Skip to main content
. 2016 Jun 14;14:178. doi: 10.1186/s12967-016-0928-3

Table 3.

Performance of different classification models developed using support vector machine as machine learning technique

Feature Thre Sen Spec Acc MCC AUC Parameters
Performance on training data
 AAC 0.6 73.58 70.07 72.92 0.36 0.77 t:2 g:0.005 c:80 j:1
 DPC 0.4 86.11 62.04 81.53 0.45 0.8 t:2 g:0.001 c:10 j:1
 PHY 0.7 91.25 24.82 78.61 0.20 0.57 t:2 g:0.001:c:50:j:4
 DPCHyb_NONE 0.4 87.82 62.04 82.92 0.48 0.84 t:2 g:0.001 c:20 j:1
 DPCHyb_KOOL 0.4 89.54 60.58 84.03 0.49 0.85 t:2 g:0.001 c:4 j:2
 DPCHyb_BETTS 0.3 93.65 62.04 87.64 0.58 0.88 t:2 g:0.001 c:8 j:3
Performance on validation data
 DPCHyb_BETTS 0.3 91.1 50 83.33 0.43 0.71

The hybrid model prepared using Dipeptide composition based features and MERCI displayed the best performance with an accuracy of 87.6 %. The same model showed an accuracy of 83.3 % on validation dataset