Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 May 20;72(Pt 6):829–832. doi: 10.1107/S2056989016007556

Crystal structure of (1RS,21SR,22RS,24SR)-28-oxo-24-propyl-8,11,14-trioxa-24,27-di­aza­penta­cyclo[19.5.1.122,26.02,7.015,20]octa­cosa-2,4,6,15(20),16,18-hexa­ene acetic acid monosolvate

Truong Hong Hieu a,*, Le Tuan Anh b, Anatoly T Soldatenkov c, Nguyen Van Tuyen a, Victor N Khrustalev d,e
PMCID: PMC4908554  PMID: 27308052

The crystal structure of a product of the Petrenko–Kritchenko condensation of N-propyl­piperidone with 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane and ammonium acetate was studied by X-ray diffraction

Keywords: crystal structure, Petrenko–Kritchenko condensation, aza-14-crown-3-ether

Abstract

The title compound, C26H32N2O4(M)·C2H4O2, (I), is the product of the Petrenko–Kritchenko condensation of N-propyl­piperidinone with 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane and ammonium acetate. In M, the aza-14-crown-3-ether ring adopts a bowl conformation, with the configuration of the C—O—C—C —O—C—C—O—C polyether chain being tg (−)ttg (+)t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 62.75 (5)°. The central piperidinone ring has a boat conformation, whereas the terminal piperidinone ring adopts a chair conformation. The boat conformation of the central piperidinone ring is supported by the bifurcated intra­molecular N—H⋯O hydrogen bond. In the crystal, each solvent mol­ecule is linked to mol­ecule M via strong O—H⋯N hydrogen bonding, forming hydrogen-bonded pairs of mol­ecules, which further inter­act through weak C—H⋯O hydrogen bonds, forming layers parallel to the ac plane.

Chemical context  

The design, synthesis and applications of macrocyclic ligands for coordination and supra­molecular chemistry have attracted very great attention from investigators over the last several decades (Hiraoka, 1978; Pedersen, 1988; Schwan & Warkentin, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently, we have developed effective methods of synthesis of aza­crown ethers containing piperidine (Levov et al., 2006, 2008; Anh et al., 2008, 2012a ,b ,c ; Hieu et al. (2012a ,b , 2013), perhydro­pyrimidine (Hieu et al., 2011), perhydro­triazine (Khieu et al., 2011) and bis­pidine (Komarova et al., 2008; Sokol et al., 2011) subunits.

In attempts to apply this chemistry to obtain a macrocyclic ligand containing the N-propyl­substituted bis­pidine moiety, we studied the Petrenko–Kritchenko condensation of N-propyl­piperidinone with 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane and ammonium acetate. The reaction proceeded smoothly to give the expected aza­crown system with a high yield of 73% (Fig. 1).

Figure 1.

Figure 1

Petrenko–Kritchenko condensation of N-propyl­piperidinone with 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane and ammonium acetate.

The prepared compound was studied by X-ray diffraction analysis. It is a stable complex and crystallized as an acetic acid monosolvate, C26H32N2O4(M)·C2H4O2, (I) (Fig. 2). This finding seems to show the possibility of forming the second piperidine ring by the direct participation of the ammonium ion without the loss of its counter-ionic nature.graphic file with name e-72-00829-scheme1.jpg

Figure 2.

Figure 2

The mol­ecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate the intra­molecular N—H⋯O and inter­molecular O—H⋯N hydrogen bonds.

Structural commentary  

The mol­ecule of M forms a robust hydrogen-bonded complex with an acetic acid mol­ecule by a strong inter­molecular O—H⋯N hydrogen bond (Fig. 2 and Table 1). The mol­ecule of M comprises a fused penta­cyclic system containing the aza-14-crown-3-ether macrocycle, two piperidinone and two benzene rings (Fig. 2). The aza-14-crown-3-ether ring adopts a bowl conformation. The conformation of the C7—O8—C9—C10 —O11—C12—C13—O14—C15 polyether chain is tg (−)ttg (+)t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 62.75 (5)°. The central piperidinone ring has a boat conformation, whereas the terminal piperidinone ring adopts a chair conformation. Apparently, the conformation of the central piperidinone ring is determined by the bifurcated intra­molecular N—H⋯O hydrogen bond (Fig. 2 and Table 1). Both nitro­gen atoms N25 and N27 have a trigonal–pyramidal geometry (the sums of the bond angles are 326.9 and 335.2°, respectively). The bulk propyl substituent at the nitro­gen atom N27 occupies the more favourable equatorial position.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N25—H25⋯O8 0.91 2.27 2.867 (2) 123
N25—H25⋯O14 0.91 2.45 3.008 (2) 120
O32—H32⋯N25 0.93 1.67 2.595 (2) 176
C1—H1⋯O33 1.00 2.57 3.249 (3) 125
C5—H5⋯O32i 0.95 2.58 3.442 (2) 152
C16—H16⋯O32ii 0.95 2.47 3.340 (2) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

The mol­ecule of M possesses four asymmetric centers at the C1, C21, C22 and C24 carbon atoms and can have potentially numerous diastereomers. The crystal of (I) is racemic and consists of enanti­omeric pairs of M with the following relative configuration of the centers: rac-1R*, 21S*,22R*,24S*.

Supra­molecular features  

In the crystal, the hydrogen-bonded complex (I) forms centrosymmetric dimers by C—H⋯O hydrogen bonds (Fig. 3 and Table 1). The dimers inter­act through weak C—H⋯O hydrogen bonds, forming layers parallel to ac plane (Fig. 4 and Table 1).

Figure 3.

Figure 3

The centrosymmetric hydrogen-bonded dimer of (I). Dashed lines indicate the intra­molecular N—H⋯O and inter­molecular O—H⋯N and C—H⋯O hydrogen bonds [symmetry code: (A) −x + 2, −y + 1, −z].

Figure 4.

Figure 4

Crystal packing of (I) showing the layers parallel to the ac plane. Dashed lines indicate the intra­molecular N—H⋯O and inter­molecular O—H⋯N and C—H⋯O hydrogen bonds.

Synthesis and crystallization  

1,5-Bis(2-formyl-phen­oxy)-3-oxa­pentane was synthesized according to the procedure described previously (Levov et al., 2008) and purified by recrystallization in ethanol.

Ammonium acetate (3.0 g, 39 mmol) was added to a solution of 1,5-bis­(2-formyl- phen­oxy)-3-oxa­pentane (3.14 g, 10.0 mmol) and N-propyl­piperidone (1.41 g, 10.0 mmol) in ethanol (30 mL) mixed with acetic acid (1 mL). The reaction mixture was stirred at 293 K for 3 d (monitoring by TLC until disappearance of the starting heterocyclic ketone spot). At the end of the reaction, the formed precipitate was filtered off, washed with ethanol and recrystallized from ethanol to give 3.60 g of colourless block-like crystals of (I) (yield 73%; m.p. = 490–492 K).

IR (KBr), ν/cm−1: 1602, 1728, 3263, 3463. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 1.08 (t, 3H, CH3, J = 6.7), 1.25 (m, 2H, CH2 CH2CH3), 1.61 (m, 2H, NCH2CH2), 1.83 (s, 3H, s, 3H, CH3COO), 2.49 (m, 4H, 2H23 and 2H25), 2.76 (m, 2H, H22 and H26), 3.12 (br m, 1H, NH), 3.86–4.10 (m, 8H, OCH2CH2OCH2CH2O), 4.83 (m, 2H, H1 and H21), 6.78–6.86 (m, 4H, Harom), 7.25–7.41 (m, 4H, Harom). 13C NMR (CDCl3, 80 MHz, 300 K): δ = 12.3 (CH3), 21.2 (CH2), 22.6 (CH2), 54.4 (CH2), 57.7 (CH2), 60.5 (CH2), 64.3 (CH2), 67.0 (CH), 79.1 (CH), 111.5 (Carom), 121.1 (Carom), 129.1 (Carom), 131.8 (Carom), 175.7 C=O). Analysis calculated for C28H36N2O6: C, 67.72; H, 7.31; N, 5.64. Found: C, 67.54; H, 7.42; N, 5.41.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms of the amino and hy­droxy groups were localized in the difference-Fourier maps and included in the refinement with fixed positional (using a riding model) and isotropic displacement parameters [U iso(H) = 1.2U eq(N) and 1.5U eq(O)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [U iso(H) = 1.5U eq(C) for the methyl group and 1.2U eq(C) for the other groups].

Table 2. Experimental details.

Crystal data
Chemical formula C26H32N2O4·C2H4O2
M r 496.59
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 120
a, b, c (Å) 9.4610 (8), 11.673 (1), 12.9862 (11)
α, β, γ (°) 83.780 (2), 79.998 (2), 67.335 (2)
V3) 1301.95 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003)
T min, T max 0.946, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 17314, 7954, 5223
R int 0.046
(sin θ/λ)max−1) 0.716
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.065, 0.143, 1.01
No. of reflections 7954
No. of parameters 327
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016007556/cv5505sup1.cif

e-72-00829-sup1.cif (525.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007556/cv5505Isup2.hkl

e-72-00829-Isup2.hkl (435.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016007556/cv5505Isup3.cml

CCDC reference: 1478354

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.01–2014.39.

supplementary crystallographic information

Crystal data

C26H32N2O4·C2H4O2 Z = 2
Mr = 496.59 F(000) = 532
Triclinic, P1 Dx = 1.267 Mg m3
a = 9.4610 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.673 (1) Å Cell parameters from 3303 reflections
c = 12.9862 (11) Å θ = 2.4–29.1°
α = 83.780 (2)° µ = 0.09 mm1
β = 79.998 (2)° T = 120 K
γ = 67.335 (2)° Prism, colourless
V = 1301.95 (19) Å3 0.30 × 0.20 × 0.20 mm

Data collection

Bruker APEXII CCD diffractometer 5223 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.046
φ and ω scans θmax = 30.6°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −13→13
Tmin = 0.946, Tmax = 0.963 k = −16→16
17314 measured reflections l = −18→18
7954 independent reflections

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: mixed
wR(F2) = 0.143 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.4449P] where P = (Fo2 + 2Fc2)/3
7954 reflections (Δ/σ)max = 0.001
327 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7020 (2) 0.80143 (16) 0.32331 (13) 0.0151 (3)
H1 0.5943 0.8030 0.3432 0.018*
C2 0.7882 (2) 0.73774 (16) 0.41389 (13) 0.0156 (3)
C3 0.7109 (2) 0.70361 (17) 0.50551 (14) 0.0187 (4)
H3 0.6039 0.7188 0.5099 0.022*
C4 0.7870 (2) 0.64764 (17) 0.59081 (14) 0.0219 (4)
H4 0.7321 0.6262 0.6534 0.026*
C5 0.9433 (2) 0.62344 (17) 0.58399 (14) 0.0217 (4)
H5 0.9957 0.5846 0.6421 0.026*
C6 1.0246 (2) 0.65524 (16) 0.49323 (14) 0.0199 (4)
H6 1.1322 0.6374 0.4887 0.024*
C7 0.9465 (2) 0.71355 (16) 0.40895 (14) 0.0171 (3)
O8 1.01351 (14) 0.75192 (12) 0.31660 (10) 0.0216 (3)
C9 1.1750 (2) 0.73063 (18) 0.30576 (15) 0.0212 (4)
H9A 1.2378 0.6404 0.3071 0.025*
H9B 1.1961 0.7677 0.3636 0.025*
C10 1.2134 (2) 0.79095 (18) 0.20263 (15) 0.0236 (4)
H10A 1.1391 0.8779 0.1975 0.028*
H10B 1.3188 0.7918 0.1963 0.028*
O11 1.20538 (16) 0.72247 (12) 0.12144 (10) 0.0241 (3)
C12 1.1807 (2) 0.79105 (18) 0.02482 (15) 0.0244 (4)
H12A 1.2802 0.7912 −0.0144 0.029*
H12B 1.1104 0.8782 0.0374 0.029*
C13 1.1102 (2) 0.73105 (19) −0.03698 (15) 0.0240 (4)
H13A 1.1011 0.7713 −0.1079 0.029*
H13B 1.1748 0.6416 −0.0437 0.029*
O14 0.95979 (15) 0.74700 (12) 0.01989 (10) 0.0232 (3)
C15 0.8744 (2) 0.69058 (16) −0.01385 (14) 0.0194 (4)
C16 0.9239 (2) 0.61671 (17) −0.10028 (14) 0.0226 (4)
H16 1.0216 0.6039 −0.1414 0.027*
C17 0.8277 (2) 0.56197 (18) −0.12541 (15) 0.0258 (4)
H17 0.8612 0.5108 −0.1838 0.031*
C18 0.6844 (2) 0.58076 (18) −0.06688 (15) 0.0256 (4)
H18 0.6194 0.5435 −0.0851 0.031*
C19 0.6368 (2) 0.65503 (17) 0.01915 (14) 0.0215 (4)
H19 0.5384 0.6682 0.0595 0.026*
C20 0.7302 (2) 0.71058 (16) 0.04736 (13) 0.0166 (3)
C21 0.6760 (2) 0.78938 (16) 0.14221 (13) 0.0152 (3)
H21 0.5681 0.7948 0.1691 0.018*
C22 0.6672 (2) 0.92585 (16) 0.11686 (14) 0.0166 (3)
H22 0.7129 0.9357 0.0426 0.020*
C23 0.7502 (2) 0.96020 (16) 0.19043 (14) 0.0173 (4)
O23 0.84543 (15) 1.00757 (12) 0.16251 (10) 0.0237 (3)
C24 0.6875 (2) 0.93985 (16) 0.30267 (14) 0.0166 (3)
H24 0.7460 0.9601 0.3505 0.020*
N25 0.76982 (17) 0.72799 (13) 0.22760 (11) 0.0149 (3)
H25 0.8675 0.7259 0.2065 0.018*
C26 0.4975 (2) 1.01694 (17) 0.13699 (14) 0.0191 (4)
H26A 0.4925 1.1032 0.1216 0.023*
H26B 0.4366 1.0002 0.0898 0.023*
N27 0.43102 (17) 1.00357 (14) 0.24556 (11) 0.0173 (3)
C28 0.5164 (2) 1.02988 (17) 0.31802 (14) 0.0187 (4)
H28A 0.4688 1.0206 0.3910 0.022*
H28B 0.5107 1.1166 0.3054 0.022*
C29 0.2644 (2) 1.07837 (17) 0.26161 (15) 0.0208 (4)
H29A 0.2169 1.0627 0.2052 0.025*
H29B 0.2495 1.1674 0.2557 0.025*
C30 0.1803 (2) 1.05181 (18) 0.36677 (16) 0.0244 (4)
H30A 0.2005 1.0930 0.4222 0.029*
H30B 0.2199 0.9612 0.3837 0.029*
C31 0.0058 (2) 1.0991 (2) 0.36409 (18) 0.0352 (5)
H31A −0.0476 1.0901 0.4344 0.053*
H31B −0.0152 1.0506 0.3158 0.053*
H31C −0.0314 1.1869 0.3404 0.053*
O32 0.75677 (15) 0.50970 (13) 0.27083 (11) 0.0263 (3)
H32 0.7652 0.5868 0.2569 0.039*
O33 0.51282 (18) 0.61820 (16) 0.33797 (16) 0.0489 (5)
C32 0.6186 (2) 0.5196 (2) 0.31786 (19) 0.0335 (5)
C33 0.6036 (3) 0.3964 (3) 0.3473 (3) 0.0692 (10)
H33A 0.5385 0.4009 0.4154 0.104*
H33B 0.7064 0.3320 0.3516 0.104*
H33C 0.5561 0.3759 0.2942 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0143 (8) 0.0166 (8) 0.0132 (8) −0.0045 (7) −0.0020 (6) −0.0009 (6)
C2 0.0168 (8) 0.0149 (8) 0.0142 (8) −0.0040 (7) −0.0046 (7) −0.0011 (6)
C3 0.0187 (9) 0.0212 (9) 0.0175 (9) −0.0094 (7) −0.0024 (7) 0.0006 (7)
C4 0.0291 (10) 0.0221 (9) 0.0147 (8) −0.0102 (8) −0.0041 (7) 0.0025 (7)
C5 0.0282 (10) 0.0178 (9) 0.0189 (9) −0.0050 (8) −0.0123 (8) 0.0015 (7)
C6 0.0181 (9) 0.0183 (9) 0.0222 (9) −0.0030 (7) −0.0077 (7) −0.0024 (7)
C7 0.0181 (9) 0.0166 (8) 0.0161 (8) −0.0052 (7) −0.0031 (7) −0.0023 (7)
O8 0.0138 (6) 0.0316 (7) 0.0192 (6) −0.0089 (6) −0.0033 (5) 0.0025 (6)
C9 0.0120 (8) 0.0273 (10) 0.0250 (10) −0.0068 (7) −0.0031 (7) −0.0051 (8)
C10 0.0166 (9) 0.0253 (10) 0.0305 (10) −0.0103 (8) −0.0002 (8) −0.0037 (8)
O11 0.0293 (8) 0.0220 (7) 0.0208 (7) −0.0099 (6) −0.0040 (6) 0.0011 (6)
C12 0.0186 (9) 0.0263 (10) 0.0253 (10) −0.0085 (8) 0.0004 (8) 0.0062 (8)
C13 0.0179 (9) 0.0302 (10) 0.0186 (9) −0.0068 (8) 0.0044 (7) 0.0009 (8)
O14 0.0183 (7) 0.0290 (7) 0.0226 (7) −0.0103 (6) 0.0037 (5) −0.0076 (6)
C15 0.0238 (10) 0.0161 (8) 0.0164 (8) −0.0053 (7) −0.0042 (7) 0.0001 (7)
C16 0.0274 (10) 0.0201 (9) 0.0139 (8) −0.0031 (8) −0.0008 (7) 0.0002 (7)
C17 0.0395 (12) 0.0206 (9) 0.0148 (9) −0.0068 (9) −0.0072 (8) −0.0015 (7)
C18 0.0344 (11) 0.0219 (9) 0.0226 (10) −0.0101 (9) −0.0092 (9) −0.0025 (8)
C19 0.0242 (10) 0.0210 (9) 0.0205 (9) −0.0085 (8) −0.0068 (8) 0.0006 (7)
C20 0.0197 (9) 0.0171 (8) 0.0123 (8) −0.0048 (7) −0.0055 (7) 0.0006 (7)
C21 0.0131 (8) 0.0183 (8) 0.0143 (8) −0.0057 (7) −0.0032 (6) 0.0002 (7)
C22 0.0170 (8) 0.0159 (8) 0.0153 (8) −0.0040 (7) −0.0041 (7) 0.0010 (7)
C23 0.0156 (8) 0.0121 (8) 0.0215 (9) −0.0020 (7) −0.0043 (7) 0.0009 (7)
O23 0.0236 (7) 0.0240 (7) 0.0266 (7) −0.0129 (6) −0.0044 (6) 0.0033 (6)
C24 0.0152 (8) 0.0168 (8) 0.0172 (8) −0.0041 (7) −0.0043 (7) −0.0025 (7)
N25 0.0134 (7) 0.0183 (7) 0.0119 (7) −0.0047 (6) −0.0023 (5) 0.0004 (6)
C26 0.0189 (9) 0.0189 (9) 0.0169 (9) −0.0035 (7) −0.0054 (7) 0.0006 (7)
N27 0.0144 (7) 0.0186 (7) 0.0160 (7) −0.0021 (6) −0.0035 (6) −0.0021 (6)
C28 0.0181 (9) 0.0171 (8) 0.0185 (9) −0.0031 (7) −0.0040 (7) −0.0026 (7)
C29 0.0160 (9) 0.0187 (9) 0.0242 (9) −0.0018 (7) −0.0035 (7) −0.0037 (7)
C30 0.0191 (9) 0.0236 (10) 0.0287 (10) −0.0069 (8) 0.0011 (8) −0.0055 (8)
C31 0.0198 (10) 0.0460 (13) 0.0418 (13) −0.0136 (10) 0.0039 (9) −0.0197 (11)
O32 0.0226 (7) 0.0234 (7) 0.0322 (8) −0.0096 (6) −0.0017 (6) 0.0025 (6)
O33 0.0194 (8) 0.0413 (10) 0.0799 (14) −0.0085 (8) −0.0020 (8) 0.0035 (9)
C32 0.0218 (10) 0.0343 (12) 0.0450 (13) −0.0121 (10) −0.0105 (10) 0.0106 (10)
C33 0.0372 (15) 0.0426 (15) 0.129 (3) −0.0252 (13) −0.0097 (17) 0.0252 (18)

Geometric parameters (Å, º)

C1—N25 1.490 (2) C19—C20 1.394 (2)
C1—C2 1.510 (2) C19—H19 0.9500
C1—C24 1.565 (2) C20—C21 1.513 (2)
C1—H1 1.0000 C21—N25 1.487 (2)
C2—C3 1.389 (2) C21—C22 1.564 (2)
C2—C7 1.404 (2) C21—H21 1.0000
C3—C4 1.389 (2) C22—C23 1.508 (2)
C3—H3 0.9500 C22—C26 1.542 (2)
C4—C5 1.383 (3) C22—H22 1.0000
C4—H4 0.9500 C23—O23 1.215 (2)
C5—C6 1.389 (3) C23—C24 1.505 (2)
C5—H5 0.9500 C24—C28 1.545 (2)
C6—C7 1.392 (2) C24—H24 1.0000
C6—H6 0.9500 N25—H25 0.9090
C7—O8 1.371 (2) C26—N27 1.459 (2)
O8—C9 1.434 (2) C26—H26A 0.9900
C9—C10 1.499 (3) C26—H26B 0.9900
C9—H9A 0.9900 N27—C28 1.466 (2)
C9—H9B 0.9900 N27—C29 1.468 (2)
C10—O11 1.419 (2) C28—H28A 0.9900
C10—H10A 0.9900 C28—H28B 0.9900
C10—H10B 0.9900 C29—C30 1.522 (3)
O11—C12 1.418 (2) C29—H29A 0.9900
C12—C13 1.499 (3) C29—H29B 0.9900
C12—H12A 0.9900 C30—C31 1.531 (3)
C12—H12B 0.9900 C30—H30A 0.9900
C13—O14 1.437 (2) C30—H30B 0.9900
C13—H13A 0.9900 C31—H31A 0.9800
C13—H13B 0.9900 C31—H31B 0.9800
O14—C15 1.369 (2) C31—H31C 0.9800
C15—C16 1.392 (3) O32—C32 1.310 (2)
C15—C20 1.402 (3) O32—H32 0.9300
C16—C17 1.392 (3) O33—C32 1.217 (3)
C16—H16 0.9500 C32—C33 1.502 (3)
C17—C18 1.383 (3) C33—H33A 0.9800
C17—H17 0.9500 C33—H33B 0.9800
C18—C19 1.392 (3) C33—H33C 0.9800
C18—H18 0.9500
N25—C1—C2 111.06 (14) C15—C20—C21 121.60 (15)
N25—C1—C24 112.37 (13) N25—C21—C20 111.21 (14)
C2—C1—C24 112.90 (14) N25—C21—C22 111.78 (13)
N25—C1—H1 106.7 C20—C21—C22 113.66 (14)
C2—C1—H1 106.7 N25—C21—H21 106.6
C24—C1—H1 106.7 C20—C21—H21 106.6
C3—C2—C7 118.35 (16) C22—C21—H21 106.6
C3—C2—C1 120.22 (16) C23—C22—C26 105.47 (14)
C7—C2—C1 121.42 (15) C23—C22—C21 110.33 (14)
C2—C3—C4 121.25 (17) C26—C22—C21 109.81 (14)
C2—C3—H3 119.4 C23—C22—H22 110.4
C4—C3—H3 119.4 C26—C22—H22 110.4
C5—C4—C3 119.51 (17) C21—C22—H22 110.4
C5—C4—H4 120.2 O23—C23—C24 124.69 (16)
C3—C4—H4 120.2 O23—C23—C22 124.22 (17)
C4—C5—C6 120.77 (16) C24—C23—C22 110.82 (15)
C4—C5—H5 119.6 C23—C24—C28 105.96 (14)
C6—C5—H5 119.6 C23—C24—C1 109.72 (14)
C5—C6—C7 119.24 (17) C28—C24—C1 111.30 (14)
C5—C6—H6 120.4 C23—C24—H24 109.9
C7—C6—H6 120.4 C28—C24—H24 109.9
O8—C7—C6 124.44 (16) C1—C24—H24 109.9
O8—C7—C2 114.69 (15) C21—N25—C1 109.49 (13)
C6—C7—C2 120.87 (16) C21—N25—H25 108.3
C7—O8—C9 117.94 (14) C1—N25—H25 109.1
O8—C9—C10 106.49 (14) N27—C26—C22 110.50 (14)
O8—C9—H9A 110.4 N27—C26—H26A 109.6
C10—C9—H9A 110.4 C22—C26—H26A 109.6
O8—C9—H9B 110.4 N27—C26—H26B 109.6
C10—C9—H9B 110.4 C22—C26—H26B 109.6
H9A—C9—H9B 108.6 H26A—C26—H26B 108.1
O11—C10—C9 108.52 (15) C26—N27—C28 111.21 (14)
O11—C10—H10A 110.0 C26—N27—C29 110.59 (14)
C9—C10—H10A 110.0 C28—N27—C29 113.43 (14)
O11—C10—H10B 110.0 N27—C28—C24 110.26 (14)
C9—C10—H10B 110.0 N27—C28—H28A 109.6
H10A—C10—H10B 108.4 C24—C28—H28A 109.6
C12—O11—C10 114.24 (15) N27—C28—H28B 109.6
O11—C12—C13 108.19 (15) C24—C28—H28B 109.6
O11—C12—H12A 110.1 H28A—C28—H28B 108.1
C13—C12—H12A 110.1 N27—C29—C30 114.01 (15)
O11—C12—H12B 110.1 N27—C29—H29A 108.7
C13—C12—H12B 110.1 C30—C29—H29A 108.7
H12A—C12—H12B 108.4 N27—C29—H29B 108.7
O14—C13—C12 106.24 (15) C30—C29—H29B 108.7
O14—C13—H13A 110.5 H29A—C29—H29B 107.6
C12—C13—H13A 110.5 C29—C30—C31 110.60 (17)
O14—C13—H13B 110.5 C29—C30—H30A 109.5
C12—C13—H13B 110.5 C31—C30—H30A 109.5
H13A—C13—H13B 108.7 C29—C30—H30B 109.5
C15—O14—C13 118.86 (14) C31—C30—H30B 109.5
O14—C15—C16 124.32 (17) H30A—C30—H30B 108.1
O14—C15—C20 114.57 (15) C30—C31—H31A 109.5
C16—C15—C20 121.10 (17) C30—C31—H31B 109.5
C15—C16—C17 118.93 (18) H31A—C31—H31B 109.5
C15—C16—H16 120.5 C30—C31—H31C 109.5
C17—C16—H16 120.5 H31A—C31—H31C 109.5
C18—C17—C16 121.24 (18) H31B—C31—H31C 109.5
C18—C17—H17 119.4 C32—O32—H32 111.9
C16—C17—H17 119.4 O33—C32—O32 124.0 (2)
C17—C18—C19 119.05 (19) O33—C32—C33 122.7 (2)
C17—C18—H18 120.5 O32—C32—C33 113.3 (2)
C19—C18—H18 120.5 C32—C33—H33A 109.5
C18—C19—C20 121.43 (18) C32—C33—H33B 109.5
C18—C19—H19 119.3 H33A—C33—H33B 109.5
C20—C19—H19 119.3 C32—C33—H33C 109.5
C19—C20—C15 118.25 (16) H33A—C33—H33C 109.5
C19—C20—C21 120.15 (16) H33B—C33—H33C 109.5
N25—C1—C2—C3 −120.84 (17) C19—C20—C21—N25 111.18 (17)
C24—C1—C2—C3 111.90 (18) C15—C20—C21—N25 −68.4 (2)
N25—C1—C2—C7 60.4 (2) C19—C20—C21—C22 −121.62 (17)
C24—C1—C2—C7 −66.9 (2) C15—C20—C21—C22 58.8 (2)
C7—C2—C3—C4 0.4 (3) N25—C21—C22—C23 −2.93 (19)
C1—C2—C3—C4 −178.42 (17) C20—C21—C22—C23 −129.83 (15)
C2—C3—C4—C5 −1.1 (3) N25—C21—C22—C26 −118.76 (15)
C3—C4—C5—C6 0.5 (3) C20—C21—C22—C26 114.33 (16)
C4—C5—C6—C7 0.8 (3) C26—C22—C23—O23 −110.80 (19)
C5—C6—C7—O8 178.32 (17) C21—C22—C23—O23 130.67 (18)
C5—C6—C7—C2 −1.5 (3) C26—C22—C23—C24 63.50 (17)
C3—C2—C7—O8 −178.95 (15) C21—C22—C23—C24 −55.02 (18)
C1—C2—C7—O8 −0.1 (2) O23—C23—C24—C28 111.02 (19)
C3—C2—C7—C6 0.9 (3) C22—C23—C24—C28 −63.25 (17)
C1—C2—C7—C6 179.71 (16) O23—C23—C24—C1 −128.72 (18)
C6—C7—O8—C9 0.1 (2) C22—C23—C24—C1 57.00 (18)
C2—C7—O8—C9 179.88 (15) N25—C1—C24—C23 −1.16 (19)
C7—O8—C9—C10 −175.18 (15) C2—C1—C24—C23 125.40 (16)
O8—C9—C10—O11 −69.33 (18) N25—C1—C24—C28 115.80 (15)
C9—C10—O11—C12 157.26 (15) C2—C1—C24—C28 −117.65 (16)
C10—O11—C12—C13 −156.70 (15) C20—C21—N25—C1 −173.72 (14)
O11—C12—C13—O14 65.88 (19) C22—C21—N25—C1 58.06 (17)
C12—C13—O14—C15 −173.95 (15) C2—C1—N25—C21 176.47 (13)
C13—O14—C15—C16 0.5 (3) C24—C1—N25—C21 −55.99 (17)
C13—O14—C15—C20 179.35 (15) C23—C22—C26—N27 −60.27 (18)
O14—C15—C16—C17 178.54 (17) C21—C22—C26—N27 58.60 (18)
C20—C15—C16—C17 −0.2 (3) C22—C26—N27—C28 60.27 (18)
C15—C16—C17—C18 0.6 (3) C22—C26—N27—C29 −172.75 (14)
C16—C17—C18—C19 −0.5 (3) C26—N27—C28—C24 −59.54 (18)
C17—C18—C19—C20 0.0 (3) C29—N27—C28—C24 175.04 (14)
C18—C19—C20—C15 0.4 (3) C23—C24—C28—N27 59.27 (18)
C18—C19—C20—C21 −179.16 (17) C1—C24—C28—N27 −59.95 (18)
O14—C15—C20—C19 −179.19 (15) C26—N27—C29—C30 169.32 (15)
C16—C15—C20—C19 −0.3 (3) C28—N27—C29—C30 −64.9 (2)
O14—C15—C20—C21 0.4 (2) N27—C29—C30—C31 −161.57 (16)
C16—C15—C20—C21 179.25 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N25—H25···O8 0.91 2.27 2.867 (2) 123
N25—H25···O14 0.91 2.45 3.008 (2) 120
O32—H32···N25 0.93 1.67 2.595 (2) 176
C1—H1···O33 1.00 2.57 3.249 (3) 125
C5—H5···O32i 0.95 2.58 3.442 (2) 152
C16—H16···O32ii 0.95 2.47 3.340 (2) 153

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y+1, −z.

References

  1. Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589. [DOI] [PMC free article] [PubMed]
  2. Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166. [DOI] [PMC free article] [PubMed]
  3. Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387. [DOI] [PMC free article] [PubMed]
  4. Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.
  5. Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.
  6. Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.
  9. Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd. 47, 1307–1308.
  10. Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431–o2432. [DOI] [PMC free article] [PubMed]
  11. Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849. [DOI] [PMC free article] [PubMed]
  12. Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil’ev, V. G. & Khrustalev, V. N. (2013). Acta Cryst. E69, o565–o566. [DOI] [PMC free article] [PubMed]
  13. Hiraoka, M. (1978). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.
  14. Khieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol’yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.
  15. Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624–625.
  16. Levov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665–1670.
  17. Levov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–36.
  18. Pedersen, C. J. (1988). Angew. Chem. 100, 1053–1059.
  19. Schwan, A. L. & Warkentin, J. (1988). Can. J. Chem. 66, 1686–1694.
  20. Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2124–2127.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016007556/cv5505sup1.cif

e-72-00829-sup1.cif (525.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007556/cv5505Isup2.hkl

e-72-00829-Isup2.hkl (435.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016007556/cv5505Isup3.cml

CCDC reference: 1478354

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES