Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 May 27;72(Pt 6):858–860. doi: 10.1107/S2056989016008434

Crystal structure of bis­(2-methyl-1H-imidazol-3-ium) μ-oxalato-bis­[n-butyl­tri­chlorido­stannate(IV)]

Mouhamadou Birame Diop a,*, Libasse Diop a, Allen G Oliver b
PMCID: PMC4908556  PMID: 27308059

The SnIV atom in the centrosymmetric anion of the title salt is coordinated in a distorted octa­hedral fashion by two O atoms of the bridging oxalate moiety, a C atom of the butyl chain and three Cl atoms. The bis­(2-methyl-1H-imidazol-3-ium) cation forms hydrogen bonds with Cl and oxalate O atoms yielding [001] chains.

Keywords: crystal structure, organotin(IV) complex, oxalate, hydrogen bonds

Abstract

The SnIV atom in the centrosymmetric anion of the title salt, (C4H7N2)2[Sn2(C4H9)2(C2O4)Cl6], is coordinated in a distorted octa­hedral mode by two O atoms of a bridging oxalate moiety, three Cl atoms and a C atom of an n-butyl group. The latter is disordered over two sets of sites in a 0.66:0.33 occupancy ratio. N—H⋯O and N—H⋯Cl hydrogen bonds involving the 2-methyl­imidazolium cation and neighbouring anions result in the formation of chains extending parallel to [001].

Chemical context  

Ammonium salts of oxalatostannates(IV) with additional halogen atoms bonded within the anion are well known in the literature. Skapski et al. (1974) have reported the crystal structure of [(R 4N)2][C2O4(SnCl4)2] (R = eth­yl) while Le Floch et al. (1975) have published spectroscopic studies of [(R 4N)2][C2O4(SnX 4)2] (R = ethyl, X = Cl, Br, I; R = butyl, X = Br). Our group has investigated several complexes containing an oxalate group chelating an SnCl4 moiety or an [SnCl3·H2O]+ fragment, resulting in framework structures (Sow et al., 2013; Diop et al., 2015). In all cases, the environment around the tin(IV) atom is distorted octa­hedral.graphic file with name e-72-00858-scheme1.jpg

In the present communication we report on the reaction between 2-methyl-imidazolium hydrogenoxalate dihydrate and tin(IV) butyl­trichloride that yielded the title compound, (C4H7N2)2[(Sn2(C4H9)2(C2O4)Cl6].

Structural commentary  

The distannate anion, [Sn2(C4H9)2(C2O4)Cl6]2−, is located about a center of symmetry and thus only one half of the mol­ecule is present in the asymmetric unit (Fig. 1). The full mol­ecule consists of a central oxalate anion bridging two SnBuCl3 moieties (Fig. 2) similar to the binuclear stan­nate(IV) anion reported for (Et4N)2[C2O4(SnCl4)2] (Skapski et al., 1974). In addition to the bis-chelating and bridging oxalate oxygen atoms, the octa­hedral coordination sphere is completed by three chlorine atoms and the C atom of a disordered n-butyl group (Fig. 1). The C—O distances (Table 1) are consistent with an almost perfect π delocalization within the oxalate anion, as expected for a centrosymmetric bis-chelation. The Sn—C length is consistent with previously reported values (Table 1; Diop et al., 2013). The Sn—Cl distances (Table 1) are also comparable with those in related compounds, e.g. in (Bu4N)[SnBuCl4] (Diop et al., 2013), (Me4N)[C2O4SnCl3(H2O)] (Sow et al., 2013) or [(methyl-2-imidazolium)][C2O4SnCl3(H2O)] (Diop et al., 2015). The equatorial Sn—Cl1 bond that is coplanar with the oxalate anion is considerably shorter than the Sn—Cl2 and Sn—Cl3 bonds that are oriented axially (Fig. 2, Table 1). The Sn—O1 and Sn—O2 bond lengths are fully consistent with previously characterized examples (Sow et al., 2013; Gueye et al., 2014; Sarr et al., 2015). Distortions from an ideal octa­hedral coordination environment are reflected in the bond angles about the SnIV atom (Table 1). Notably, the O1—Sn—O2 angle is less than 90° and the axial Cl2—Sn—Cl3 bond angle deviates considerably from an ideal of 180°.

Figure 1.

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Disordered parts of the n-butyl chain are shown.

Figure 2.

Figure 2

The full anion and two counter-cations in the title compound. Displacement ellipsoids are drawn at the 50% probability level. Only the major part of the disordered n-butyl chain is shown. [Symmetry code: (A) −x + 1, −y + 1, −z + 1.]

Table 1. Selected geometric parameters (Å, °).

Sn1—C2 2.122 (2) O2—C1 1.243 (2)
Sn1—O1 2.1878 (13) O2—Sn1i 2.2475 (13)
Sn1—O2i 2.2475 (13) N1—C6 1.313 (3)
Sn1—Cl1 2.3731 (5) N1—C7 1.354 (3)
Sn1—Cl3 2.4460 (6) N2—C6 1.323 (3)
Sn1—Cl2 2.4536 (5) N2—C8 1.356 (3)
O1—C1 1.248 (2) C7—C8 1.336 (3)
       
C2—Sn1—O1 166.44 (7) O2i—Sn1—Cl3 86.17 (4)
C2—Sn1—O2i 92.40 (7) Cl1—Sn1—Cl3 92.40 (2)
O1—Sn1—O2i 74.04 (5) C2—Sn1—Cl2 96.58 (7)
C2—Sn1—Cl1 108.24 (6) O1—Sn1—Cl2 82.42 (4)
O1—Sn1—Cl1 85.32 (4) O2i—Sn1—Cl2 84.14 (4)
O2i—Sn1—Cl1 159.27 (4) Cl1—Sn1—Cl2 91.38 (2)
C2—Sn1—Cl3 98.81 (7) Cl3—Sn1—Cl2 162.13 (2)
O1—Sn1—Cl3 80.48 (4)    

Symmetry code: (i) Inline graphic.

One methyl-2-imidazolium counter-cation is also present in the asymmetric unit. As expected, the lengths of the C—N and C7—C8 bonds indicate π-delocalization in this cation (Table 1).

Supra­molecular features  

The imidazolium cation bridges two neighbouring [Sn2(C4H9)2(C2O4)Cl6]2− anions through N—H⋯O and N—H⋯Cl hydrogen bonds, leading to the formation of chains extending parallel to [001] (Fig. 3, Table 2) whereby pairs of the cations are involved in this bridging motif, each alternating across the inversion center located between the cations. The chains are connected by additional C—H⋯Cl hydrogen bonds, giving a layer structure parallel to (100).

Figure 3.

Figure 3

The packing of the mol­ecular components in a view approximately along [010]. N—H⋯O and N—H⋯Cl hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1 0.74 (3) 2.75 (3) 3.398 (2) 147 (3)
N1—H1N⋯O1 0.74 (3) 2.44 (3) 2.993 (2) 133 (3)
N2—H2N⋯Cl2ii 0.77 (2) 2.43 (3) 3.187 (2) 170 (2)
C7—H7⋯Cl3iii 0.95 2.87 3.517 (2) 127
C9—H9A⋯Cl1 0.98 2.92 3.696 (3) 136

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (Version 5.37 with one update; Groom et al., 2016) returned 51 different structures containing 2-methyl-1H-imidazol-3-ium cations and hundreds of those containing bis-chelating oxalate anions. Those of particular relevance to the title structure have been detailed above.

Synthesis and crystallization  

Crystals of [2-methyl-1H-imidazol-3-ium][HC2O4·2H2O] (L) were obtained by mixing equimolar amounts of 2-methyl-imidazole with oxalic acid in water, followed by forced evaporation of the solvent at 333 K. A molar 2:1 mixture of (L) with SnBuCl3 in aceto­nitrile was allowed to react. Crystals of the title compound suitable for structural examination were obtained after slow evaporation of aceto­nitrile at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were included in geometrically calculated positions with C—H = 0.98 (meth­yl) and 0.99 Å (methyl­ene), with U iso(H) = 1.5U eq(C) (meth­yl), and 1.2U eq(C) (methyl­ene). H atoms bound to N atoms within the cation were derived from difference maps and were refined freely. The n-butyl group was found to exhibit positional disorder, and was modelled with the peripheral three carbon atoms disordered over two sets of sites. Occupancies for these two sets were initially refined upon inspection of the refined occupancies. In the final model the occupancies were fixed at 2/3:1/3. Disordered pairs of carbon atoms (C3/C3A, C4/C4A, C5/C5A) were restrained to have similar atomic displacement parameters.

Table 3. Experimental details.

Crystal data
Chemical formula (C4H7N2)2[Sn2(C4H9)2(C2O4)Cl6]
M r 818.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 13.4674 (5), 11.4709 (4), 10.2030 (3)
β (°) 100.453 (1)
V3) 1550.03 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.16
Crystal size (mm) 0.29 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker Kappa X8 APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.671, 0.811
No. of measured, independent and observed [I > 2σ(I)] reflections 20211, 3868, 3490
R int 0.018
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.021, 0.051, 1.06
No. of reflections 3868
No. of parameters 192
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.69, −0.46

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), XP (Sheldrick, 2008), CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016008434/wm5293sup1.cif

e-72-00858-sup1.cif (614.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016008434/wm5293Isup2.hkl

e-72-00858-Isup2.hkl (308.5KB, hkl)

CCDC reference: 1481678

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal) and the University of Notre Dame (USA) for financial support.

supplementary crystallographic information

Crystal data

(C4H7N2)2[Sn2(C4H9)2(C2O4)Cl6] F(000) = 804
Mr = 818.60 Dx = 1.754 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.4674 (5) Å Cell parameters from 9885 reflections
b = 11.4709 (4) Å θ = 2.7–28.3°
c = 10.2030 (3) Å µ = 2.16 mm1
β = 100.453 (1)° T = 200 K
V = 1550.03 (9) Å3 Block, colorless
Z = 2 0.29 × 0.18 × 0.12 mm

Data collection

Bruker Kappa X8 APEXII diffractometer 3868 independent reflections
Radiation source: fine-focus sealed tube 3490 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
Detector resolution: 8.33 pixels mm-1 θmax = 28.3°, θmin = 2.4°
combination of ω and φ–scans h = −17→13
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −14→15
Tmin = 0.671, Tmax = 0.811 l = −13→13
20211 measured reflections

Refinement

Refinement on F2 Primary atom site location: real-space vector search
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: mixed
wR(F2) = 0.051 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.9516P] where P = (Fo2 + 2Fc2)/3
3868 reflections (Δ/σ)max = 0.022
192 parameters Δρmax = 0.69 e Å3
18 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Disorder in the n-butyl chain was modeled over two sites. Occupancies were initially refined and subsequently set to 0.66667:0.33333. Carbon atoms were refined with anisotropic atomic displacement parameters and the disordered carbon atoms were restrained to have similar displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sn1 0.71591 (2) 0.52312 (2) 0.53372 (2) 0.03131 (5)
Cl1 0.81275 (4) 0.42161 (6) 0.39795 (5) 0.04767 (13)
Cl2 0.71227 (4) 0.35142 (5) 0.67619 (5) 0.04538 (12)
Cl3 0.66628 (5) 0.67332 (6) 0.36433 (6) 0.05395 (15)
O1 0.58579 (10) 0.43651 (13) 0.41329 (12) 0.0341 (3)
O2 0.41920 (10) 0.42053 (12) 0.38137 (13) 0.0339 (3)
C1 0.50131 (14) 0.45924 (16) 0.44091 (17) 0.0296 (4)
C2 0.81592 (17) 0.6238 (2) 0.6744 (2) 0.0465 (5)
H2A 0.7753 0.6723 0.7251 0.056* 0.6667
H2B 0.8569 0.5700 0.7383 0.056* 0.6667
H2C 0.7810 0.6968 0.6911 0.056* 0.3333
H2D 0.8300 0.5800 0.7594 0.056* 0.3333
C3 0.8844 (5) 0.7002 (5) 0.6182 (8) 0.0621 (16) 0.6667
H3A 0.8439 0.7537 0.5534 0.075* 0.6667
H3B 0.9263 0.6520 0.5689 0.075* 0.6667
C4 0.9514 (6) 0.7697 (7) 0.7186 (9) 0.096 (3) 0.6667
H4A 0.9091 0.8112 0.7734 0.115* 0.6667
H4B 0.9955 0.7154 0.7783 0.115* 0.6667
C5 1.0148 (5) 0.8544 (6) 0.6693 (11) 0.147 (4) 0.6667
H5A 1.0609 0.8144 0.6202 0.221* 0.6667
H5B 1.0539 0.8973 0.7444 0.221* 0.6667
H5C 0.9725 0.9090 0.6097 0.221* 0.6667
C3A 0.9164 (10) 0.6557 (15) 0.6353 (18) 0.089 (5) 0.3333
H3C 0.9050 0.7118 0.5603 0.107* 0.3333
H3D 0.9483 0.5850 0.6057 0.107* 0.3333
C4A 0.9967 (9) 0.7180 (13) 0.772 (2) 0.125 (6) 0.3333
H4C 0.9875 0.6829 0.8578 0.150* 0.3333
H4D 1.0686 0.7138 0.7634 0.150* 0.3333
C5A 0.9606 (11) 0.8257 (19) 0.7572 (18) 0.115 (5) 0.3333
H5D 1.0101 0.8801 0.8061 0.173* 0.3333
H5E 0.8976 0.8304 0.7921 0.173* 0.3333
H5F 0.9476 0.8462 0.6624 0.173* 0.3333
N1 0.61980 (17) 0.41626 (18) 0.13231 (19) 0.0462 (5)
H1N 0.644 (2) 0.434 (3) 0.201 (3) 0.059 (9)*
N2 0.60535 (16) 0.37133 (18) −0.07045 (18) 0.0463 (5)
H2N 0.6237 (19) 0.366 (2) −0.137 (2) 0.044 (7)*
C6 0.6683 (2) 0.4165 (2) 0.0316 (2) 0.0487 (5)
C7 0.52646 (18) 0.36986 (19) 0.0958 (2) 0.0438 (5)
H7 0.4773 0.3595 0.1508 0.053*
C8 0.51718 (18) 0.34151 (19) −0.0328 (2) 0.0438 (5)
H8A 0.4600 0.3072 −0.0873 0.053*
C9 0.7714 (3) 0.4571 (4) 0.0320 (3) 0.0894 (12)
H9A 0.7993 0.4905 0.1193 0.134*
H9B 0.7707 0.5166 −0.0370 0.134*
H9C 0.8134 0.3913 0.0140 0.134*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.02611 (7) 0.04132 (8) 0.02698 (7) −0.00213 (5) 0.00611 (5) −0.00174 (5)
Cl1 0.0358 (3) 0.0706 (4) 0.0385 (3) 0.0073 (2) 0.0116 (2) −0.0100 (2)
Cl2 0.0549 (3) 0.0459 (3) 0.0359 (2) −0.0024 (2) 0.0097 (2) 0.0052 (2)
Cl3 0.0489 (3) 0.0611 (4) 0.0522 (3) 0.0034 (3) 0.0101 (3) 0.0221 (3)
O1 0.0282 (7) 0.0459 (7) 0.0289 (6) −0.0013 (6) 0.0074 (5) −0.0078 (6)
O2 0.0286 (7) 0.0432 (8) 0.0304 (6) −0.0032 (6) 0.0065 (5) −0.0085 (6)
C1 0.0300 (9) 0.0354 (9) 0.0243 (8) −0.0013 (7) 0.0073 (7) −0.0005 (7)
C2 0.0365 (11) 0.0579 (14) 0.0445 (11) −0.0075 (10) 0.0058 (9) −0.0150 (10)
C3 0.045 (3) 0.059 (3) 0.078 (3) −0.020 (2) 0.000 (3) 0.002 (3)
C4 0.077 (5) 0.080 (5) 0.121 (6) −0.043 (4) −0.009 (4) −0.041 (4)
C5 0.061 (4) 0.082 (4) 0.283 (12) −0.032 (3) −0.009 (5) −0.007 (6)
C3A 0.050 (8) 0.110 (13) 0.111 (12) −0.031 (7) 0.024 (7) −0.061 (10)
C4A 0.053 (7) 0.094 (10) 0.233 (19) 0.011 (6) 0.042 (9) −0.020 (11)
C5A 0.058 (8) 0.169 (18) 0.122 (13) −0.011 (10) 0.027 (8) −0.018 (12)
N1 0.0598 (13) 0.0507 (11) 0.0279 (9) −0.0053 (9) 0.0073 (8) −0.0023 (8)
N2 0.0590 (12) 0.0515 (11) 0.0290 (9) −0.0022 (9) 0.0097 (8) −0.0031 (8)
C6 0.0551 (14) 0.0579 (14) 0.0330 (10) −0.0088 (11) 0.0080 (9) 0.0010 (9)
C7 0.0513 (13) 0.0393 (11) 0.0425 (11) 0.0014 (9) 0.0132 (10) 0.0031 (9)
C8 0.0495 (12) 0.0363 (10) 0.0443 (11) −0.0019 (9) 0.0050 (10) −0.0012 (9)
C9 0.063 (2) 0.153 (4) 0.0526 (17) −0.038 (2) 0.0123 (14) −0.0002 (19)

Geometric parameters (Å, º)

Sn1—C2 2.122 (2) C5—H5C 0.9800
Sn1—O1 2.1878 (13) C3A—C4A 1.76 (2)
Sn1—O2i 2.2475 (13) C3A—H3C 0.9900
Sn1—Cl1 2.3731 (5) C3A—H3D 0.9900
Sn1—Cl3 2.4460 (6) C4A—C5A 1.33 (2)
Sn1—Cl2 2.4536 (5) C4A—H4C 0.9900
O1—C1 1.248 (2) C4A—H4D 0.9900
O2—C1 1.243 (2) C5A—H5D 0.9800
O2—Sn1i 2.2475 (13) C5A—H5E 0.9800
C1—C1i 1.531 (3) C5A—H5F 0.9800
C2—C3 1.463 (7) N1—C6 1.313 (3)
C2—C3A 1.524 (16) N1—C7 1.354 (3)
C2—H2A 0.9900 N1—H1N 0.74 (3)
C2—H2B 0.9900 N2—C6 1.323 (3)
C2—H2C 0.9900 N2—C8 1.356 (3)
C2—H2D 0.9900 N2—H2N 0.77 (2)
C3—C4 1.471 (9) C6—C9 1.465 (4)
C3—H3A 0.9900 C7—C8 1.336 (3)
C3—H3B 0.9900 C7—H7 0.9500
C4—C5 1.443 (11) C8—H8A 0.9500
C4—H4A 0.9900 C9—H9A 0.9800
C4—H4B 0.9900 C9—H9B 0.9800
C5—H5A 0.9800 C9—H9C 0.9800
C5—H5B 0.9800
C2—Sn1—O1 166.44 (7) C4—C5—H5B 109.5
C2—Sn1—O2i 92.40 (7) H5A—C5—H5B 109.5
O1—Sn1—O2i 74.04 (5) C4—C5—H5C 109.5
C2—Sn1—Cl1 108.24 (6) H5A—C5—H5C 109.5
O1—Sn1—Cl1 85.32 (4) H5B—C5—H5C 109.5
O2i—Sn1—Cl1 159.27 (4) C2—C3A—C4A 109.7 (11)
C2—Sn1—Cl3 98.81 (7) C2—C3A—H3C 109.7
O1—Sn1—Cl3 80.48 (4) C4A—C3A—H3C 109.7
O2i—Sn1—Cl3 86.17 (4) C2—C3A—H3D 109.7
Cl1—Sn1—Cl3 92.40 (2) C4A—C3A—H3D 109.7
C2—Sn1—Cl2 96.58 (7) H3C—C3A—H3D 108.2
O1—Sn1—Cl2 82.42 (4) C5A—C4A—C3A 97.3 (16)
O2i—Sn1—Cl2 84.14 (4) C5A—C4A—H4C 112.3
Cl1—Sn1—Cl2 91.38 (2) C3A—C4A—H4C 112.3
Cl3—Sn1—Cl2 162.13 (2) C5A—C4A—H4D 112.3
C1—O1—Sn1 116.64 (12) C3A—C4A—H4D 112.3
C1—O2—Sn1i 114.80 (11) H4C—C4A—H4D 109.9
O2—C1—O1 125.55 (17) C4A—C5A—H5D 109.5
O2—C1—C1i 117.2 (2) C4A—C5A—H5E 109.5
O1—C1—C1i 117.2 (2) H5D—C5A—H5E 109.5
C3—C2—Sn1 115.4 (3) C4A—C5A—H5F 109.5
C3A—C2—Sn1 116.0 (6) H5D—C5A—H5F 109.5
C3—C2—H2A 108.4 H5E—C5A—H5F 109.5
Sn1—C2—H2A 108.4 C6—N1—C7 110.7 (2)
C3—C2—H2B 108.4 C6—N1—H1N 122 (2)
Sn1—C2—H2B 108.4 C7—N1—H1N 126 (2)
H2A—C2—H2B 107.5 C6—N2—C8 110.15 (19)
C3A—C2—H2C 108.3 C6—N2—H2N 117.8 (19)
Sn1—C2—H2C 108.3 C8—N2—H2N 132.1 (19)
C3A—C2—H2D 108.3 N1—C6—N2 106.0 (2)
Sn1—C2—H2D 108.3 N1—C6—C9 127.2 (2)
H2C—C2—H2D 107.4 N2—C6—C9 126.7 (2)
C2—C3—C4 113.7 (6) C8—C7—N1 106.4 (2)
C2—C3—H3A 108.8 C8—C7—H7 126.8
C4—C3—H3A 108.8 N1—C7—H7 126.8
C2—C3—H3B 108.8 C7—C8—N2 106.6 (2)
C4—C3—H3B 108.8 C7—C8—H8A 126.7
H3A—C3—H3B 107.7 N2—C8—H8A 126.7
C5—C4—C3 116.7 (8) C6—C9—H9A 109.5
C5—C4—H4A 108.1 C6—C9—H9B 109.5
C3—C4—H4A 108.1 H9A—C9—H9B 109.5
C5—C4—H4B 108.1 C6—C9—H9C 109.5
C3—C4—H4B 108.1 H9A—C9—H9C 109.5
H4A—C4—H4B 107.3 H9B—C9—H9C 109.5
C4—C5—H5A 109.5
Sn1i—O2—C1—O1 177.81 (15) C7—N1—C6—N2 0.7 (3)
Sn1i—O2—C1—C1i −1.5 (3) C7—N1—C6—C9 −178.6 (3)
Sn1—O1—C1—O2 178.19 (15) C8—N2—C6—N1 −0.6 (3)
Sn1—O1—C1—C1i −2.5 (3) C8—N2—C6—C9 178.7 (3)
Sn1—C2—C3—C4 179.1 (5) C6—N1—C7—C8 −0.5 (3)
C2—C3—C4—C5 −174.8 (6) N1—C7—C8—N2 0.1 (3)
Sn1—C2—C3A—C4A −170.7 (8) C6—N2—C8—C7 0.3 (3)
C2—C3A—C4A—C5A −83.0 (15)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···Cl1 0.74 (3) 2.75 (3) 3.398 (2) 147 (3)
N1—H1N···O1 0.74 (3) 2.44 (3) 2.993 (2) 133 (3)
N2—H2N···Cl2ii 0.77 (2) 2.43 (3) 3.187 (2) 170 (2)
C7—H7···Cl3iii 0.95 2.87 3.517 (2) 127
C9—H9A···Cl1 0.98 2.92 3.696 (3) 136

Symmetry codes: (ii) x, y, z−1; (iii) −x+1, y−1/2, −z+1/2.

References

  1. Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Diop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2015). Acta Cryst. E71, 520–522. [DOI] [PMC free article] [PubMed]
  3. Diop, T., Lee, A. van der & Diop, L. (2013). Acta Cryst. E69, m562–m563. [DOI] [PMC free article] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Gueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49–m50. [DOI] [PMC free article] [PubMed]
  6. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  7. Le Floch, F., Sala Pala, J. & et Guerchais, J. E. (1975). Bull. Soc. Chim. Fr. 1–2, 120–124.
  8. Sarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 151–153. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Skapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C Chim. 278, 1377–1379.
  13. Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016008434/wm5293sup1.cif

e-72-00858-sup1.cif (614.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016008434/wm5293Isup2.hkl

e-72-00858-Isup2.hkl (308.5KB, hkl)

CCDC reference: 1481678

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES