Table 3.
Feature | Thre | Sen | Spec | Acc | MCC | AUC | Parameters |
---|---|---|---|---|---|---|---|
Performance on training data | |||||||
AAC | 0.6 | 73.58 | 70.07 | 72.92 | 0.36 | 0.77 | t:2 g:0.005 c:80 j:1 |
DPC | 0.4 | 86.11 | 62.04 | 81.53 | 0.45 | 0.8 | t:2 g:0.001 c:10 j:1 |
PHY | 0.7 | 91.25 | 24.82 | 78.61 | 0.20 | 0.57 | t:2 g:0.001:c:50:j:4 |
DPCHyb_NONE | 0.4 | 87.82 | 62.04 | 82.92 | 0.48 | 0.84 | t:2 g:0.001 c:20 j:1 |
DPCHyb_KOOL | 0.4 | 89.54 | 60.58 | 84.03 | 0.49 | 0.85 | t:2 g:0.001 c:4 j:2 |
DPCHyb_BETTS | 0.3 | 93.65 | 62.04 | 87.64 | 0.58 | 0.88 | t:2 g:0.001 c:8 j:3 |
Performance on validation data | |||||||
DPCHyb_BETTS | 0.3 | 91.1 | 50 | 83.33 | 0.43 | 0.71 |
The hybrid model prepared using Dipeptide composition based features and MERCI displayed the best performance with an accuracy of 87.6 %. The same model showed an accuracy of 83.3 % on validation dataset