3 |
| 87 restraints |
(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Special details
| Experimental. Absorption correction: SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0760 before and 0.0587 after correction. The Ratio of minimum to maximum transmission is 0.9266. The λ/2 correction factor is 0.00150. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Fe1 | 0.66815 (7) | 0.18786 (4) | 0.33212 (4) | 0.03351 (19) | |
| N1 | 0.3698 (6) | 0.2365 (4) | 0.1661 (3) | 0.0673 (11) | |
| N2 | 0.8300 (7) | 0.0198 (4) | 0.1707 (3) | 0.0754 (12) | |
| N3 | 0.4210 (6) | −0.0265 (3) | 0.3445 (3) | 0.0589 (9) | |
| N4 | 0.9261 (6) | 0.3973 (3) | 0.3139 (3) | 0.0596 (10) | |
| N5 | 0.8717 (4) | 0.1745 (2) | 0.4441 (2) | 0.0316 (6) | |
| N6 | 0.5553 (4) | 0.2840 (2) | 0.4410 (2) | 0.0329 (6) | |
| C1 | 0.4755 (6) | 0.2152 (3) | 0.2280 (3) | 0.0458 (9) | |
| C2 | 0.7745 (6) | 0.0849 (4) | 0.2313 (3) | 0.0467 (10) | |
| C3 | 0.5079 (5) | 0.0512 (3) | 0.3399 (2) | 0.0353 (8) | |
| C4 | 0.8320 (6) | 0.3212 (4) | 0.3207 (3) | 0.0415 (9) | |
| C5 | 1.0370 (5) | 0.1194 (3) | 0.4385 (3) | 0.0368 (8) | |
| H5 | 1.0615 | 0.0823 | 0.3768 | 0.044* | |
| C6 | 1.1713 (5) | 0.1153 (3) | 0.5197 (3) | 0.0420 (9) | |
| H6 | 1.2849 | 0.0764 | 0.5132 | 0.050* | |
| C7 | 1.1364 (6) | 0.1694 (3) | 0.6109 (3) | 0.0456 (9) | |
| H7 | 1.2248 | 0.1668 | 0.6672 | 0.055* | |
| C8 | 0.9667 (6) | 0.2285 (3) | 0.6182 (3) | 0.0449 (9) | |
| H8 | 0.9404 | 0.2664 | 0.6793 | 0.054* | |
| C9 | 0.8387 (5) | 0.2298 (3) | 0.5336 (3) | 0.0341 (8) | |
| C10 | 0.6566 (5) | 0.2913 (3) | 0.5321 (3) | 0.0346 (8) | |
| C11 | 0.5933 (6) | 0.3533 (3) | 0.6147 (3) | 0.0460 (9) | |
| H11 | 0.6665 | 0.3583 | 0.6769 | 0.055* | |
| C12 | 0.4214 (6) | 0.4078 (3) | 0.6046 (3) | 0.0495 (10) | |
| H12 | 0.3767 | 0.4498 | 0.6597 | 0.059* | |
| C13 | 0.3164 (6) | 0.3992 (3) | 0.5119 (3) | 0.0458 (10) | |
| H13 | 0.1994 | 0.4353 | 0.5034 | 0.055* | |
| C14 | 0.3861 (5) | 0.3368 (3) | 0.4321 (3) | 0.0388 (8) | |
| H14 | 0.3139 | 0.3308 | 0.3696 | 0.047* | |
| N7 | 0.7782 (5) | 0.1799 (3) | 0.9466 (2) | 0.0597 (8) | |
| C15 | 0.7397 (8) | 0.0530 (4) | 0.9254 (4) | 0.0789 (12) | |
| H15A | 0.7621 | 0.0296 | 0.9859 | 0.118* | |
| H15B | 0.8272 | 0.0161 | 0.8838 | 0.118* | |
| H15C | 0.6048 | 0.0307 | 0.8928 | 0.118* | |
| C16A | 0.901 (2) | 0.1995 (11) | 0.8753 (9) | 0.078 (2) | 0.440 (6) |
| H16A | 0.8350 | 0.1608 | 0.8099 | 0.116* | 0.440 (6) |
| H16B | 1.0272 | 0.1693 | 0.8889 | 0.116* | 0.440 (6) |
| H16C | 0.9202 | 0.2811 | 0.8809 | 0.116* | 0.440 (6) |
| C16B | 0.7816 (19) | 0.2208 (9) | 0.8579 (6) | 0.081 (2) | 0.560 (6) |
| H16D | 0.6484 | 0.2199 | 0.8237 | 0.121* | 0.560 (6) |
| H16E | 0.8551 | 0.1709 | 0.8158 | 0.121* | 0.560 (6) |
| H16F | 0.8436 | 0.2984 | 0.8760 | 0.121* | 0.560 (6) |
| C17A | 0.5779 (14) | 0.2172 (11) | 0.9193 (10) | 0.085 (2) | 0.440 (6) |
| H17A | 0.4813 | 0.1690 | 0.9361 | 0.128* | 0.440 (6) |
| H17B | 0.5497 | 0.2105 | 0.8499 | 0.128* | 0.440 (6) |
| H17C | 0.5729 | 0.2964 | 0.9542 | 0.128* | 0.440 (6) |
| C17B | 0.6394 (16) | 0.2374 (9) | 1.0058 (8) | 0.091 (2) | 0.560 (6) |
| H17D | 0.6423 | 0.3177 | 1.0052 | 0.137* | 0.560 (6) |
| H17E | 0.6766 | 0.2312 | 1.0721 | 0.137* | 0.560 (6) |
| H17F | 0.5079 | 0.2011 | 0.9789 | 0.137* | 0.560 (6) |
| C18A | 0.846 (2) | 0.2542 (10) | 1.0479 (6) | 0.080 (2) | 0.440 (6) |
| H18A | 0.8136 | 0.3322 | 1.0500 | 0.120* | 0.440 (6) |
| H18B | 0.9863 | 0.2531 | 1.0664 | 0.120* | 0.440 (6) |
| H18C | 0.7803 | 0.2253 | 1.0927 | 0.120* | 0.440 (6) |
| C18B | 0.9780 (11) | 0.1987 (8) | 1.0119 (7) | 0.0764 (19) | 0.560 (6) |
| H18D | 1.0251 | 0.2790 | 1.0273 | 0.115* | 0.560 (6) |
| H18E | 1.0690 | 0.1522 | 0.9787 | 0.115* | 0.560 (6) |
| H18F | 0.9678 | 0.1770 | 1.0715 | 0.115* | 0.560 (6) |
| O3 | 1.0432 (6) | 0.5315 (3) | 0.1904 (3) | 0.0675 (9) | |
| O1 | 0.3484 (7) | 0.4452 (4) | 0.1018 (4) | 0.0881 (12) | |
| O2 | 0.6905 (8) | 0.5827 (5) | 0.1007 (4) | 0.1151 (16) | |
| H3A | 1.007 (7) | 0.491 (3) | 0.226 (3) | 0.076 (16)* | |
| H1A | 0.360 (10) | 0.384 (3) | 0.120 (4) | 0.12 (2)* | |
| H3B | 1.134 (9) | 0.500 (6) | 0.162 (5) | 0.19 (4)* | |
| H2A | 0.795 (6) | 0.561 (6) | 0.129 (5) | 0.15 (3)* | |
| H2B | 0.588 (7) | 0.543 (9) | 0.103 (9) | 0.28 (7)* | |
| H1B | 0.296 (16) | 0.432 (6) | 0.042 (2) | 0.23 (6)* |
(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Fe1 | 0.0330 (3) | 0.0381 (3) | 0.0315 (3) | 0.0052 (2) | 0.0066 (2) | 0.0119 (2) |
| N1 | 0.064 (3) | 0.084 (3) | 0.055 (2) | 0.008 (2) | −0.008 (2) | 0.031 (2) |
| N2 | 0.082 (3) | 0.089 (3) | 0.053 (2) | 0.024 (2) | 0.025 (2) | 0.003 (2) |
| N3 | 0.055 (2) | 0.056 (2) | 0.066 (2) | −0.0004 (19) | 0.0092 (19) | 0.0178 (19) |
| N4 | 0.054 (2) | 0.060 (2) | 0.077 (3) | 0.0019 (19) | 0.019 (2) | 0.035 (2) |
| N5 | 0.0305 (15) | 0.0323 (15) | 0.0343 (15) | 0.0044 (12) | 0.0081 (13) | 0.0111 (13) |
| N6 | 0.0304 (15) | 0.0314 (16) | 0.0389 (16) | 0.0045 (12) | 0.0072 (13) | 0.0119 (13) |
| C1 | 0.047 (2) | 0.051 (2) | 0.041 (2) | 0.0047 (19) | 0.0058 (19) | 0.0161 (19) |
| C2 | 0.048 (2) | 0.053 (2) | 0.036 (2) | 0.0061 (19) | 0.0045 (19) | 0.0080 (19) |
| C3 | 0.0358 (19) | 0.039 (2) | 0.0297 (18) | 0.0055 (17) | 0.0033 (15) | 0.0075 (16) |
| C4 | 0.038 (2) | 0.052 (2) | 0.038 (2) | 0.0141 (18) | 0.0082 (17) | 0.0172 (18) |
| C5 | 0.0346 (19) | 0.037 (2) | 0.042 (2) | 0.0053 (15) | 0.0102 (16) | 0.0131 (16) |
| C6 | 0.0337 (19) | 0.041 (2) | 0.057 (2) | 0.0072 (16) | 0.0088 (18) | 0.0224 (19) |
| C7 | 0.041 (2) | 0.053 (2) | 0.046 (2) | 0.0026 (18) | −0.0016 (18) | 0.026 (2) |
| C8 | 0.045 (2) | 0.054 (2) | 0.037 (2) | 0.0031 (18) | 0.0056 (18) | 0.0144 (18) |
| C9 | 0.0322 (18) | 0.0364 (19) | 0.0345 (18) | 0.0009 (15) | 0.0042 (15) | 0.0121 (15) |
| C10 | 0.0330 (18) | 0.0348 (19) | 0.0382 (19) | 0.0023 (15) | 0.0096 (16) | 0.0116 (16) |
| C11 | 0.050 (2) | 0.050 (2) | 0.037 (2) | 0.0049 (19) | 0.0113 (18) | 0.0074 (18) |
| C12 | 0.048 (2) | 0.046 (2) | 0.054 (3) | 0.0067 (19) | 0.024 (2) | 0.0024 (19) |
| C13 | 0.037 (2) | 0.037 (2) | 0.067 (3) | 0.0083 (17) | 0.017 (2) | 0.0128 (19) |
| C14 | 0.0310 (18) | 0.039 (2) | 0.049 (2) | 0.0039 (16) | 0.0074 (17) | 0.0156 (17) |
| N7 | 0.0690 (19) | 0.0535 (17) | 0.0545 (17) | 0.0007 (15) | 0.0077 (15) | 0.0133 (14) |
| C15 | 0.089 (3) | 0.0683 (19) | 0.078 (3) | 0.0004 (17) | 0.014 (2) | 0.0188 (17) |
| C16A | 0.092 (4) | 0.069 (4) | 0.074 (4) | 0.003 (3) | 0.023 (3) | 0.018 (3) |
| C16B | 0.100 (5) | 0.076 (4) | 0.067 (3) | −0.001 (4) | 0.010 (3) | 0.024 (3) |
| C17A | 0.084 (3) | 0.085 (4) | 0.079 (4) | 0.012 (3) | 0.006 (2) | 0.012 (3) |
| C17B | 0.100 (4) | 0.097 (4) | 0.081 (4) | 0.024 (3) | 0.024 (3) | 0.023 (3) |
| C18A | 0.086 (5) | 0.081 (4) | 0.065 (2) | −0.006 (3) | 0.010 (2) | 0.008 (2) |
| C18B | 0.082 (3) | 0.068 (4) | 0.074 (3) | 0.002 (2) | 0.004 (2) | 0.015 (3) |
| O3 | 0.075 (2) | 0.068 (2) | 0.070 (2) | 0.0046 (18) | 0.0206 (19) | 0.0325 (18) |
| O1 | 0.083 (3) | 0.089 (3) | 0.116 (4) | 0.025 (2) | 0.035 (3) | 0.058 (3) |
| O2 | 0.078 (3) | 0.146 (4) | 0.142 (4) | 0.012 (3) | 0.006 (3) | 0.084 (4) |
(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Geometric parameters (Å, º)
| Fe1—N5 | 1.981 (3) | N7—C16B | 1.468 (6) |
| Fe1—N6 | 1.985 (3) | N7—C17A | 1.482 (7) |
| Fe1—C1 | 1.917 (4) | N7—C17B | 1.460 (7) |
| Fe1—C2 | 1.917 (4) | N7—C18A | 1.486 (7) |
| Fe1—C3 | 1.969 (4) | N7—C18B | 1.498 (6) |
| Fe1—C4 | 1.969 (4) | C15—H15A | 0.9600 |
| N1—C1 | 1.132 (5) | C15—H15B | 0.9600 |
| N2—C2 | 1.142 (5) | C15—H15C | 0.9600 |
| N3—C3 | 1.105 (5) | C16A—H16A | 0.9600 |
| N4—C4 | 1.127 (5) | C16A—H16B | 0.9600 |
| N5—C5 | 1.339 (4) | C16A—H16C | 0.9600 |
| N5—C9 | 1.349 (4) | C16B—H16D | 0.9600 |
| N6—C10 | 1.348 (4) | C16B—H16E | 0.9600 |
| N6—C14 | 1.346 (4) | C16B—H16F | 0.9600 |
| C5—H5 | 0.9300 | C17A—H17A | 0.9600 |
| C5—C6 | 1.367 (5) | C17A—H17B | 0.9600 |
| C6—H6 | 0.9300 | C17A—H17C | 0.9600 |
| C6—C7 | 1.370 (5) | C17B—H17D | 0.9600 |
| C7—H7 | 0.9300 | C17B—H17E | 0.9600 |
| C7—C8 | 1.391 (5) | C17B—H17F | 0.9600 |
| C8—H8 | 0.9300 | C18A—H18A | 0.9600 |
| C8—C9 | 1.372 (5) | C18A—H18B | 0.9600 |
| C9—C10 | 1.475 (5) | C18A—H18C | 0.9600 |
| C10—C11 | 1.379 (5) | C18B—H18D | 0.9600 |
| C11—H11 | 0.9300 | C18B—H18E | 0.9600 |
| C11—C12 | 1.373 (6) | C18B—H18F | 0.9600 |
| C12—H12 | 0.9300 | O3—H3A | 0.840 (10) |
| C12—C13 | 1.374 (6) | O3—H3B | 0.847 (10) |
| C13—H13 | 0.9300 | O1—H1A | 0.836 (10) |
| C13—C14 | 1.371 (5) | O1—H1B | 0.838 (10) |
| C14—H14 | 0.9300 | O2—H2A | 0.842 (10) |
| N7—C15 | 1.475 (5) | O2—H2B | 0.840 (10) |
| N7—C16A | 1.481 (7) | ||
| N5—Fe1—N6 | 81.14 (11) | C15—N7—C17A | 102.4 (6) |
| C1—Fe1—N5 | 175.01 (15) | C15—N7—C18A | 122.6 (6) |
| C1—Fe1—N6 | 95.97 (14) | C15—N7—C18B | 101.2 (5) |
| C1—Fe1—C2 | 86.42 (17) | C16A—N7—C17A | 108.8 (8) |
| C1—Fe1—C3 | 92.47 (15) | C16A—N7—C18A | 114.0 (8) |
| C1—Fe1—C4 | 87.33 (16) | C16B—N7—C15 | 112.9 (5) |
| C2—Fe1—N5 | 96.73 (14) | C16B—N7—C18B | 111.8 (7) |
| C2—Fe1—N6 | 175.52 (14) | C17A—N7—C18A | 102.4 (8) |
| C2—Fe1—C3 | 86.72 (16) | C17B—N7—C15 | 110.2 (6) |
| C2—Fe1—C4 | 91.34 (17) | C17B—N7—C16B | 112.9 (7) |
| C3—Fe1—N5 | 91.57 (13) | C17B—N7—C18B | 107.1 (6) |
| C3—Fe1—N6 | 89.39 (13) | N7—C15—H15A | 109.5 |
| C4—Fe1—N5 | 88.73 (13) | N7—C15—H15B | 109.5 |
| C4—Fe1—N6 | 92.55 (13) | N7—C15—H15C | 109.5 |
| C4—Fe1—C3 | 178.06 (15) | H15A—C15—H15B | 109.5 |
| C5—N5—Fe1 | 126.4 (2) | H15A—C15—H15C | 109.5 |
| C5—N5—C9 | 118.4 (3) | H15B—C15—H15C | 109.5 |
| C9—N5—Fe1 | 115.1 (2) | N7—C16A—H16A | 109.5 |
| C10—N6—Fe1 | 115.3 (2) | N7—C16A—H16B | 109.5 |
| C14—N6—Fe1 | 126.3 (3) | N7—C16A—H16C | 109.5 |
| C14—N6—C10 | 118.3 (3) | H16A—C16A—H16B | 109.5 |
| N1—C1—Fe1 | 175.8 (4) | H16A—C16A—H16C | 109.5 |
| N2—C2—Fe1 | 176.6 (4) | H16B—C16A—H16C | 109.5 |
| N3—C3—Fe1 | 178.7 (3) | N7—C16B—H16D | 109.5 |
| N4—C4—Fe1 | 179.8 (4) | N7—C16B—H16E | 109.5 |
| N5—C5—H5 | 118.7 | N7—C16B—H16F | 109.5 |
| N5—C5—C6 | 122.7 (3) | H16D—C16B—H16E | 109.5 |
| C6—C5—H5 | 118.7 | H16D—C16B—H16F | 109.5 |
| C5—C6—H6 | 120.5 | H16E—C16B—H16F | 109.5 |
| C5—C6—C7 | 119.1 (3) | N7—C17A—H17A | 109.5 |
| C7—C6—H6 | 120.5 | N7—C17A—H17B | 109.5 |
| C6—C7—H7 | 120.5 | N7—C17A—H17C | 109.5 |
| C6—C7—C8 | 119.1 (4) | H17A—C17A—H17B | 109.5 |
| C8—C7—H7 | 120.5 | H17A—C17A—H17C | 109.5 |
| C7—C8—H8 | 120.6 | H17B—C17A—H17C | 109.5 |
| C9—C8—C7 | 118.8 (4) | N7—C17B—H17D | 109.5 |
| C9—C8—H8 | 120.6 | N7—C17B—H17E | 109.5 |
| N5—C9—C8 | 121.9 (3) | N7—C17B—H17F | 109.5 |
| N5—C9—C10 | 114.4 (3) | H17D—C17B—H17E | 109.5 |
| C8—C9—C10 | 123.7 (3) | H17D—C17B—H17F | 109.5 |
| N6—C10—C9 | 114.0 (3) | H17E—C17B—H17F | 109.5 |
| N6—C10—C11 | 121.6 (3) | N7—C18A—H18A | 109.5 |
| C11—C10—C9 | 124.4 (3) | N7—C18A—H18B | 109.5 |
| C10—C11—H11 | 120.2 | N7—C18A—H18C | 109.5 |
| C12—C11—C10 | 119.5 (4) | H18A—C18A—H18B | 109.5 |
| C12—C11—H11 | 120.2 | H18A—C18A—H18C | 109.5 |
| C11—C12—H12 | 120.5 | H18B—C18A—H18C | 109.5 |
| C11—C12—C13 | 119.0 (4) | N7—C18B—H18D | 109.5 |
| C13—C12—H12 | 120.5 | N7—C18B—H18E | 109.5 |
| C12—C13—H13 | 120.4 | N7—C18B—H18F | 109.5 |
| C14—C13—C12 | 119.2 (4) | H18D—C18B—H18E | 109.5 |
| C14—C13—H13 | 120.4 | H18D—C18B—H18F | 109.5 |
| N6—C14—C13 | 122.4 (4) | H18E—C18B—H18F | 109.5 |
| N6—C14—H14 | 118.8 | H3A—O3—H3B | 109 (3) |
| C13—C14—H14 | 118.8 | H1A—O1—H1B | 112 (3) |
| C15—N7—C16A | 105.4 (6) | H2A—O2—H2B | 112 (3) |
| Fe1—N5—C5—C6 | 179.2 (3) | C6—C7—C8—C9 | 0.5 (6) |
| Fe1—N5—C9—C8 | −179.9 (3) | C7—C8—C9—N5 | 0.8 (6) |
| Fe1—N5—C9—C10 | −0.3 (4) | C7—C8—C9—C10 | −178.8 (3) |
| Fe1—N6—C10—C9 | 2.4 (4) | C8—C9—C10—N6 | 178.2 (3) |
| Fe1—N6—C10—C11 | −178.8 (3) | C8—C9—C10—C11 | −0.5 (6) |
| Fe1—N6—C14—C13 | 178.2 (3) | C9—N5—C5—C6 | 1.2 (5) |
| N5—C5—C6—C7 | 0.1 (5) | C9—C10—C11—C12 | 179.7 (3) |
| N5—C9—C10—N6 | −1.4 (4) | C10—N6—C14—C13 | 1.4 (5) |
| N5—C9—C10—C11 | 179.8 (3) | C10—C11—C12—C13 | −0.1 (6) |
| N6—C10—C11—C12 | 1.0 (6) | C11—C12—C13—C14 | −0.1 (6) |
| C5—N5—C9—C8 | −1.7 (5) | C12—C13—C14—N6 | −0.5 (6) |
| C5—N5—C9—C10 | 178.0 (3) | C14—N6—C10—C9 | 179.6 (3) |
| C5—C6—C7—C8 | −1.0 (6) | C14—N6—C10—C11 | −1.6 (5) |
(I) Tetramethylammonium (2,2'-bipyridine-κ2N,N')tetracyanidoferrate(III) trihydrate . Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C17A—H17C···O2i | 0.96 | 2.50 | 3.112 (11) | 122 |
| O3—H3A···N4 | 0.84 (1) | 2.00 (1) | 2.841 (5) | 178 (5) |
| O1—H1A···N1 | 0.84 (1) | 2.03 (1) | 2.859 (5) | 176 (7) |
| O3—H3B···O1ii | 0.85 (1) | 1.89 (1) | 2.736 (6) | 174 (7) |
| O2—H2A···O3 | 0.84 (1) | 1.87 (2) | 2.709 (6) | 172 (7) |
| O2—H2B···O1 | 0.84 (1) | 1.98 (1) | 2.818 (7) | 177 (14) |
| O1—H1B···O2iii | 0.84 (1) | 2.02 (6) | 2.792 (8) | 152 (11) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z.
(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Crystal data
| [CdFe(CN)4(C10H8N2)(C2H8N2)2]·H2O | F(000) = 1144 |
| Mr = 566.74 | Dx = 1.697 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.4184 (14) Å | Cell parameters from 9748 reflections |
| b = 28.534 (5) Å | θ = 3.0–30.3° |
| c = 11.094 (2) Å | µ = 1.65 mm−1 |
| β = 109.143 (6)° | T = 296 K |
| V = 2218.3 (7) Å3 | Block, dark red |
| Z = 4 | 0.3 × 0.26 × 0.14 mm |
(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Data collection
| Bruker APEXII D8 QUEST CMOS diffractometer | 2757 independent reflections |
| Radiation source: microfocus sealed x-ray tube, Incoatec Iµus | 2478 reflections with I > 2σ(I) |
| GraphiteDouble Bounce Multilayer Mirror monochromator | Rint = 0.038 |
| Detector resolution: 10.5 pixels mm-1 | θmax = 28.3°, θmin = 3.0° |
| φ and ω scans | h = −9→9 |
| Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −38→37 |
| Tmin = 0.633, Tmax = 0.746 | l = −14→14 |
| 51158 measured reflections |
(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.020 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.046 | w = 1/[σ2(Fo2) + (0.0207P)2 + 2.0817P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.07 | (Δ/σ)max = 0.004 |
| 2757 reflections | Δρmax = 0.47 e Å−3 |
| 146 parameters | Δρmin = −0.47 e Å−3 |
| 2 restraints |
(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Special details
| Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0955 before and 0.0483 after correction. The Ratio of minimum to maximum transmission is 0.8480. The λ/2 correction factor is 0.00150. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cd1 | 1.0000 | 0.49884 (2) | 0.7500 | 0.02579 (6) | |
| Fe1 | 0.5000 | 0.37467 (2) | 0.7500 | 0.02273 (7) | |
| N4 | 0.75926 (17) | 0.48296 (5) | 0.56872 (12) | 0.0267 (3) | |
| H4A | 0.7937 | 0.4917 | 0.5024 | 0.032* | |
| H4B | 0.7400 | 0.4521 | 0.5632 | 0.032* | |
| N3 | 0.3184 (2) | 0.32132 (5) | 0.68950 (13) | 0.0302 (3) | |
| N1 | 0.8094 (2) | 0.44919 (5) | 0.85021 (13) | 0.0322 (3) | |
| N5 | 0.9225 (2) | 0.56629 (5) | 0.85229 (14) | 0.0366 (3) | |
| H5A | 0.7964 | 0.5699 | 0.8271 | 0.044* | |
| H5B | 0.9639 | 0.5621 | 0.9365 | 0.044* | |
| C8 | 0.5794 (2) | 0.50634 (5) | 0.56058 (14) | 0.0268 (3) | |
| H8A | 0.5983 | 0.5400 | 0.5636 | 0.032* | |
| H8B | 0.5425 | 0.4975 | 0.6336 | 0.032* | |
| C1 | 0.6899 (2) | 0.42120 (5) | 0.81322 (14) | 0.0247 (3) | |
| N2 | 0.5958 (3) | 0.37056 (6) | 0.49974 (16) | 0.0510 (4) | |
| C2 | 0.5568 (2) | 0.37319 (5) | 0.59168 (15) | 0.0304 (3) | |
| C7 | 0.3972 (3) | 0.27812 (6) | 0.71567 (17) | 0.0359 (4) | |
| C3 | 0.1298 (3) | 0.32437 (7) | 0.62837 (18) | 0.0397 (4) | |
| H3 | 0.0746 | 0.3539 | 0.6117 | 0.048* | |
| C4 | 0.0142 (3) | 0.28557 (8) | 0.5892 (2) | 0.0524 (5) | |
| H4 | −0.1158 | 0.2891 | 0.5466 | 0.063* | |
| C9 | 1.0114 (3) | 0.60852 (6) | 0.82011 (18) | 0.0441 (4) | |
| H9A | 1.1459 | 0.6092 | 0.8702 | 0.053* | |
| H9B | 0.9517 | 0.6363 | 0.8406 | 0.053* | |
| C6 | 0.2860 (3) | 0.23784 (7) | 0.6780 (2) | 0.0531 (5) | |
| H6 | 0.3422 | 0.2084 | 0.6963 | 0.064* | |
| C5 | 0.0941 (4) | 0.24163 (8) | 0.6142 (2) | 0.0593 (6) | |
| H5 | 0.0193 | 0.2150 | 0.5883 | 0.071* | |
| O1 | 0.5000 | 0.40519 (9) | 0.2500 | 0.0599 (6) | |
| H1 | 0.510 (5) | 0.3877 (6) | 0.3156 (11) | 0.093 (10)* |
(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cd1 | 0.01948 (8) | 0.02751 (9) | 0.02482 (9) | 0.000 | −0.00030 (6) | 0.000 |
| Fe1 | 0.02656 (15) | 0.01792 (14) | 0.02166 (14) | 0.000 | 0.00513 (11) | 0.000 |
| N4 | 0.0199 (6) | 0.0310 (7) | 0.0259 (6) | 0.0007 (5) | 0.0030 (5) | −0.0003 (5) |
| N3 | 0.0388 (8) | 0.0243 (6) | 0.0276 (7) | −0.0063 (6) | 0.0111 (6) | −0.0029 (5) |
| N1 | 0.0300 (7) | 0.0325 (7) | 0.0321 (7) | −0.0047 (6) | 0.0074 (6) | 0.0002 (6) |
| N5 | 0.0442 (9) | 0.0326 (8) | 0.0365 (8) | 0.0031 (6) | 0.0178 (7) | 0.0032 (6) |
| C8 | 0.0190 (7) | 0.0330 (8) | 0.0239 (7) | 0.0019 (6) | 0.0009 (6) | −0.0024 (6) |
| C1 | 0.0270 (7) | 0.0246 (7) | 0.0214 (7) | 0.0042 (6) | 0.0066 (6) | 0.0024 (6) |
| N2 | 0.0791 (13) | 0.0434 (9) | 0.0369 (9) | 0.0018 (9) | 0.0277 (9) | 0.0007 (7) |
| C2 | 0.0373 (8) | 0.0218 (7) | 0.0292 (8) | −0.0003 (6) | 0.0072 (7) | 0.0009 (6) |
| C7 | 0.0507 (10) | 0.0233 (8) | 0.0370 (9) | −0.0040 (7) | 0.0188 (8) | −0.0015 (7) |
| C3 | 0.0390 (10) | 0.0344 (9) | 0.0411 (10) | −0.0077 (8) | 0.0069 (8) | −0.0013 (7) |
| C4 | 0.0465 (11) | 0.0498 (12) | 0.0560 (13) | −0.0194 (9) | 0.0100 (10) | −0.0085 (10) |
| C9 | 0.0634 (13) | 0.0291 (9) | 0.0427 (11) | −0.0014 (8) | 0.0213 (9) | −0.0030 (7) |
| C6 | 0.0699 (15) | 0.0250 (9) | 0.0675 (14) | −0.0094 (9) | 0.0265 (12) | −0.0060 (9) |
| C5 | 0.0670 (15) | 0.0395 (11) | 0.0710 (15) | −0.0264 (10) | 0.0222 (12) | −0.0154 (10) |
| O1 | 0.0733 (15) | 0.0704 (15) | 0.0342 (11) | 0.000 | 0.0151 (11) | 0.000 |
(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Geometric parameters (Å, º)
| Cd1—N4i | 2.2546 (13) | N5—H5B | 0.8900 |
| Cd1—N4 | 2.2547 (13) | N5—C9 | 1.473 (2) |
| Cd1—N1i | 2.5046 (14) | C8—C8iii | 1.512 (3) |
| Cd1—N1 | 2.5045 (14) | C8—H8A | 0.9700 |
| Cd1—N5i | 2.3981 (15) | C8—H8B | 0.9700 |
| Cd1—N5 | 2.3980 (15) | N2—C2 | 1.150 (2) |
| Fe1—N3 | 1.9976 (14) | C7—C7ii | 1.465 (4) |
| Fe1—N3ii | 1.9976 (14) | C7—C6 | 1.396 (3) |
| Fe1—C1ii | 1.8951 (16) | C3—H3 | 0.9300 |
| Fe1—C1 | 1.8950 (16) | C3—C4 | 1.380 (3) |
| Fe1—C2ii | 1.9362 (17) | C4—H4 | 0.9300 |
| Fe1—C2 | 1.9363 (17) | C4—C5 | 1.376 (3) |
| N4—H4A | 0.8900 | C9—C9i | 1.509 (4) |
| N4—H4B | 0.8900 | C9—H9A | 0.9700 |
| N4—C8 | 1.4681 (19) | C9—H9B | 0.9700 |
| N3—C7 | 1.354 (2) | C6—H6 | 0.9300 |
| N3—C3 | 1.343 (2) | C6—C5 | 1.370 (3) |
| N1—C1 | 1.163 (2) | C5—H5 | 0.9300 |
| N5—H5A | 0.8900 | O1—H1 | 0.865 (9) |
| N4i—Cd1—N4 | 156.82 (7) | C3—N3—C7 | 118.18 (15) |
| N4i—Cd1—N1i | 83.39 (5) | C1—N1—Cd1 | 135.03 (12) |
| N4i—Cd1—N1 | 83.56 (5) | Cd1—N5—H5A | 109.6 |
| N4—Cd1—N1 | 83.39 (5) | Cd1—N5—H5B | 109.6 |
| N4—Cd1—N1i | 83.56 (5) | H5A—N5—H5B | 108.1 |
| N4i—Cd1—N5 | 88.96 (5) | C9—N5—Cd1 | 110.25 (11) |
| N4—Cd1—N5i | 88.96 (5) | C9—N5—H5A | 109.6 |
| N4—Cd1—N5 | 109.92 (5) | C9—N5—H5B | 109.6 |
| N4i—Cd1—N5i | 109.91 (5) | N4—C8—C8iii | 111.91 (16) |
| N1—Cd1—N1i | 111.12 (7) | N4—C8—H8A | 109.2 |
| N5—Cd1—N1i | 157.20 (5) | N4—C8—H8B | 109.2 |
| N5i—Cd1—N1i | 89.20 (5) | C8iii—C8—H8A | 109.2 |
| N5i—Cd1—N1 | 157.20 (5) | C8iii—C8—H8B | 109.2 |
| N5—Cd1—N1 | 89.20 (5) | H8A—C8—H8B | 107.9 |
| N5—Cd1—N5i | 73.24 (7) | N1—C1—Fe1 | 178.15 (14) |
| N3—Fe1—N3ii | 80.69 (8) | N2—C2—Fe1 | 176.85 (16) |
| C1ii—Fe1—N3 | 94.13 (6) | N3—C7—C7ii | 114.47 (10) |
| C1—Fe1—N3ii | 94.12 (6) | N3—C7—C6 | 120.93 (18) |
| C1ii—Fe1—N3ii | 174.82 (6) | C6—C7—C7ii | 124.60 (13) |
| C1—Fe1—N3 | 174.81 (6) | N3—C3—H3 | 118.5 |
| C1—Fe1—C1ii | 91.06 (9) | N3—C3—C4 | 122.95 (19) |
| C1ii—Fe1—C2 | 92.07 (6) | C4—C3—H3 | 118.5 |
| C1—Fe1—C2 | 89.69 (7) | C3—C4—H4 | 120.5 |
| C1ii—Fe1—C2ii | 89.69 (7) | C5—C4—C3 | 119.0 (2) |
| C1—Fe1—C2ii | 92.07 (7) | C5—C4—H4 | 120.5 |
| C2ii—Fe1—N3ii | 90.11 (6) | N5—C9—C9i | 110.03 (14) |
| C2—Fe1—N3ii | 87.98 (6) | N5—C9—H9A | 109.7 |
| C2—Fe1—N3 | 90.11 (6) | N5—C9—H9B | 109.7 |
| C2ii—Fe1—N3 | 87.98 (6) | C9i—C9—H9A | 109.7 |
| C2ii—Fe1—C2 | 177.49 (9) | C9i—C9—H9B | 109.7 |
| Cd1—N4—H4A | 108.8 | H9A—C9—H9B | 108.2 |
| Cd1—N4—H4B | 108.8 | C7—C6—H6 | 120.0 |
| H4A—N4—H4B | 107.7 | C5—C6—C7 | 120.1 (2) |
| C8—N4—Cd1 | 113.68 (9) | C5—C6—H6 | 120.0 |
| C8—N4—H4A | 108.8 | C4—C5—H5 | 120.6 |
| C8—N4—H4B | 108.8 | C6—C5—C4 | 118.82 (19) |
| C7—N3—Fe1 | 115.19 (12) | C6—C5—H5 | 120.6 |
| C3—N3—Fe1 | 126.62 (12) | ||
| Cd1—N4—C8—C8iii | −178.38 (14) | C7—N3—C3—C4 | −1.2 (3) |
| Cd1—N5—C9—C9i | 43.1 (2) | C7ii—C7—C6—C5 | 179.9 (2) |
| Fe1—N3—C7—C7ii | 0.1 (2) | C7—C6—C5—C4 | −0.5 (4) |
| Fe1—N3—C7—C6 | −179.70 (15) | C3—N3—C7—C7ii | −179.03 (18) |
| Fe1—N3—C3—C4 | 179.74 (15) | C3—N3—C7—C6 | 1.2 (3) |
| N3—C7—C6—C5 | −0.3 (3) | C3—C4—C5—C6 | 0.4 (4) |
| N3—C3—C4—C5 | 0.4 (3) |
Symmetry codes: (i) −x+2, y, −z+3/2; (ii) −x+1, y, −z+3/2; (iii) −x+1, −y+1, −z+1.
(II) Poly[[(2,2'-bipyridine-κ2N,N')di-µ2-cyanido-dicyanido(µ-ethylenediamine)(ethylenediamine-κ2N,N')cadmium(II)iron(II)] monohydrate] . Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N5—H5A···O1iii | 0.89 | 2.20 | 3.0726 (18) | 167 |
| O1—H1···N2 | 0.87 (1) | 1.99 (1) | 2.8045 (19) | 156 (2) |
Symmetry code: (iii) −x+1, −y+1, −z+1.
References
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Belch, A. C. & Rice, S. A. (1987). J. Chem. Phys. 86, 5676–5682.
- Berlinguette, C. P., Dragulescu-Andrasi, A., Sieber, A., Güdel, H.-U., Achim, C. & Dunbar, K. R. (2005). J. Am. Chem. Soc. 127, 6766–6779. [DOI] [PubMed]
- Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buser, H. J., Schwarzenbach, D., Petter, W. & Ludi, A. (1977). Inorg. Chem. 16, 2704–2710.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Eisenberg, D. & Kauzmann, W. (1969). In The Structure and Properties of Water. Oxford University Press.
- Fletcher, N. H. (1970). In The Chemical Physics of Ice. Cambridge University Press.
- Fu, A.-Y. & Wang, D.-Q. (2005). Z. Kristallogr. New Cryst. Struct. 220, 501–502.
- Ghosh, S. K. & Bharadwaj, P. K. (2003). Inorg. Chem. 42, 8250–8254. [DOI] [PubMed]
- Lazarides, T., Easun, T. L., Veyne-Marti, C., Alsindi, W. Z., George, M. W., Deppermann, N., Hunter, C. A., Adams, H. & Ward, M. D. (2007). J. Am. Chem. Soc. 129, 4014–4027. [DOI] [PubMed]
- Lescouëzec, R., Lloret, F., Julve, M., Vaissermann, J. & Verdaguer, M. (2002). Inorg. Chem. 41, 818–826. [DOI] [PubMed]
- Lescouëzec, R., Lloret, F., Julve, M., Vaissermann, J., Verdaguer, M., Llusar, R. & Uriel, S. (2001). Inorg. Chem. 40, 2065–2072. [DOI] [PubMed]
- Liu, K., Cruzan, J. D. & Saykally, R. J. (1996). Science, 271, 929–933. [DOI] [PubMed]
- Long, L. S., Wu, Y. R., Huang, G. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 3798–3800. [DOI] [PubMed]
- Maľarová, M., Černák, J. & Massa, W. (2006). Acta Cryst. C62, m119–m121. [DOI] [PubMed]
- Maľarová, M., Kuchár, J., Černák, J. & Massa, W. (2003). Acta Cryst. C59, m280–m282. [DOI] [PubMed]
- Marchivie, M., Guionneau, P., Létard, J.-F. & Chasseau, D. (2005). Acta Cryst. B61, 25–28. [DOI] [PubMed]
- Ohba, M. & Ōkawa, H. (2000). Coord. Chem. Rev. 198, 313–328.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Smith, J. A., Galán-Mascarós, J.-R., Clérac, R. & Dunbar, K. R. (2000). Chem. Commun. pp. 1077–1078.
- Tao, J., Ma, Z.-J., Huang, R.-B. & Zheng, L.-S. (2004). Inorg. Chem. 43, 6133–6135. [DOI] [PubMed]
- Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.
- Toma, L. M., Delgado, F. S., Ruiz-Pérez, C., Carrasco, R., Cano, J., Lloret, F. & Julve, M. (2004). Dalton Trans. pp. 2836–2846. [DOI] [PubMed]
- Toma, L. M., Lescouëzec, R., Toma, L. D., Lloret, F., Julve, M., Vaissermann, J. & Andruh, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3171–3176.
- Toma, L. M., Lescouëzec, R., Uriel, S., Llusar, R., Ruiz-Pérez, C., Vaissermann, J., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 3690–3698. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Xiang, H., Wang, S.-J., Jiang, L., Feng, X.-L. & Lu, T.-B. (2009). Eur. J. Inorg. Chem. pp. 2074–2082.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989016006848/bg2584sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006848/bg2584Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016006848/bg2584IIsup3.hkl
Additional supporting information: crystallographic information; 3D view; checkCIF report







