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Summary

Bacterial conjugation is the main mechanism responsible for the dissemination of antibiotic 

resistance genes. Hence, the search for specific conjugation inhibitors is paramount in the fight 

against the spread of these genes. In this pursuit, unsaturated fatty acids have been found to 

specifically inhibit bacterial conjugation. Despite the growing interest on these compounds, their 

mode of action and their specific target remain unknown. Here, we identified TrwD, a Type IV 

secretion traffic ATPase, as the molecular target for fatty acid-mediated inhibition of conjugation. 

Moreover, 2-alkynoic fatty acids, which are also potent inhibitors of bacterial conjugation, are also 

powerful inhibitors of the ATPase activity of TrwD. Characterization of the kinetic parameters of 

ATPase inhibition has led us to identify the catalytic mechanism by which fatty acids exert their 

activity. These results open a new avenue for the rational design of inhibitors of bacterial 

conjugation in the fight against the dissemination of antibiotic resistance genes.
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Introduction

Antibiotic resistance has become one of the most challenging problems in health care 

(WHO-report, 2014), as morbidity and mortality rates upon infection by multi-resistant 

pathogens have sharply increased over the last decades (Giske et al., 2009, Hawkey and 

Jones, 2009, Rice, 2009, Boucher et al., 2009). One of the main mechanisms whereby 

bacteria become resistant to antibiotics is the acquisition of antibiotic resistance genes by 

bacterial conjugation (Mazel and Davies, 1999, de la Cruz and Davies, 2000, Waters, 1999). 

Therefore, the search for specific conjugation inhibitors (COINs) is crucial for the control of 

the dissemination of antibiotic resistance genes. Most compounds reported to inhibit 

conjugation turned out to be unspecific growth inhibitors (Lujan et al., 2007, Hooper et al., 
1989, Michel-Briand and Laporte, 1985, Leite et al., 2005, Conter et al., 2002). Bacterial 

conjugation has also been reported to be inhibited by the M13 phage coat protein g3p (Lin et 
al., 2011). However, the most promising results have been obtained with unsaturated fatty 

acids (uFAs), which specifically inhibit plasmid conjugation without inhibiting Escherichia 
coli growth (Fernández-Lopez et al., 2005, Getino et al., 2015).

Bacterial conjugation is powered by a set of ATPases that energize every single step in the 

conjugative process: plasmid relaxation and DNA unwinding, DNA transfer, pilus 

biogenesis and protein transport (for a recent review see (Cabezón et al., 2015)). These 

processes are catalyzedby TrwC, TrwB, TrwK and TrwD, which are the VirD2, VirD4, 

VirB4 and VirB11 homologues in the conjugative plasmid R388, respectively. TrwC is a 

protein that cleaves the DNA at the origin of transfer and presents relaxase and DNA 
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helicase activities (reviewed in (Garcillán-Barcia et al., 2009, de la Cruz et al., 2010)). TrwB 

is a DNA-dependent ATPase that mediates the transfer of DNA to the secretion system (Tato 

et al., 2005). TrwK is an ATPase (Arechaga et al., 2008) that mediates the dislocation of the 

pilin molecules from the inner membrane during pilus biogenesis (Kerr and Christie, 2010). 

The fourth ATPase, TrwD, participates in pilus biogenesis (Kerr and Christie, 2010) and in 

DNA translocation (Atmakuri et al., 2004), acting as a molecular switch between pilus 

biogenesis and substrate transport (Ripoll-Rozada et al., 2013).

Here, we have analyzed the effect of the uFAs on the ATPase activity of all conjugative 

ATPases. We found that only TrwD, the VirB11 homologue, is inhibited by the same uFAs 

that inhibit bacterial conjugation in vivo. These uFAs did not affect significantly any other 

ATPase of the T4SS or the DNA mobilization machinery. TrwD (VirB11) belongs to a large 

family of hexameric AAA+ traffic ATPases, which includes proteins involved in Type II 

secretion and in Type IV pilus and flagellar biogenesis (Planet et al., 2001). All members of 

this superfamily are characterized by the presence of an N-terminal domain (NTD), required 

for membrane association, and a catalytic domain (CTD) connected by a linker region of 

variable length (Planet et al., 2001, Peña and Arechaga, 2013, Hare et al., 2006). Pivoting of 

the NTD relative to the CTD over the flexible linker has been proposed to be an essential 

step in ATP catalysis (Savvides et al., 2003, Yamagata and Tainer, 2007, Ripoll-Rozada et 
al., 2012). In this work, we have characterized the mechanism of inhibition of TrwD by 

uFAs. These compounds act as non-competitive inhibitors, with no effect on the affinity of 

the protein for ATP or ADP substrates. Blind docking of uFAs on the structural model of 

TrwD led to the identification of a region, comprising the NTD and the linker region of the 

protein, as the putative uFAs binding site. This result suggests a mechanism of inhibition 

that prevents the movement of the NTD over the CTD. As a consequence, VirB11 traffic 

ATPases become promising targets for the development of specific COINs based on uFA 

derivatives. This novel antimicrobial approach opens up new perspectives in the fight against 

the spread of antibiotic resistance genes.

Results

TrwD is the molecular target of linoleic acid inhibition

Unsaturated fatty acids (uFAs) are inhibitors of bacterial conjugation (Fernández-Lopez et 
al., 2005). It has been suggested that uFAs might target the conjugation machinery by 

affecting any of the ATPases associated with the type IV secretion system (T4SS) of donor 

cells. In order to determine the specific target of uFAs in our model system, the conjugative 

plasmid R388, the activity of the four ATPases involved in the conjugative process (TrwB, 

TrwC, TrwD and TrwK) was analyzed in vitro in the presence of 50 μM linoleic acid. At this 

concentration, 95 % reduction of the ATPase activity of TrwD was observed (Fig. 1), 

whereas no significant effect on the activity of any of the other three ATPases was detected. 

These results suggest that TrwD is a specific target of uFAs.

Unsaturation of fatty acids is essential for TrwD ATPase inhibition

In contrast to uFAs, saturated fatty acids are not able to inhibit bacterial conjugation 

(Fernández-Lopez et al., 2005). In order to determine whether there was a correlation 
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between the in vivo experiments and the in vitro analysis, we tested the effect of different 

types of fatty acids in TrwD ATPase activity. Oleic (C18:1(9)) and linoleic (C18:2 (9,12)) acids 

(cis-unsaturated C18 fatty acids, with one and two double bonds, respectively), previously 

identified as effective inhibitors of bacterial conjugation in vivo assays (Fernández-Lopez et 
al., 2005), were selected as uFAs. Lauric acid (C12:0) and Palmitic acid (C16:0), which are 

unable to inhibit significantly R388-mediated conjugation (Fernández-Lopez et al., 2005), 

were chosen as representative examples of saturated fatty acids. Stearic acid (C18:0) is not 

soluble in our experimental conditions and, therefore, it was not possible to test its effect. 

TrwD ATPase activity was measured in the presence of each fatty acid (50 μM). At this 

concentration, oleic and linoleic acids were able to inhibit more than 90% of TrwD ATPase 

activity whereas in the presence of saturated fatty acids no inhibition was observed (Fig. 2). 

These results strongly support that the presence of a double bond at C-9 is important for the 

TrwD ATPase inhibitory activity.

2-alkynoic fatty acids are synthetic inhibitors of TrwD ATPase activity

Synthetic fatty acids, such as the 2-alkynoic fatty acids (2-aFAs), a class of acetylenic fatty 

acids with one triple bond between the C-2 and C-3 carbons of the alkyl chain, have been 

found to be effective in inhibiting bacterial conjugation (Getino et al., 2015). In particular, 

the three compounds found to be more effective in inhibiting bacterial conjugation were 2-

hexadecynoic acid (2-HDA), 2-octadecynoic acid (2-ODA), and 2,6 hexadecadiynoic acid 

(2,6-HDA). Interestingly, alcohol (OH) or tetrahydropyranyl-ether (THP) derivatives of 

these compounds were unable to inhibit bacterial conjugation, suggesting an essential role of 

the carboxylic group in the mechanism of inhibition (Fig. 3A). Therefore, we decided to test 

whether TrwD was the molecular target of 2-aFAs, as in the case of the linoleic acid. 

Analysis of TrwD ATPase activity in the presence of 2-aFAs (50 μM) corroborated the 

results observed in vivo, as the same compounds that inhibited bacterial conjugation were 

also able to inhibit TrwD ATPase activity, whereas those with no effect in vivo, such as 

alcohol or tetrahydropyranyl-ethers derivatives, did not have any effect on the in vitro TrwD 

activity (Supplemental Fig S3). Moreover, the lack of inhibitory effect of these derivatives 

was still present even at concentrations as high as 500 μM (Fig. 3B). These results strongly 

reinforce the hypothesis that TrwD is the specific target of both, alkenoic and alkynoic fatty 

acids.

Inhibition of ATP hydrolysis by fatty acids is non competitive

With the aim of better understanding the mechanism of inhibition of TrwD ATP hydrolysis 

by fatty acids, a characterization of the inhibition kinetics was carried out. First, ATPase 

activity rates of TrwD (2 μM) at increasing concentrations of linoleic acid, 2-HDA 2,6-HDA, 

or 2-ODA were determined (Fig. 4). Analysis of the kinetics of inhibition of TrwD ATPase 

activity by the four compounds showed a similar inhibition pattern. In all cases, data did not 

fit to a Michaelis-Menten inhibition kinetic curve, but to a sigmoidal Hill equation for 

inhibition, which suggested a cooperative effect in the inhibition kinetics. The apparent 

inhibition constants (Ki[app]) of linoleic acid, 2-HDA, 2-ODA and 2,6-HDA were 20.9 ± 1.6 

μM, 29.7 ± 2.1 μM, 29.8 ± 4.1 μM and 43.8 ± 2.8 μM, respectively.
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Further characterization of the mechanism of inhibition at steady-state was conducted in the 

presence of linoleic acid and 2-HDA. ATP turnover was measured at increasing 

concentrations of ATP in the presence or absence of fatty acids (Fig. 5A). The concentration 

of fatty acid was 21 μM linoleic acid or 30 μM 2-HDA, which correspond to their respective 

Ki[app]. In both cases the mechanism of inhibition was non-competitive, as Vmax was 

reduced without affecting the K0.5
[ATP]. This result indicated that ATP binding was not 

affected by fatty acids.

In order to determine whether the inhibition by uFAs was caused by the stabilization of the 

enzyme in an ADP inhibited state, we analyzed the effect of ADP on TrwD ATPase activity 

in the presence and absence of 2-HDA (Fig. 5B). Interestingly, 2-HDA did not affect 

significantly the affinity of the enzyme for the ADP. In the presence of 2-HDA, the 

calculated Kd
ADP was 51.7 ± 9.8 μM, and its absence this Kd

ADP was 45.1 ± 4.1 μM. 

Altogether, these results show that the inhibitory effect of uFAs was not exerted by 

modifying the affinities of the enzyme for ATP or for the product, ADP.

Molecular docking of fatty acids into TrwD structure

Kinetic analysis of TrwD inhibition indicated that uFAs were binding to the protein in a site 

different from the nucleotide binding site, exerting the inhibition without affecting 

significantly ATP and ADP affinities. In order to explore putative binding sites for uFAs in 

TrwD, computer assisted analysis was performed. TrwD structural model was built by 

molecular threading using Brucella suis VirB11 (Hare et al., 2006) as a template, as 

previously described (Supplemental Fig. S4) (Ripoll-Rozada et al., 2012). Fatty acid ligands 

were retrieved from Pubchem repository (https://pubchem.ncbi.nlm.nih.gov/) and prepared 

for docking as described in Methods. Blind docking predictions using the EADock dihedral 

spacing sampling engine (Grosdidier et al., 2011) of the Swiss-dock server (http://

www.swissdock.ch/) showed a region comprised by the NTD (residues 37–54) and the linker 

region (residues 118–125) of TrwD as the site with the highest probability for 2-HDA and 

linoleic acid binding (Fig. 6). All binding poses clustered at the same site when the structure 

of the hexameric form of TrwD was used as a target (Supplemental Fig. S5). The binding 

mode with the best energy and Full-Fitness is shown in Fig. 6. Similar results were obtained 

upon docking of 2-ODA and 2,6-HDA (Supplemental Fig. S7). Interestingly, 

tetrahydropyrane derivatives, such as 2-HDOTHP, although were able to fit in the same 

region, were adopting a different conformation due to the pyranyl ring (Supplemental Fig. 

S7).

Docking predictions with palmitic acid suggest that the binding site for this fatty acid is in 

the same region than the one found for linoleic acid and 2-HDA. However, uFAs and aFAs 

fill much better the binding pocket with higher Full-Fitness scores.

Partial proteolysis of TrwD in the presence of fatty acids

Blind docking search of 2-HDA and linoleic acid binding site identified the pocket 

comprised by the N-terminal domain (NTD) and the linker region of TrwD as the most 

likely site for binding (previous section). This linker region is essential during ATP catalysis, 

since it facilitates the movement of the NTD over the CTD in the catalytic mechanism of 
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TrwD/VirB11 proteins. Therefore, ATPase inhibition by uFAs and aFAs might be caused by 

protein conformational changes upon fatty acid binding to this region. To test this hypothesis 

we analyzed the susceptibility of TrwD to partial digestion by papain in the presence of fatty 

acids. The unspecific protease papain is useful for delimiting structural domains in proteins, 

since it presents a low activity on stable secondary and tertiary structures (Karzai and 

McMacken, 1996). Thus, well-ordered structures would show low susceptibly to papain 

digestion. Incubation of TrwD with increasing concentrations of 2-HDA (1:10 to 1:100 

TrwD:2-HDA molar ratios) resulted in high susceptibility to papain degradation (Fig. 7). In 

contrast, similar experiments performed in the presence of palmitic acid (1:100 TrwD : 

pamitic acid) did not affect the susceptibility of TrwD to papain digestion. These results 

suggest that 2-HDA binding induces an open conformation of TrwD, resulting in the 

exposition of protein domains to papain. Such a conformational change was not induced by 

palmitic acid, which is in accordance with the fact that saturated fatty acids do not exert any 

inhibitory effect.

Discussion

The search of conjugation inhibitors (COINs) is essential in the fight against multi-resistant 

bacteria. In this pursuit, high-throughput (HTS) methods have been developed to identify 

potential COINs. Although these methods have been widely used by pharmaceutical 

companies in hit identification (Mayr and Bojanic, 2009, Wu and Doberstein, 2006, Mishra 

et al., 2008), the finding of a molecular target for the structural-based design of new 

inhibitors could be a powerful tool in the development of new drugs, as it allows the 

investigation of the interactions between ligands and targets (Lounnas et al., 2013, Scapin, 

2006). By using one of these HTS assays, uFAs have been identified as effective bacterial 

conjugation inhibitors (Fernández-Lopez et al., 2005). In that sense, the main goal of this 

work has been the identification and characterization of the molecular target for the 

inhibition by fatty acids.

uFAs are known to affect the function of some proteins that have a transient association with 

the bacterial membrane, such as the AAA+ ATPase DnaA (Yung and Kornberg, 1988). The 

ATPase activity of this DNA replication initiator is regulated by acidic phospholipids. The 

presence of saturated or unsaturated fatty acids on these phospholipids regulates the ADP-

ATP exchange in the protein (Aranovich et al., 2006). Based on this, we decided to 

investigate the effect of uFAs on the ATPases involved in bacterial conjugation. In our model 

system, the conjugative plasmid R388, four ATPases provide the energy for the conjugative 

process: the relaxase TrwC, the coupling protein TrwB, TrwK and the traffic ATPase TrwD 

(Cabezón et al., 2015). Analysis of ATP hydrolysis rates by each of the four proteins in the 

presence of linoleic acid showed that only TrwD was inhibited under the tested conditions. 

This inhibitory effect was observed only in the presence of uFAs, such as oleic and linoleic 

acids, but not in the presence of saturated fatty acids like lauric or palmitic acids. These 

results correlate with previous observations, in which uFAs but not saturated ones were able 

to inhibit bacterial conjugation (Fernández-Lopez et al., 2005).

One of the down sides of uFAs is that they are prone to auto-oxidation, which could affect 

their effectiveness as deliverable COINs. In order to circumvent this, a series of synthetic 
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uFAs containing triple bonds, which belong to the family of 2-alkynoic fatty acids (2-aFAs), 

were used as alternatives. These compounds are also good conjugation inhibitors (Getino et 
al., 2015). This family of fatty acids have been found to display antibacterial activity against 

Gram positive bacteria, such as Staphylococcus aereus and Bacillus cereus, and Gram 

negative bacteria like Klebsiella pneumoniae and Pseudomonas aeruginosa (Sanabria-Rios et 
al., 2014, Sanabria-Rios et al., 2015) but they not have any effect on E. coli growth 

(Konthikamee et al., 1982). In our experimental conditions these compounds did not have 

any effect on bacterial growth either. Thus, the observed inhibition was specific to bacterial 

conjugation, which is a desirable property, since they might help to control the dissemination 

of resistance genes without affecting the growth of commensal bacteria.

The carboxylic acid group of the fatty acid is essential to exert the inhibitory effect, since 

alcohol or tetrahydropyranyl-ether derivatives of these fatty acids were unable to inhibit 

TrwD ATPase activity (Fig. 3B). These results are in agreement with in vivo experiments in 

which these derivatives were also unable to inhibit bacterial conjugation (Fig. 3A). These 

experiments showed that 2-aFAs analogs, like 2-octadecynoic acid (2-ODA) and 2,6-

hexadecynoic acid, were also efficient conjugation inhibitors. Fatty acid composition is also 

important, as unsaturation placed in C-9 instead of C-6, abolished the inhibitory effect of the 

hexadecynoic acid, both in vivo and in vitro experiments. Therefore, there is a direct 

correlation between the in vivo and in vitro data, as the same compounds able to inhibit 

bacterial conjugation were also capable of inhibiting TrwD ATPase activity, and vice versa, 

those unable to inhibit conjugation also failed to inhibit TrwD activity.

Kinetic analysis of TrwD ATPase inhibition by linoleic acid and 2-HDA showed similar 

Ki[app] parameters. In addition, ATP titration in the presence of either of the two compounds 

(at their respective MIC50) revealed no significant variation of the K0.5
ATP when compared 

with the control, whereas the Vmax value was reduced by half, suggesting a non-competitive 

inhibition. The affinity for ADP did not change significantly, either. Altogether, these results 

suggest the presence of a binding site for uFAs and aFAs in TrwD different from the 

nucleotide binding site.

VirB11 proteins belong to a large superfamily of secretion ATPases (Planet et al., 2001), 

characterized by the presence of two distinct domains, NTD and CTD, connected by a 

flexible linker. This linker region is of particular importance during ATP catalysis, as 

movement of the NTD over the CTD has been suggested to be essential for the catalytic 

mechanism of TrwD/VirB11 (Savvides et al., 2003, Ripoll-Rozada et al., 2012). This 

catalytic mechanism has been proposed not only for VirB11 proteins but it has been 

extended to all members of the secretion ATPase superfamily (Yamagata and Tainer, 2007). 

According to this mechanism (Fig. 8), in the apo-state the enzyme could adopt two 

conformations, with the NTD alternating between an open and closed state, but only the 

open state is able to bind ATP. Upon ATP binding, the NTD closes over the CTD and ATP is 

hydrolyzed. The release of the γ-phosphate after ATP hydrolysis induces a conformational 

change to an open state that favors ADP release, so the cycle can resume. In a previous study 

(Ripoll-Rozada et al., 2012), we demonstrated that physiological concentrations of Mg2+ 

stabilizes the ADP-state of the enzyme (the affinity for ADP in the presence of Mg2+ was 

100 times higher than in its absence), which, in turn, prevented the catalytic cycle to resume, 
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thus reducing ATP turnover. In contrast, the results with fatty acids indicate a different mode 

of inhibition, as the affinty for ADP is hardly affected.

As uFAs do not affect ATP or ADP significantly, they may act over another region of the 

protein. In fact, blind docking search of a putative binding site identified a pocket comprised 

by the N-terminal domain (NTD) and the linker region of TrwD with high probability to 

bind 2-HDA and linoleic acid (Fig. 6). It is likely, then, that binding of uFAs on this region 

results in the restriction of movement of the NTD over CTD, which, in turn, would result in 

a reduction of TrwD ATPase activity (Fig. 8). This binding pocket is not present in other 

VirB11 homologs, such as HP0525 from H. pylori or TraB from conjugative plasmid RP4 

(Supplemental Fig. S4). The absence of this structural domain in TraB could explain 

previous reports in which no effect of these fatty acids on RP4-mediated conjugation was 

observed (Fernández-Lopez et al., 2005, Getino et al., 2015).

Further evidence of the conformational changes induced by uFAs was obtained by partial 

digestion of TrwD with papain, an unspecific protease widely used in the study of 

conformational modifications of proteins (Karzai and McMacken, 1996). In the presence of 

2-HDA, the susceptibility of the protein to the digestion with papain increases (Fig. 7), 

which reinforces the idea of 2-HDA inducing conformational rearrangements in TrwD 

structure. Moreover, such conformational changes are not observed in the presence of 

palmitic acid, even at a 1:100 TrwD:palmitic acid molar ratio, which might explain the 

inability of saturated acids to inhibit TrwD activity. Although the blind docking search of the 

palmitic acid revealed a binding site similar to that found for uFAs and 2-HDA, the mode of 

binding is different. Unsaturated fatty acids acquire a cis- conformation which helps them to 

fill the cavity in the binding site, whereas saturated fatty acids have a rigid straight 

conformation. The finding of the binding site for uFAs at the NTD is also in accordance with 

previous data, which suggest that VirB11 proteins interact with the cytoplasmic site of the 

membrane through the NTD (Yeo et al., 2000). In addition, TrwD ATPase activity is 

stimulated by phospholipids (Rivas et al., 1997), and the protein has been shown to interact 

with phospholipids in lipid vesicles (Machón et al., 2002). Thus, it is very likely that uFAs 

and aFAs are occupying a binding site in TrwD, which is otherwise occupied by bacterial 

membrane phospholipids involved in the association of the protein to the membrane. In fact, 

E. coli cells treated with 2-HDA incorporate this fatty acid into the phospholipids (Sanabria-

Rios, Getino and de la Cruz, unpublished observations). This result would make possible the 

in vivo interaction of 2-HDA with the membrane associated form of TrwD. Paradoxically, 

uFAs were also reported to inhibit conjugation of F-like plasmids (Getino et al., 2015) 

although no VirB11 homolog has yet been identified in F plasmids, begging the question of 

which is the target of COIN inhibition in F-like plasmids. Given the fact that F-like plasmids 

are narrow host range (i.e., appear only in Enterobacteriaceae), it is tempting to speculate 

that the VirB11 function is carried out by a traffic ATPase provided by the host.

In summary, in this work we have identified the conjugative T4SS traffic ATPase TrwD as 

the target for the inhibition of bacterial conjugation by fatty acids. The finding of 

conjugative traffic ATPases as potential targets for inhibiting bacterial conjugation opens a 

new avenue for the development of rational design drugs based on the interactions between 

this protein and potential inhibitors, which may help in the fight against the emergence of 
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antibiotic multi-resistant bacteria. Future research should address the development of 

compounds with increased affinities for the target capable to inhibit conjugation 

irreversibility.

Experimental Procedures

Cloning, Overexpression and Purification of proteins

Cloning, overexpression and purification of TrwD, TrwC, TrwB and TrwK were carried out 

as described previously (Ripoll-Rozada et al., 2012, Tato et al., 2005, Arechaga et al., 2008, 

Grandoso et al., 1994). TrwC purification was modified as follows. After a P11 

phosphocellulose column (Whatman), TrwC-enriched fractions were pooled and applied to a 

HiTrap SP-Sepharose (5ml) column (Amersham, GE), followed by a Mono S HR 5/5 (1 ml) 

column (Amersham, GE). Protein was eluted from both columns in a linear gradient of 

NaCl. Finally, the protein was concentrated and loaded onto a 200 HR Superdex column 

(Amersham, GE). Fractions were pooled and stored as described previously (Grandoso et al., 
1994).

Chemicals and inhibitory compounds

Commercial fatty acids were purchased from Sigma-Aldrich (St. Louis, MO, USA). The 2-

alkynoic fatty acids (2- aFAs) and derivatives were synthesized as described in (Carballeira 

et al., 2006, Carballeira et al., 2012). Alcohol, methyl ester and tetrahydropyranil ether 

compounds derivatives were obtained as described in (Sanabria-Rios et al., 2014).

ATP hydrolysis assays

Steady-state ATP hydrolysis activity was measured with the EnzCheck™ Kit (Invitrogen) in 

a UV-1800 spectrophotometer (Shimadzu). Inorganic phosphate (Pi) released after ATP 

hydrolysis was monitored as an increase of absorption at 360 nm for 10 min following 

manufacturer’s instructions and components: 0.2 mM 2-amino-6-mercapto-7-methylpurine 

riboside (MESG) and 1 unit/ml of purine nucleoside phosphorylase (PNP). A specific buffer 

was used for each ATPase to register ATP hydrolysis at optimal conditions. TrwD and TrwC 

ATP hydrolysis rates were determined in buffer DC (50 mM Tris-HCl pH 8.5, 75 mM 

potassium acetate, 10μM magnesium acetate and 10% glycerol (w/v)). ATP hydrolysis by 

TrwB and TrwK was measured in buffers B and K, respectively. Buffer B; 50mM Pipes-

NaOH pH 6.2, 35 mM sodium chloride, 5mM magnesium acetate and 5% glycerol (w/v). 

Buffer K; 50mM Pipes-NaOH pH 6.45, 75 mM potassium acetate, 10mM magnesium 

acetate, 5% glycerol (w/v), 1 mM sodium acetate, 1mM DTT and 0.1 mM EDTA. Before 

starting the reaction by adding the corresponding ATPase, ATP and fatty acids diluted in 

DMSO were added to the concentrations indicated in the text.

Conjugation assays

Conjugation frequencies were estimated using the high-throughput conjugation method 

previously described (Getino et al., 2015). Briefly, E. coli DH5α and BL21(DE3) strains 

were used as donor and recipient strains, respectively. Cells were mixed in 1:1 ratio and 

spotted onto LB-agar plates with different compounds. Mating plates were incubated at 
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37 °C for 6 h and bacteria were resuspended in M9 broth. OD600 and GFP emission from 

transconjugant cells were measured to quantify R388 transfer.

Papain proteolysis

Limited papain digestions were performed as described in (Ripoll-Rozada et al., 2012) with 

some modifications. Papain digestion was performed at 25 °C in 20 mM Tris (pH 8.5), 75 

mM AcK, 10 % (w/v) glycerol. Papain stocks were dissolved in the same buffer and 

activated by addition of 50 mM β-mercaptoethanol (37 °C, 30 min) just before use. TrwD 

(18 μM) was incubated for 15 min at 25 °C in the presence fatty acids (2-HDA or palmitic 

acid). Proteolysis was initiated by addition of papain from the activated stocks at 1:80 

papain:TrwD molar ratios. The reaction was stopped after 90 min at 25 °C by addition of 

100 μM E-64 inhibitor (Sigma). Proteolysis products were analyzed by Tricine-SDS-PAGE 

(16.5% polyacrylamide gels) followed by staining with Coomassie Brilliant Blue.

Molecular modeling and ligand docking

An atomic model of TrwD was generated by molecular threading using as template the 

atomic coordinates of B. suis VirB11 (2gza.pdb) (Hare et al., 2006), as previously described 

(Ripoll-Rozada et al., 2012). The structural coordinates of 2-hexadecynoic acid (2-HDA) 

and linoleic acid were retrieved from PubChem database (https://

pubchem.ncbi.nlm.nih.gov/). Molecules were prepared for docking using the DockPrep tool 

of UCSF Chimera software package (Pettersen et al., 2004). This involved the addition of 

hydrogens, the replacement of incomplete side chains with Dunbrack rotamer library 

(Dunbrack, 2002), the removal of solvent water molecules, and the inclusion of partial 

charges using AMBERff12SB force field. Files containing the atomic coordinates of the 

target protein and the fatty acids were submitted to the SwissDock server (http://

www.swissdock.ch/), which uses an EADock dihedral spacing sampling (DSS) engine for 

docking drug-like ligands into macromolecules (Grosdidier et al., 2011). Docking runs were 

blind performed over the entire molecule, without defining any specific region of the protein 

in order to prevent bias. Results were examined with UCSF chimera and outer clusters were 

ranked according to Full-Fitness (FF) score of Swissdock. Binding poses with the best FF 

score and minimal energy were finally selected. Structural molecular representations were 

rendered with PyMOL (DeLano, 2008). Control runs were performed with the atomic 

coordinates of VirB11 from Brucella suis (2gza.pdb) (Hare et al., 2006) and HP0525 from 

Helicobacter pylori (1g6o.pdb) (Yeo et al., 2000) as target molecules. Electrostatic potential 

maps were calculated with the PDB2PQR application (Dolinsky et al., 2007), using 

PROPKA for pKa calculations, and the resulting APBS files (Baker et al., 2001) were 

rendered with Pymol.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effect of linoleic acid on the ATPase activity of conjugative ATPases
ATPase activity by each of the four ATPases that power conjugation (TrwC, TrwB, TrwK 

and TrwD) (2 μM) was measured in the absence or presence of linoleic acid (50 μM). As 

ATPase rates are different for each ATPase, hydrolysis activity is expressed as relative 

ATPase activity (error bars: SD).
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Figure 2. Effect of saturated and unsaturated fatty acids on TrwD ATPase activity
The ATPase activity of TrwD (2 μM) was measured in the presence of 50 μM lauric (C12:0), 

palmitic (C16:0), oleic (C18:1(9)), and linoleic (C18:2(9,12)) (error bars: SD).
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Figure 3. Effect of 2-alkynoic fatty acids and derivatives on TrwD ATPase activity and bacterial 
conjugation
A; Bacterial conjugation was monitored in the presence of 2-alkynoic fatty acids derivatives 

(500 μM). B; ATPase activity by TrwD (2 μM) was tested in the presence of 500 μM of 2-

octa (2-ODA) and 2-hexa-decynoic acids (2-HDA, 2,6-HDA and 2,9-HDA), and alcohol (-

OH) or tetrahydropyranyl-ether (THP) derivatives. (error bars: SD).
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Figure 4. Determination of the kinetic parameters of inhibition by fatty acids
ATP hydrolysis by TrwD (2 μM) was measured at increasing concentrations of linoleic acid 

(white triangles), 2-HDA (black circles), 2-ODA (white circles), 2,6-HDA (black triangles) 

and palmitic acid (black squares). Data were fitted to a Hill inhibition equation (error bars: 

SD).
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Figure 5. Effect of fatty acids on nucleotide binding
A, ATP hydrolysis by TrwD (2 μM) was measured in the presence of 21 μM of linoleic acid 

(black circles) and 30 μM 2-HDA (white squares), and in the absence of fatty acids (black 

triangles). Data were fitted to a Hill equation. The K0.5
ATP was 66 μM in the presence of 2-

HDA and 44 μM in the presence of linoleic acid and in the absence of added fatty acids. B, 

ATP hydrolysis by TrwD (2 μM) was measured at increasing concentrations of ADP in the 

presence of 30 μM 2-HDA (white squares) and in its absence (black triangles). Data were 

fitted as previously described (Ripoll-Rozada et al., 2012). The Kd
ADP in the presence of 2-

HDA and in the control were 51 μM and 45 μM, respectively. (error bars: SD).
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Figure 6. Blind docking of fatty acids into the molecular model of TrwD
Blind docking predictions between a molecular model of TrwD (Ripoll-Rozada et al., 2012) 

and fatty acid ligands (linoleic acid (LA), 2-hexadecanoic acid (2-HDA), and palmitic acid 

(PALM)), were performed using the EADock dihedral spacing sampling engine of the 

Swiss-dock server (Grosdidier et al., 2011). Most of the binding poses clustered at a pocket 

localized at the interface between the N-terminal domain (NTD, wheat) and the linker region 

(green), which connects the NTD with the catalytic C-terminal domain (CTD, purple). The 

binding modes with the best energy and Full-Fitness are shown. Upper and bottom panels 

correspond to the same views in cartoon and surface representations, respectively. For 

clarity, transparency was applied to the linker region (green) in the surface representations 

(bottom panel).
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Figure 7. Partial proteolysis of TrwD by papain
TrwD (lane -) was incubated with papain at a molar ratio of 1:80 (TrwD : papain) (lane +). 

Digestion performed in the presence of increasing concentrations of 2-HDA (1:10 to 1:100, 

TrwD : 2-HDA molar ratios) or palmitic acid (1:100, TrwD : palmitic acid molar ratio, lane 
P) revealed a different proteolysis pattern. Digestion was performed for 90 min at 25°C and 

proteolytic products were analysed by Tricine- SDS-PAGE (16.5% polyacrylamide gels).
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Figure 8. Mechanistic model of TrwD ATPase inhibition by fatty acids
Proposed mechanism of the catalytic cycle of ATP hydrolysis (adapted from (Ripoll-Rozada 

et al., 2012)). According to this mechanism, which is shared by other members of the 

secretion ATPase superfamily (Yamagata and Tainer, 2007), in an apo- conformation, the 

protein can alternate between an open and a closed state, with the NTD pivoting over the 

CTD about the linker (step 1), but only the open conformation is able to bind ATP. Upon 

ATP binding, the NTD closes over the CTD (step 2) so ATP hydrolysis can take place (step 
3). After ATP hydrolysis, the NTD opens up (step 4) allowing ADP release, so the cycle can 

resume (step 5). Considering that the binding affinities for ATP and ADP are not 

significantly affected by linoleic acid or 2-HDA, it is likely that the inhibitory effect of these 

COINs is exerted by preventing the movement of the NTD over the linker, which, in turn, 

results in inhibition of ATP hydrolysis.
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