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Exploring the use of shape and texture
descriptors of positron emission
tomography tracer distribution in imaging
studies of neurodegenerative disease
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Nasim Vafai and Vesna Sossi

Abstract

Positron emission tomography (PET) data related to neurodegeneration are most often quantified using methods based

on tracer kinetic modeling. In contrast, here we investigate the ability of geometry and texture-based metrics that are

independent of kinetic modeling to convey useful information on disease state. The study was performed using data from

Parkinson’s disease subjects imaged with 11C-dihydrotetrabenazine and 11C-raclopride. The pattern of the radiotracer

distribution in the striatum was quantified using image-based metrics evaluated over multiple regions of interest that

were defined on co-registered PET and MRI images. Regression analysis showed a significant degree of correlation

between several investigated metrics and clinical evaluations of the disease (p< 0.01). The best results were obtained

with the first-order moment invariant of the radioactivity concentration values estimated over the full structural extent

of the region as defined by MRI (R2
¼ 0.94). These results demonstrate that there is clinically relevant quantitative

information in the tracer distribution pattern that can be captured using geometric and texture descriptors. Such metrics

may provide an alternate and complementary data analysis approach to traditional kinetic modeling.
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Introduction

In-vivo positron emission tomography (PET) imaging
of neurological disorders has contributed significantly
to the understanding of disease-induced neurochemical
changes in the brain, and its relevance is anticipated to
increase as treatments become available. The methods
of image analysis that relate imaging outcomes to
underlying neurobiology typically include two compo-
nents: 1) the selection of modeling techniques and
metrics which relate the radiotracer distribution to bio-
logical parameters; and 2) criteria for defining regions
of interest (ROIs) over which the parameters of interest
are evaluated. For example, the simplest type of mod-
eling is the estimate of the standard uptake values,
where the ROI values from a single (static) image are
divided by the injected tracer dose normalized to sub-
ject’s body mass. More rigorous methods rely on

kinetic modeling (KM) to compute the biological
parameters such as the non-displaceable binding poten-
tial (BPND), and require the knowledge of the time
course of the tracer distribution in the selected ROI.
Thus, dynamic scanning and either a plasma- or
tissue-derived input function must be acquired. These
requirements typically lead to increased scan durations,
introduce additional sources of error and reduce patient
comfort. Therefore, it is of interest to explore new
image-derived metrics that correlate with disease,
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convey useful information regarding the relevant
physiological processes, and can be obtained from rela-
tively simple scanning procedures. Metrics that quan-
tify image histogram and texture have been already
used in cancer-related PET imaging,1,2 and analyses
of co-variance patterns have been proposed in neuroi-
maging for tracers with diffuse brain distribution, such
as 18F-fluorodeoxyglucose (18F-FDG) and 11C-
Pittsburgh compound B (11C-PIB).3,4 However, to our
knowledge, the usefulness of a wider set of geometry-
based metrics in neurodegeneration has not been
explored, specifically for the tracers that have a rather
localized distribution pattern.

The aim of this work was to investigate the correl-
ation between KM-independent image-derived metrics
that quantify spatial activity distribution in the brain
and clinical metrics of neurodegenerative disease;
the investigation was performed using co-registered
PET and MRI images of subjects suffering from
Parkinson’s disease (PD), which is known to progres-
sively affect the integrity of the pre-synaptic dopamin-
ergic neurons with minimal or no anatomical atrophy.5

Based on the observation that neurodegenerative dis-
ease usually affects tracer binding in a distinct spatio-
temporal pattern, our hypothesis was that metrics such
as region compactness, spatial activity variance and
eccentricity evaluated for the regions of high activity
concentration would correlate well with the clinical dis-
ease progression.

The descriptive strength of image metrics may
depend on the particular ROI definition method; this
was indeed observed in oncology.6 The selection of the
most appropriate ROI over which to evaluate a specific
metric may be ambiguous in presence of neurodegen-
eration; while specific aspects of the neurochemical
function may be impaired, other functional or struc-
tural aspects may be preserved, leading to large differ-
ences in region identification ability between different
modalities and tracers. Typically, the ROI choice is
dictated by the available data, the primary aim of inves-
tigation, and overall robustness of the method.7,8 In the
case when anatomically defined regions are required,
they can be delineated using the MRI image of the sub-
ject. Other approaches include using atlas-derived
ROIs,9–11 or a more simple definition of ROIs using
geometric primitives placed over the brain structure
of interest.12,13 In addition, it has been shown that
inter-modality ROIs (PET-CT, PET-MRI) can be
better suited for certain diagnostic tasks than the trad-
itional single-modality ROIs.14–17 Given these consid-
erations, here we evaluate the performance of the
PET-image analysis metrics for a range of possible
ROI definitions derived from the PET and MRI
images; this methodology was utilized to investigate
metrics more systematically and to test the generality

of the analysis outcome beyond a specific method of
ROI definition.

The study was performed using images of two dopa-
minergic tracers in PD subjects and healthy controls.
The dopaminergic function was evaluated using the
11C-dihydrotetrabenazine (DTBZ), a marker for the
vesicular monoamine transporter type 2. The BPND of
DTBZ is substantially reduced in PD patients compared
to controls, exhibiting a typical PD-related rostro-caudal
gradient. The other tracer was 11C-raclopride (RAC),
which captures the spatial distribution of the D2 (dopa-
mine) receptors. The D2 receptor density is relatively
preserved with PD, and thus the region of high RAC
binding resembles the anatomical shape of the striatum.
It was expected that the investigated metrics computed
using the DTBZ activity values within the striatal ROIs
would capture the progressive aspect of PD, while no
significant disease-related trends would be observed for
metrics derived from the RAC activity values.

The analysis methodology consisted of three main
steps: 1) ROI definition: a series of single-modality
and inter-modality PET-MRI ROIs were generated.
These ROIs included PET-defined regions of high activ-
ity concentration, MRI-defined regions corresponding
to anatomical structures (putamen and caudate), and a
range of intermediate regions. The intermediate ROIs
were taken from a ‘‘mixed’’ ROI space that was estab-
lished using a linear combination of the single-modality
PET and MRI segmentations. We explored DTBZ-
MRI and RAC-MRI ROIs that were generated using
images of the corresponding tracer; 2) metric computa-
tion: the investigated metrics were computed within the
generated ROIs from the DTBZ and RAC activity
values; 3) metric evaluation: the correlation between
metric values and clinical PD severity measures (disease
duration (DD) and motor performance) was analyzed
as a function of the used ROIs.

In the following sections, our method and results are
reported in detail. In ‘‘Methods’’ section, we describe
the imaging protocol, the ROI generation procedure,
the utilized image metrics, and the analysis approach.
In ‘‘Results’’ section, we first report data obtained with
DTBZ-derived metrics, followed by a more brief
description of findings with RAC-derived metrics. In
‘‘Discussion’’ section, we summarize and analyze the
results, identify limitations of the study, and outline
future work.

Methods

Data acquisition and pre-processing

The study was approved by the University of British
Columbia Ethics Board and all experiments were con-
ducted in accordance with the university ethics
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guidelines. All subjects gave written informed consent.
The study used data from 16 PD and three control
subjects acquired as part of an ongoing clinical study.
The mean age of the PD subjects was 61.2� 7.3 (range
52–79 years), with the clinical disease severity ranging
from mild to moderate on the unified Parkinson’s dis-
ease rating scale (UPDRS). Given that PD can affect
two sides of the brain to different degrees, the motor
part of the UPDRS was evaluated separately for the left
and right side (off-medication). The mean lateralized
UPDRS score was 11.6� 6.5 (range 1–26). The mean
DD measured from the time of clinical onset was
7.3� 4.5 years (range 1–15 years).

T1-weighted MRI and DTBZ PET images of the
brain were acquired for all subjects; RAC images
were acquired for all but one PD subject. The MRI
images were obtained with a Philips Achieva 3T
scanner at the UBC MRI Research Centre using a
T1-weighted Turbo Field Echo sequence (TR 7.724 sec-
onds). MRI image dimensions were 256� 256� 170
with voxel size (1.0mm)3. The PET data were acquired
in list mode using the Siemens High Resolution
Research Tomograph (HRRT) at the UBC PET
Imaging Centre and reconstructed using the 3D
OSEM-OP algorithm.18 Two image types were used
for metric evaluation: activity concentration images
acquired over 30min (30–60min post-injection) and
parametric BPND images produced from 16 temporal
frames using a simplified reference tissue model19; the
occipital cortex and cerebellum were used as the DTBZ
and RAC reference regions, respectively. PET image
dimensions were 256� 256� 207 with voxel size
(1.219mm)3. PET images were rigidly co-registered to
the respective MRI images, which were resampled using

trilinear interpolation to match PET voxel size.
The SPM software package (www.fil.ion.ucl.ac.uk/
spm/) was used for rigid, mutual information-based
co-registration.

Single-modality and mixed PET-MRI ROIs

MRI-based ROIs for each subject (ROIMRI) were gen-
erated by manually outlining left and right putamen
and caudate in the MRI images using the ImageJ
(www.rsbweb.nih.gov/ij/) image analysis software
(4 MRI-based regions in total per subject). To produce
the DTBZ and RAC ROIs (ROIPET) defined by the
regions of high activity concentration, the activity
images acquired over 30min were smoothed with an
anisotropic diffusion filter20 and thresholded.
Following one of the methods previously used in oncol-
ogy imaging,21–24 the threshold level was computed as
40% of the maximum value (within the respective side),
after subtraction of the background in the surrounding
tissue. The resulting binary mask was subdivided
into left and right putamen and caudate regions
(4 PET-based regions in total per subject). Thus, for
each MRI-based ROI there was a corresponding
PET-based ROI.

The method of mixed ROI generation followed the
mathematics of localized N-d shape transform-
ations25,26 and is outlined in Figure 1. For each
pair of corresponding ROIPET and ROIMRI, the dis-
tance-argumented implicit functions (PPET, PMRI)
were computed using the equation

Pðd Þ ¼ 0:5ðerrð� � d Þ þ 1Þ ð1Þ
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Figure 1. Flowchart of the algorithm employed to generate mixed PET-MRI ROIs. The main processing steps are shown using the

transaxial slices through the representative PET/MRI volume images.
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where d is the signed distance from the ROI boundary
(positive inside the ROI), and errðxÞ is the Gaussian
error function. The error function was used here
because it represents the convolution of the Heaviside
step function with the Gaussian function, which pro-
vides a good description of the point spread function of
the imaging apparatus. The values � ¼ 0:32 and
� ¼ 0:81 were used for PET and MRI implicit func-
tions, respectively. These values were obtained experi-
mentally by fitting the error function to the edge of
striatum in the respective images, and taking the
mean value of � over all subjects. Note that at the
ROI boundary Pð0Þ ¼ 0:5.

The implicit PET and MRI functions corresponding
to the same subject and structure were fused as follows:

PFUSEDð�Þ ¼ �PMRI þ ð1� �ÞPPET, � 2 ½0, 1� ð2Þ

where � is a free parameter representing the relative
weight of the MRI component. The mixed PET-MRI
ROIs were obtained by choosing the voxels with the
value of PFUSED above 0.5:ROIMIXð�Þ ¼ fðx,
y, zÞ : PFUSEDð�, x, y, zÞ4 0:5g. The geometric shape of
ROIMIX could be adjusted by changing the � param-
eter. Values � ¼ 0 and � ¼ 1 correspond to single-mod-
ality PET and MRI ROIs, respectively:
ROIMIXð0Þ ¼ ROIPET (DTBZ or RAC) and
ROIMIXð1Þ ¼ ROIMRI.

Image metrics

The choice of the investigated metrics was based on the
prior knowledge of the specific rostro-caudal direc-
tional pattern of dopaminergic function loss in PD. It
should be pointed out that in the PET images analyzed
in this work, the activity was concentrated in a single
area (striatum), and not distributed over the
entire brain as, for example, in the case of imaging
with 18F-FDG; the investigated metrics were chosen
accordingly. The metrics were separated into three
classes: value, geometry, and texture, computed
using �-defined ROIMIXð�Þ. All metrics were
computed using PET voxel values; the MRI images
were not used for metric computation, but only for
ROI definition.

The value group included (see Table 1 for abbrevi-
ation reference):

– The mean BPND that was obtained from the para-
metric binding potential images. This was the only
metric that was based on KM, and the performance
of other metrics (in terms of correlation with the
clinical data) was evaluated in comparison to
BPND. Unless noted otherwise, DTBZ BPND was
measured in the DTBZ-MRI mixed ROI space,

and RAC BPND was measured in the RAC-MRI
mixed ROI space;

– The standard deviation of activity (ASD) and index
of dispersion of the activity values (AID). These
metrics captured the non-uniformity of tracer bind-
ing, which becomes more prominent with advanced
disease.

The geometry group included:

– Region volume (VOL) and region surface area
(SAR). With disease progression, the functionally
active dopaminergic regions become smaller. These
metrics were expected to capture this reduction in
size;

– Relative volume difference (RVD) and volumetric
overlap error (VOE):

RVD ¼
ROIMIXð�Þ
�
�

�
�� ROIMRIj j

ROIMRIj j
ð3Þ

VOE ¼ 1�
ROIMIXð�Þ \ROIMRI

�
�

�
�

ROIMIXð�Þ [ROIMRI

�
�

�
�

ð4Þ

where �j j denotes the number of voxels. While RVD is
only a measure of relative region size, VOE measures
the spatial alignment between two regions;

– Distance between the centers-of-mass of ROIMIXð�Þ
and ROIMRI (RCM): normalized to the anteropos-
terior length of ROIMRI. With advanced disease the
center of the functionally active region shifts towards
the anterior direction and RCM was expected to
grow;

– Eccentricity of ellipsoid fitted to ROIMIXð�Þ (ECM),
which was expected to become lower with more
advanced disease;

– Region compactness (CMP) defined as the inverse
ratio of the ROI surface area to that of a same-
volume sphere, and extent (EXT) defined as the
ratio of the ROI volume to that of the ROI-bound-
ing box. With disease progression the functional
regions become more irregular, and both of these
metrics were expected to reflect this aspect;

– Mean region breadth (MBR) measured the mean
region width along 13 spatial axes. MBR was
expected to diminish with more severe disease.

As texture metrics, we employed the J1 and J2
moment invariants defined previously elsewhere.27–29

In short, the J1 moment (denoted as J1V) reflects the
distance-weighted variance of activity values within the
ROI, and the J2 moment (denoted as J2V) reflects the
corresponding covariance; both metrics are invariant to
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the affine transformations. These descriptors are classi-
fied as ‘‘texture’’ here in a sense that they quantify the
spatial distribution of voxel values and thus combine
two types of information (value and location); however,
it should be noted that they do not quantify repeated
patterns in the images.

Metric evaluation

The values of the image metrics were obtained
using DTBZ-MRI and RAC-MRI mixed ROIs
that were generated using Equation (2) with
� ¼ ½0:0, 0:1, . . . , , 1:0�. To account for the asymmetric
nature of PD, the metrics were computed separately
for the two sides of the brain, using either putamen
or caudate mixed ROIs. For each value of �, the
metric values corresponding to the clinically better (or
worse) side (varied between subjects) were regressed
against the corresponding lateralized UPDRS scores
and DD.

The regression analysis was performed with (N¼ 19)
and without (N¼ 16) the inclusion of the control

subjects in the test sample. The inclusion of the con-
trols allowed to examine the behavior of metrics when
transitioning from healthy to disease state. In addition,
control subjects provided a reference for tracking the
change in metric value with disease progression. The
exclusion of the controls from the analysis, on the
other hand, allowed a potentially less biased assessment
of the correlation between the disease severity and image
metrics.

The main measure of correlation was the square of
the correlation coefficient R2, obtained by fitting the
data to the two-term models of the form
f ðxÞ ¼ bþ ax and f ðxÞ ¼ b expðaxÞ, where f is the ana-
lyzed metric, and x is DD or UPDRS score. A detailed
investigation of more complex functions was outside
the scope of this work, as a higher number of subjects
would have been required to establish the proper func-
tional form for each of the investigated metrics. The
exception was an additional fit of BPND to the three-
term function f ðxÞ ¼ cþ b expðaxÞ, since it has been
previously determined that such a function most appro-
priately describes the relationship between DTBZ

Table 1. Values of the correlation coefficient for the explored image metrics.a

Image metrics

DTBZ-MRI RAC-MRI

� max DD UPDRS � max DD UPDRS

Value

Log(BPND) 0.4 0.82**
T0.94**

(�0.90**) 0.61**
T0.62**

(�0.86**) – 0.06 (0.21) 0.06 (0.22)

ASD 1.0 0.88** (�0.91**) 0.63** (�0.84**) – 0.07 (0.23) 0.05 (0.24)

AID 1.0 0.72** (�0.83**) 0.39** (�0.65**) – 0.07 (0.26) 0.09 (0.30)

Geometry

VOL 0.2 0.57** (�0.69**) 0.48** (�0.68**) – 0.10 (0.38) 0.06 (0.29)

SAR 0.2 0.56** (�0.68**) 0.51** (�0.70**) – 0.09 (0.32) 0.06 (0.24)

RVD 0.3 0.53** (�0.70**) 0.46** (�0.69**) – 0.11 (0.32) 0.17 (0.29)

VOE 0.2 0.60** (0.76**) 0.52** (0.77**) – 0.12 (0.30) 0.06 (0.28)

RCM 0.3 0.48** (0.64**) 0.38** (0.60**) 0.3 0.29* (0.51*) 0.21 (0.39)

ECM 0.0 0.65* (�0.75**) 0.59* (�0.74**) – 0.16 (0.32) 0.09 (0.27)

CMP 0.5 0.32* (�0.49*) 0.36** (�0.53*) – 0.13 (0.28) 0.12 (0.31)

EXT 0.5 0.31* (�0.51*) 0.36* (�0.69**) 0.3 0.36* (0.51*) 0.40** (0.50*)

MBR 0.3 0.51** (�0.62**) 0.53** (�0.68**) – 0.09 (0.26) 0.07 (0.25)

Texture

J1V 1.0 0.94** (0.94**) 0.79** (0.90**) – 0.07 (0.24) 0.08 (0.26)

J2V 1.0 0.91** (0.93**) 0.77** (0.91**) – 0.08 (0.25) 0.07 (0.23)

BPND, non-displaceable binding potential; AID, index of dispersion of activity values; VOL, region volume; SAR, region surface area; RVD, relative

volume difference; VOE, volumetric overlap error; RCM, relative center of mass distance; ECM, region eccentricity; CMP, region compactness; EXT,

region extent; MBR, mean breadth; J1V, first moment invariant of activity values; J2V, second moment invariant of activity values. aMaximum values of

R2 and � (given in parentheses) between image metrics and clinical metrics, obtained in the DTBZ-MRI and RAC-MRI ROI spaces (using less affected

side of putamen). All subjects were included in the analysis. The R2ð�Þ values were obtained by fitting the image metrics with the two-term linear

functions of UPDRS and DD. A two-term exponential function was used with BPND. Absent �max indicates that no trend in the correlation strength

was observed. The star glyph indicates the significance level: **P5 0:01, *P5 0:05, and no glyph for P4 0:05. T Value obtained with three-term

exponential fit (BPND only).
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BPND and DD.30 Bootstrapping with replacement was
used to obtain the mean R2ð�Þ, with the corresponding
standard deviation and 95% confidence intervals. In
addition, we computed the Spearman’s correlation
coefficient � to measure the statistical dependence
between the image and clinical metrics in a way that
does not imply any specific type of functional relation-
ship. Since the results were not corrected for multiple
comparisons6,31 the absolute p values associated with
the correlations need to be interpreted with caution;
nevertheless, the relative values between different met-
rics are expected to be relevant. To investigate the
degree of dependency between image metrics, the good-
ness of fit to a bivariate linear model was measured,
expressed as adjusted R2

adj, with two image metrics as
the independent variables and DD as the dependent
variable.

The analysis procedure was performed separately
for the DTBZ-derived metrics in the DTBZ-MRI
ROIs and RAC-derived metrics in RAC-MRI ROIs
and for the clinically worse and better sides of the
striatum. In addition, we explored the relationship
between the clinical data and DTBZ-derived metrics
evaluated in the RAC-MRI space. This provided an
assessment of the relative metric sensitivity to the ana-
tomic fidelity of the ROI, i.e. whether the metrics
remain suitable for analysis with RAC-based ROIs
used as surrogate anatomical guidelines. Here we
make an assumption that there are no spatial differ-
ences between the pre-synaptic and post-synaptic
binding targets.

We describe in detail the results obtained with
DTBZ-derived metrics in the DTBZ-MRI ROI space,
including the variability of metrics with � and R2ð�Þ
plots. The value metric group is discussed first, followed
by the geometry and texture groups. Results obtained
from the entire sample (controlsþPD) are reported
first, followed by those obtained for PD subjects only.
Results obtained with RAC- and DTBZ-derived met-
rics in the RAC-MRI ROI space are summarized in a
separate section.

Results

The correlation was found to be stronger when the clin-
ically better side was evaluated, consistent with previ-
ous studies.30 Therefore, we report in detail the results
obtained with image metrics extracted from the less
affected (better) side; using the more affected side
yielded the same general outcomes.

Metric values and variability

Examples of ROIs from the DTBZ-MRI ROI space
used for metric evaluation are shown in Figure 2(a).

With PD subjects, the activity-defined PET regions
were smaller than the corresponding MRI regions, as
expected. Greater values of � produced ROIs with finer
spatial detail (particularly in the areas of interior cap-
sule and posterior caudate) and lower surface irregular-
ity. Figure 2(b) further demonstrates the degree of
alignment between the activity and anatomy-defined
regions: even in areas presumably unaffected by the
disease, the MRI ROIs did not always align well with
the functionally active regions (indicated by arrows).
This misalignment was greater with the caudate ROIs,
where the ROI shape differences between DTBZ and
MRI were more significant (likely due to the more pro-
nounced partial volume effect and registration imper-
fection). With control subjects, the mean VOE was
0.64� 0.08 for the caudate and 0.33� 0.05 for the puta-
men; with PD subjects, the mean VOE was 0.67� 0.08
and 0.82� 0.11 for the caudate and putamen regions,
respectively.

Several representative metrics (VOL, BPND, CMP,
J1V) are plotted in Figure 3 as functions of �. The
VOL values reveal the various degrees of functional
atrophy in PD subjects; different metric behavior
between the less affected and more affected subjects is
observed. The values of BPND were highest with � � 0
for PD subjects, reflecting the spatially non-uniform
dopaminergic denervation typical of PD. The CMP
graphs revealed that PET ROIs were on average more
compact but substantially less consistent compared to
MRI ROIs. The J1V graphs demonstrate that the spa-
tial variance of voxel values was highest with MRI
ROIs and lowest with PET ROIs. Longer DD generally
corresponded to higher J1V, lower VOL and lower
BPND.

Correlation between image and clinical metrics

The maximum values of R2 and � obtained for the
investigated metrics in the DTBZ-MRI and RAC-
MRI ROI spaces are summarized in Table 1, along
with the values of � that maximized the correlation
with the clinical data (�max). The data are shown
only for less affected side of putamen; the correlation
obtained using the caudate ROIs was weak for most
metrics, as expected, given the known spatio-temporal
progression pattern of PD.

Among the value group, ASD had the strongest cor-
relation with the clinical measures, similar to that of
BPND and followed by AID. The corresponding
values of � generally followed the same pattern. The

R2ð�Þ plot and representative scatter plots for

log(BPND) are shown in Figure 4(a). The R2ð�Þ graph
demonstrates a trend toward stronger correlation
between BPND and DD around � � 0:5 (also observed
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with �). The scatter plots revealed that a three-term
exponential function of the form f ðxÞ ¼ cþ b expðaxÞ

was a better fit for BPND (R2
DD ¼ 0:94,

R2
UPDRS ¼ 0:62) compared to the two-term function

(R2
DD ¼ 0:82, R2

UPDRS ¼ 0:61), as known from litera-

ture.30 Using the linear and exponential two-term fits
resulted in nearly identical correlation coefficients with
all metrics except BPND. Nevertheless, since the two-
term linear function was used with other metrics, with

BPND we retained both the two-term and three-term R2

values as the reference. The use of the Spearman cor-
relation coefficient � may be more robust in this regard
since it does not imply any specific type of functional
dependence.

The correlation between clinical data and metrics in
the geometry group was statistically significant but lower
compared to the value group. The correlation was stat-
istically significant only with PET ROIs or mixed ROIs,

and negligible with MRI ROIs. Metrics related to the
size of the region (VOL, VOE, RVD, SAR) had the
highest values of R2 and �, and the maximum correl-
ation was most often observed around � � 0:3. This is
reflected in the R2ð�Þ graph for RVD shown in Figure
4(a). With metrics that captured the shape properties
(CMP, EXT, MBR, ECM), R2 and � plots generally
had a pronounced maximum around � ¼ 0:5. An exam-
ple of such trend for CMP is shown in Figure 4(a). The
scatter plots for CMP demonstrate the correlation pat-
tern observed with � ¼ 0:5: subjects with low DD and
UPDRS scores generally had higher CMP values. The
trend of improved correlation in the region of mid-range
� values was consistently observed in both the R2 and �
functions with most geometry-based metrics.

The texture metrics J1V and J2V had the strongest
correlation with the clinical data among all other met-
rics; the highest values of R2 and � were obtained with
MRI ROIs. The R2ð�Þ graphs and scatter plots for J1V
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Figure 2. (a) The shape of ROIMIXð�Þ for one of PD subjects (UPDRS 9.0, DD 6, moderate severity) in the DTBZ-MRI ROI space. (b)

Contours of ROIMIXð�Þ overlaid on the transaxial slices of DTBZ BPND images, for two representative PD subjects and three values of

�. Arrows point out areas of misalignment between ROIMIXð� ¼ 1Þ and regions of high activity concentration.
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and J2V are shown in Figure 5. With �5 0:5 the mean
correlation coefficients were substantially reduced com-
pared to � � 1:0; the reduction was on the order of
54% for DD and 74% for UPDRS (compared
to�20% and �32% with BPND, respectively). The scat-
ter plots strongly suggest a linear relationship between
DD and J1V (J2V), as opposed to an exponential trend
observed with BPND (compare Figures 4 and 5).
Interestingly, J1V and J2V were the only metrics that
had relatively high R2 values when evaluated using
caudate ROIs: R2

DDðJ1VÞ ¼ 0:71� 0:09 ½� ¼ 1� and
R2

DDðJ2VÞ ¼ 0:70� 0:10 ½� ¼ 1� with p< 0.01.
When the control subjects were excluded from the

regression analysis, the correlation analysis for BPND

produced values R2
DD ¼ 0:85 and � ¼ 0:84, comparable

to those previously obtained with control subjects
included in the regression. The correlation between
the texture metrics and clinical data also did not
change appreciably: the value of R2

DD was 0.91 (0.94
with control subjects included) for J1V and 0.89 (0.91
with controls) for J2V. On the other hand, the correl-
ation strength for geometry metrics became lower. For

example, the corresponding values of R2
DD were 0.39

(0.57 with controls) for VOL, 0.34 (0.53 with controls)
for RVD, 0.49 (0.60 with controls) for VOE, and 0.52
(0.65 with controls) for ECM. The correlation
values for CMP and EXT were reduced by approxi-
mately 20%.

The degree of dependency between the image metrics
varied depending on the considered metric pair. When
metrics of similar character were combined in a bivari-
ate model (e.g. VOL and RVD), the value of adjusted
R2

adj expectedly did not increase compared to the
respective univariate models. However, the correlation
did improve on average by �15% when qualitatively
different metrics were combined. The greatest increase
in R2

adj was observed with [AID, VOE]: R2
adj¼ 0.69

(AID), 0.64(VOE), and 0.89 (AID, VOE).

Metric correlation in the RAC-MRI ROI space

Examples of mixed RAC-MRI ROIs are shown in
Figure 6(a). The RAC ROIs had approximately the
same size as the MRI ROIs, and the VOL metric
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averaged across subjects was approximately constant
with �, consistent with the notion that the post-synap-
tic function is relatively preserved in PD. However,
even with co-registration and tracer binding unaffected
by the disease, we found that the MRI ROIs did not
accurately encompass the regions of high RAC uptake.
The mean VOE between RAC ROIs and MRI ROIs
for control and PD subjects was 0.58� 0.05 for the
caudate and 0.36� 0.04 for the putamen.

The correlation between RAC-derived image metrics
and clinical data was statistically insignificant (Table 1),

and the values of R2 and � were low for all metrics and
� values.

With DTBZ-derived texture and value metrics in the
RAC-MRI ROI space, the correlation with clinical
data was generally preserved with � and comparable
to that obtained in the DTBZ-MRI ROI space.
However, the degree of preservation depended on the
specific metric and analyzed structure (i.e. putamen or
caudate). This is illustrated by the representative R2ð�Þ
plots for BPND and J1V shown in Figure 6(b). The
correlation between DTBZ BPND and clinical metrics
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did not depend on � or analyzed structure (Figure
6(b)). On the other hand, a structure-dependent trend
in R2ð�Þ was observed for J1V. In putamen, a gradual
decrease in R2 was observed with �! 0 (Figure 6(b)),
which here indicates going from MRI to RAC-defined
ROIs. The reduction was more pronounced with regres-
sion against DD, with R2

DD ¼ 0:86� 0:06 ½� ¼ 0� and
R2

DD ¼ 0:94� 0:02 ½� ¼ 1�. In caudate, the opposite
trend was observed: R2

DD ¼ 0:81� 0:06 ½� ¼ 0� and
R2

DD ¼ 0:73� 0:10 ½� ¼ 1� (Figure 6(b)).

Discussion

Neurological imaging studies often rely on KM to com-
pute physiologically relevant parameters, such as the
BPND. While producing interpretable results, KM has
some drawbacks that may limit its use in a wider clin-
ical setting. In this work, we investigated the ability of
several metrics that do not require KM to serve as
descriptors of the clinical disease severity and duration,
in the context of imaging PD subjects. Since the metric
performance could be dependent on the ROI selection
criteria, the correlation between image metrics and

clinical scores was evaluated over a family of single-
modality and mixed PET-MRI ROIs obtained using a
controlled region fusion method.

The study revealed that the correlation between the
image metrics and clinical data may indeed depend on
the ROI definition method: metrics varied in terms of
their sensitivity to the anatomical accuracy of the ROI.
For example, comparing the DTBZ-MRI and
RAC-MRI ROI spaces, the correlation between
DTBZ BPND and clinical metrics remained unchanged
regardless of what ROI space was used, indicating that
regions of high RAC uptake could be used as a substi-
tute for the accurate anatomical reference regions. On
the other hand, the correlation between DTBZ J1V and
clinical metrics was highest with MRI ROIs, and
degraded by �10% with RAC ROIs. This implies
that 1) J1V and J2V metrics have higher sensitivity
than BPND to ROI definition method and 2) with tex-
ture metrics, a fairly accurate anatomical reference may
be required to achieve maximum correlation.

Among the investigated metrics, the moment invari-
ants J1V (R2

DD ¼ 0:94) and J2V (R2ð�Þ ¼ 0:91) had the
strongest correlation with the clinical data and the
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values of the correlation coefficient were similar to
those obtained with DTBZ BPND when using a three-
term exponential fit (R2

DD ¼ 0:94); the Spearman cor-
relation coefficient was slightly higher for J1V and J2V.
For these two metrics the correlation was maximized
when the MRI-based ROIs were used. Importantly,
moment invariants were fit well with a two-term
linear model, in contrast to DTBZ BPND. This indicates
that the moment invariants and BPND may relate to the
different aspects of disease progression and may be
most sensitive at different stages of the disease.
Studies on a wider cohort of subjects are required to
test this hypothesis.

Compared to value and texture metrics, the geom-
etry metrics had moderate-to-low correlation with the
clinical metrics and performed worse than BPND.
Nevertheless, the measured values of the correlation
coefficient between clinical assessments and these met-
rics evaluated for DTBZ in the DTBZ-MRI ROI space
were statistically significant, unlike the geometry met-
rics evaluated for RAC in the RAC-MRI ROIs.
This observation strengthens the conclusion that the
moderate levels of correlation observed in the DTBZ-
MRI ROI space were indeed meaningful and inform-
ative of the neurochemical changes associated with PD.
The low correlation values indicate that, in the context

examined, such metrics are of limited value by them-
selves; they become more useful if combined with com-
plementary metrics (e.g. they can be combined with
value metrics to improve the predictive strength of the
corresponding multivariate model).

Visualizing the metric and R2 values for the estab-
lished ROI space also revealed potentially interesting
patterns. For example, the single-modality PET or
MRI ROIs were not always optimal in terms of max-
imizing the R2 values. With region size metrics such as
VOL, RVD, and SAR, the correlation strength was
maximized when PET ROIs combined with a small
MRI contribution were used (max R2 was achieved
with � � 0:3). With shape metrics such as CMP and
EXT the correlation pattern was present only with
mixed ROIs (� � 0:5). These patterns (also observed
with Spearman’s correlation coefficient) can likely be
explained by the insensitivity of the MRI ROIs to the
disease on the one hand, and noise in the shape of PET
ROIs on the other. The regularization of mixed ROI
introduced by the MRI component reduced noise in the
ROI shape, which in turn positively affected the correl-
ation strength. We used thresholding here to obtain the
PET-defined regions, a procedure that may not produce
the most accurate segmentation of functionally active
regions. However, a more elaborate technique could be
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employed in the future to define such regions more
robustly.

There are some limitations to this study; the
obtained p values were not corrected for multiple com-
parison (several metrics were tested using a relatively
limited number of subjects). This could lead to worse
than expected generalization outside of the studied
sample. However, conceptually similar metrics pro-
duced similar correlation values, providing an add-
itional indication that the analysis results were robust.
We also did not explore in detail the optimal form of
the functions relating the outcomes of the imaging met-
rics to clinical data; the limited number of data points
did not allow for such an exhaustive comparison. The
trends observed with the Spearman’s correlation coef-
ficient � replicated those obtained with R2, which at
least in part indicates that the results were not specific
to the used linear (or exponential) fits. Although a
search for an optimal functional form would likely
tweak the rank order of the correlations in terms of
R2 (but not �), its absence does not detract from one
of the main messages of this work that there is indeed
clinically relevant quantitative information in the spa-
tial distribution of the tracer and that such information
can be captured using geometry and texture descrip-
tors. A drawback pertaining to such descriptors is
that it may be difficult to directly relate them to the
physiological parameters that characterize the underly-
ing neurochemistry. On the other hand, these descrip-
tors may have enough sensitivity to effectively identify
subtle disease-induced abnormalities; they also present
the advantage of not requiring dynamic scanning with
known plasma or tissue input function.

To summarize, the most important finding of this
study is that quantifying the activity distribution pat-
tern can be a useful approach for the analysis of tracers
that explore neurodegenerative diseases characterized
by distinct spatial progression. While in this case an
excellent correlation between clinical metrics and a
single image derived metric was found, this may not
always be the case and combining several metrics in a
single model that convey different kinds of information
may prove beneficial, particularly in situations where
subtle changes need to be detected. While our findings
are very likely tracer-dependent, the results indicate
that further exploration of similar methodologies is
warranted. Our results also show that the evaluation
of imaging metrics should be performed in the context
of specific ROI definition criteria, possibly tailored to
the specific function of structure under consideration.
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