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Abstract

The efficient selection of behaviorally relevant objects from cluttered environments supports our 

everyday goals. Attentional selection has typically been studied in search tasks involving artificial 

and simplified displays. Although these studies have revealed important basic principles of 

attention, they do not explain how the brain efficiently selects familiar objects in complex and 

meaningful real-world scenes. Findings from recent neuroimaging studies indicate that real-world 

search is mediated by ‘what’ and ‘where’ attentional templates that are implemented in high-level 

visual cortex. These templates represent target-diagnostic properties and likely target locations, 

respectively, and are shaped by object familiarity, scene context, and memory. We propose a 

framework for real-world search that incorporates these recent findings and specifies directions for 

future study.
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‘It is not true that ‘‘the laboratory can never be like life.’’ The laboratory must be 

like life!’ [1].

Attentional selection in daily life

The primary goal of selective visual attention is to focus processing resources on 

behaviorally relevant objects in our visual environment. In our daily lives, we direct 

attention (and, with it, often our eyes) all the time: when searching for a coffee cup in the 

cupboard, when looking out for cars while crossing the street, or when trying to find a friend 

at a conference. Because we perform so many visual searches every day, often for the same 

objects (e.g., people) and often within the same types of environments (e.g., city streets, 

living rooms), we are highly experienced in tasks like these. This experience is reflected in 

exceptionally efficient behavior. For example, most observers will need only a single glance 
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at scenes like the ones shown in Figure 1A to decide whether objects like people, cars, trees, 

or houses are present. The efficiency of extracting behaviorally relevant categorical 

information from real-world scenes is remarkable given the complexity of the task; in daily 

life, scenes contain many distracter objects that share the visual features of target objects, 

including their color, size, and orientation. Furthermore, the visual appearances of both 

target and distracter objects vary greatly across scenes and viewing conditions. How does the 

brain solve this task?

Classical approaches to the study of visual search

To study the process of selecting behaviorally relevant information from cluttered displays in 

the laboratory, behavioral and neurophysiological studies have typically greatly reduced the 

complexity of the real world by having participants perform search tasks in displays 

comprising simple and well-defined stimuli presented on uniform backgrounds (Figure 1B). 

For example, in a display comprising red and green lines of different orientation, observers 

search for the presence of a specific target stimulus defined by a single feature (e.g., red) or 

a specific combination of features (e.g., a red horizontal line).

Behavioral studies

Using this approach, behavioral studies have measured performance in many different kinds 

of search [2]. Search efficiency has typically been defined as the relationship between 

reaction time (RT) and the number of distracter items, or set size. A major goal of several 

influential attention theories has been to explain why some searches are more efficient than 

others.

One influential theory, feature-integration theory (FIT) [3], distinguishes between feature 

and conjunction search. In this account, single features (e.g., red) can be detected in parallel 

across a visual display, thereby resulting in highly efficient search when the target contains a 

unique feature (e.g., a red shape in a display of green shapes). By contrast, when targets are 

defined by a combination of two or more features (conjunction search), focused attention is 

needed to bind features, leading to inefficient search that reflects serial deployment of 

attention to the items in the display. Guided-search theory [4] provides an important 

extension to FIT, proposing that the serial-search process is guided by initial parallel 

processing of features, thereby accounting for the finding that some conjunction searches are 

highly efficient [4]. One prominent alternative theory is the attentional engagement theory 

[5], which postulates that search difficulty is primarily related to the visual similarity of the 

target to the distracters and to the dissimilarity of the distracters to each other (with more 

efficient search for displays with homogeneous distracter sets). These and other theories of 

visual search, based on behavioral findings in artificial multi-element search displays, have 

provided the foundation for investigations at the neural level.

Neurophysiological studies

Important insights into the neural basis of attentional selection come from monkey 

electrophysiology studies. These studies have provided evidence for various effects on 

neural responses when a monkey attends to a visual stimulus relative to when the same 
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stimulus is ignored: neural responses are enhanced [6] and more reliable [7] and noise 

correlations in local populations decrease [8]. Together, these effects suggest that attention 

operates to control neural gain to enhance the neural representation of the attended stimulus. 

Furthermore, attention increases synchronous firing [9] and this may be a mechanism by 

which information transfer within an area and across interconnected areas becomes 

facilitated ([10–12], but see [13]). However, much of this work has focused on the effects of 

attention on simplified target stimuli presented in isolation, thereby drastically reducing the 

complexity of naturalistic selection conditions.

Seminal studies probing the interactions of multiple nearby stimuli have shown that two 

stimuli presented in a neuron’s receptive field (RF) interact in mutually suppressive ways 

such that the neural response reflects a weighted average of the individual responses [6]. 

Such interactions have been interpreted as a neural competition for limited processing 

resources at the level of the RF and immediately surrounding regions [14]. Importantly, 

directing attention to one of two competing stimuli biases neural responses in favor of the 

attended stimulus, thereby effectively filtering out a nearby distracter stimulus and resolving 

the neural competition [6]. Such attentional biases operate not only on spatial locations, but 

also on attended features. Neurons tuned for featural content, such as a specific color or 

direction of motion, show enhanced responses when the preferred feature is selected for 

further processing [15]. Whereas spatial attention effects are selective for the attended 

location, featural effects operate globally across the visual field [16], suggesting that the 

underlying neural mechanisms for feature- and space-based selections differ [15]. In visual 

search, spatial and featural attentional-biasing signals interact. When monkeys search for 

features (e.g., a red circle) in a multi-item array, two processes operate that independently 

boost neural responses: a parallel process that uses featural information to mark conspicuous 

stimuli in the search array, thereby reducing the search space, and a serial process that 

examines the items with spatial specificity to identify matching target stimuli [17].

Importantly, both spatial and featural attentional biases affect neural responses not only in 

the presence of visual stimuli, and thus during the processing of information, but also in the 

absence of visual stimulation [18–21], as evidenced by increases in neural baseline 

responses. For example, neurons in the inferotemporal cortex and prefrontal cortex (PFC) 

show increased activity during a delay period when a target stimulus has been removed from 

the visual scene. This feature-specific delay activity is an example of a neural correlate for a 

‘search template’ that aids an upcoming visual search, biasing competition in favor of 

stimuli matching the template [18]. We elaborate on the concept of attentional templates 

below.

In sum, neurophysiological studies investigating the neural basis of attention using 

simplified displays have shown that attention affects neural processing in several ways. 

When multiple stimuli compete for representation, spatial and featural attention bias 

competition in favor of task-relevant stimuli. Finally, these top-down biasing signals are 

instantiated before the onset of a search array. Although we have focused here on findings 

from monkey physiology, many of the reviewed findings have been confirmed in human 

neuroimaging studies [22,23].
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The next frontier: understanding the neural basis of real-world visual 

search

In daily life, we select meaningful objects from meaningful scenes. Indeed, we usually do 

not direct attention to an empty region in space and we rarely decide to detect simple 

features such as horizontal lines or upward motion. Thus, although studies using simplified 

displays have been fundamental for our understanding of basic attention mechanisms, their 

results are not readily applicable to real-world scenarios. For example, what would be the 

behavioral prediction for detecting people in the scenes of Figure 1A? These scenes contain 

dozens of distracter objects, there is not one feature that uniquely defines the target, and the 

distracter set is highly heterogeneous. Classical attention theories would predict an 

inefficient search, with search times of perhaps several seconds. But clearly it is not; we can 

detect the person in a single glance. A growing body of literature confirms this intuition, 

showing that naturalistic visual search is surprisingly efficient (Figure 2).

There are several important ways in which real-world search differs from search in artificial 

arrays. First, target objects in daily life are typically familiar objects (e.g., ‘my car’) or 

object categories (e.g., ‘cars’) rather than simple features, colors, or shapes. Familiarity 

fundamentally alters object representations in the visual system and influences the efficiency 

of visual search (Box 1). Second, the arrangement of distracters in scenes contains a high 

degree of regularity; we expect chairs around a table or a mirror above a bathroom sink. 

Familiarity with the identity and arrangement of distracter sets facilitates visual search (Box 

1). Third, a real-world scene gives a powerful context that provides information about likely 

target locations (Box 2). Scene layout also provides many constraints about the visual 

properties (e.g., retinal size) of the target object at different locations in the scene (Box 2). 

Finally, previous experience with specific scenes (e.g., ‘my kitchen’) also facilitates search 

[24].

Box 1

The role of visual experience in search

Visual search in daily life typically involves objects and environments that we have 

experienced many times in the past and with which we are thus highly familiar. Visual 

experience fundamentally shapes the visual system [70]. These effects are particularly 

pronounced in early stages of development, but visual experience continues to shape the 

visual cortex throughout the lifespan, as reflected in perceptual learning [71,72]. 

Understanding the mechanisms of real-world visual search therefore requires taking into 

account the role of visual experience on perceptual processing and attentional selection. 

There are at least two ways in which visual experience influences visual search.

First, visual search in daily life usually involves target and distracter objects that are 

familiar and meaningful to us, such as when we search for people in a street scene also 

containing trees, houses, and cars. Behavioral studies have shown that visual search is 

better when target and/or distracter objects are familiar than when they are not [66,73–

75]. At the neural level, it has been shown that extensive visual experience alters the 

representations of objects in high-level visual cortex [72], leading to changes in 
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distributed activity patterns [76] and in the selectivity of single neurons [77,78]. 

Furthermore, neural representations of highly familiar object categories such as animals 

and vehicles may be activated based on rapid feedforward processing [67,79,80], perhaps 

reflecting a hierarchical convergence of multiple simple visual attributes onto single 

neurons representing complex category-diagnostic shapes [81,82]. Such category-

selective neurons may support real-world search. For example, the body-selective 

extrastriate body area [83] has been causally implicated in search for people (but not 

cars) in real-world scenes [84]. Furthermore, visual-search templates may directly 

modulate category-diagnostic shape representations to support parallel search for familiar 

object categories [27,28].

Second, repeatedly performing specific search tasks facilitates search performance [34], 

as for example observed in radiologists [85]. This is due in part to the learning of features 

that optimally distinguish the target from the distracter, as reflected in efficient neural 

representations of target-diagnostic features after training [86]. Additionally, targets are 

easier to find when the identity or spatial arrangement of the distracter set is familiar 

[87]. This ‘contextual cueing’ is particularly relevant for real-world search, because 

objects in the real world typically occur in highly regular contexts (Box 2).

In sum, mechanisms supporting real-world visual search are greatly influenced by visual 

experience. The neural representation of objects changes as a function of experience, 

which affects how top-down attention modulates neural activity during search for these 

objects. Additionally, experience in performing specific searches improves search 

performance due to optimized strategies and implicit learning of distracter sets.

Mechanisms involved in visual search have developed and evolved to function optimally in 

real-world environments and can be assumed to make optimal use of scene-based constraints 

and real-world regularities; a lifetime of experience in searching for objects in scenes must 

have fundamentally shaped neural mechanisms of visual search. To understand fully neural 

mechanisms of visual search therefore requires studying search in naturalistic situations.

Neural basis of category-level search in real-world scenes

Recent neuroimaging studies have started to investigate the neural basis of visual search in 

real-world scenes [25–32]. In a series of studies [27,28,30], functional MRI (fMRI) activity 

was measured while participants detected the presence of objects from a cued category (cars, 

people) in briefly presented photographs of outdoor scenes like those in Figure 1A. The 

presented scenes were new to the participants, contained a large number of distracter objects, 

varied greatly in terms of visual characteristics, were presented briefly, and were followed 

by visual masks. Importantly, participants did not know the location and visual properties of 

the target object before the scene was presented; a scene could show a person sitting on a 

bench but also a group of people walking on a sidewalk (Figure 1). Despite these 

complexities, participants needed only a single glance at the scene (around 100 ms [33]) to 

perform this task successfully.
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It was found that distributed fMRI activity patterns in object-selective visual cortex (OSC) 

contained information about object categories that were present in the scene. Importantly, 

however, this information was strongly modulated by task relevance, with highly reliable 

information for objects belonging to the target category but much weaker information for 

objects of other categories [27,28,30]. Interestingly, in addition to the enhanced processing 

of task-relevant objects, one study showed that the processing of previously (but not 

currently) relevant objects – known to be particularly distracting in visual search [34] – was 

actively suppressed relative to never-relevant objects (Figure 3A,B). Another study measured 

fMRI responses while participants detected people or vehicles in a series of short movie 

segments [25]. Responses in many parts of the brain increased when the target category, or a 

semantically similar category, appeared in the movie, suggesting that category-based 

attention may have widespread influences on brain activity. Together, these results provide 

neural evidence for an attentional-selection mechanism that biases the processing of scenes 

at the category level to mediate real-world search.

Box 2

Scene context constrains search

Knowledge about where we are in the world can be quickly established based on various 

cues such as diagnostic objects in a scene (e.g., stoves are found in kitchens, not 

bedrooms; [88,89]) or scene layout inferred from global image statistics or ‘gist’ [90]. 

Scene context has been shown to play an important facilitatory role in visual search and 

object recognition, with several related factors playing a role. First, scene context creates 

expectations about likely locations of target objects based on semantic relations [88]; we 

start looking for a pen on top of a desk, not on the floor. Scene context also provides 

information about physically impossible target locations, such as a pen floating in the sky 

[88]. Together, these factors guide search and greatly reduce the effective search space 

[91,92]. Second, scene context provides information about the visual characteristics (e.g., 

size) of target and distracter objects at different locations (e.g., depths) within the scene 

[69]. Third, scene context informs the content of the search template by specifying the 

distracter set. For example, looking for a person in a forest versus a beach may generate 

templates that consider the differences in distracter objects. Finally, context also directly 

facilitates object recognition by creating expectations that help to disambiguate otherwise 

ambiguous shapes; for example, a road context creates the expectation that an 

approaching object in the distance is likely a car [47,93].

Intriguingly, category-based attentional biases were found to be spatially global, biasing not 

just the processing of spatially attended scenes but also the processing of spatially 

unattended (and totally task-irrelevant) scenes [27]. As reviewed earlier, such obligatory 

spatially global attention effects have also been observed for attention to simple features like 

color, orientation, and motion direction [15]. These findings therefore imply an interesting 

similarity between attention to familiar object categories in scenes and attention to simple 

features in artificial displays. They are consistent with behavioral findings of rapid object-

category detection at spatially unattended locations [35,36]. One explanation for these 

findings is that our extraordinary visual experience with object categories like cars and 
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people has resulted in representations of these categories that can be activated using 

feedforward processing (Box 1), similar to that shown for processing of simple features [37]. 

Attention might then target category and feature representations in similar ways, despite the 

fact that these representations are located in different parts of the visual system [38].

An important question concerns the mechanisms that lead to the attentional biases reviewed 

above. Specifically, are these biases the result of baseline increases that prime 

representations of task-relevant objects, similar to the spatial- and featural-biasing signals 

that were reported in studies using simple stimuli, reviewed above? Or do they reflect 

feedback signals occurring after the scene has been presented and processed? This issue was 

addressed in an fMRI study in which participants were cued, trial by trial, to detect people or 

cars in briefly presented scenes [28]. Critically, in a proportion of trials, the symbolic 

category cue was presented without a subsequent scene to isolate internally driven attention-

related fMRI activity (Figure 3C). Results showed that the degree of category selectivity of 

preparatory activity in high-level visual cortex was strongly negatively correlated with 

response speed (Figure 3D), whereas a positive correlation with response speed was found 

for preparatory activity in low-level visual cortex. These results indicate that content-specific 

attentional templates guide search in scenes and that some templates are more effective than 

others in doing so (Box 3).

Together, these studies show that the remarkable efficiency of naturalistic category-level 

search is linked to sophisticated attentional-selection mechanisms that are instantiated in 

higher levels of visual cortex. A lifetime of experience has enabled us to process rapidly 

category-diagnostic features in real-world scenes (Box 1). These representations can be 

effectively targeted by attention, leading to both enhancement of relevant and suppression of 

irrelevant information. Internally generated category-selective neural activity provides a 

competitive advantage for objects belonging to the target category, biasing the processing of 

scenes in parallel across the visual field in favor of the attended category and away from 

unattended categories.

A framework for real-world search

The studies reviewed in the previous section have provided ample evidence that real-world 

search is aided by content-specific attentional templates that are implemented in object-

selective cortex and carry a neural signature reminiscent of processes that are also used 

during the feedforward activation of object representations. We refer to these templates as 

the ‘what’ templates. In addition to the ‘what’ templates, recent studies have shown that 

spatial biases are generated during template formation that represent scene locations at 

which targets are expected with high probability based on scene context [29] or episodic 

memory [31]. We refer to these templates as ‘where’ templates. Figure 4 presents a 

framework that captures the influence of several variables on the formation of ‘what’ and 

‘where’ templates during real-world search. Although this frame-work is by no means 

complete, it presents a number of testable hypotheses that may be useful in advancing 

toward a more theoretical account.
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Visual search starts with a behavioral goal that specifies the object or object category that is 

searched for (e.g., looking for people in a park). The general visual attributes of the target 

are likely to be stored in systems representing object knowledge, including the ventral 

temporal cortex [39] and the anterior temporal lobes [40,41]. Importantly, because the 

‘what’ template is modeled as an internal representation of attributes that distinguish the 

target from the distracters [5], it is influenced by both target and distracter properties of the 

current scene. Accordingly, the template is not only influenced by attributes of the current 

search target but also by the current scene context (Box 2) and any knowledge of the scene 

obtained through previous encounters; searching for people on a bridge that occludes the 

lower part of the body (Figure 4) requires a different template than searching for people in 

an open field. Scene context and episodic memory provide information about the likely 

distracter objects to be found in the scene as well as about the likely visual attributes of 

target and distracter objects (Box 2). fMRI and transcranial magnetic stimulation (TMS) 

studies have provided evidence that scene-selective regions, including the parahippocampal 

cortex, retrosplenial cortex, and transverse occipital sulcus, represent global scene properties 

and scene category [42–45], which may inform the ‘what’ template. In addition to regions of 

the scene-selective network, the medial PFC has been shown to be involved in context-based 

predictions regarding object properties [46,47]. Episodic scene memory is thought to involve 

the medial temporal lobes, particularly the hippocampus [48], and the posterior parietal 

cortex (PPC) [49]. In this account, the resulting ‘what’ search template is instantiated in 

regions of occipital and temporal cortex that are best suited to represent the specific contents 

of the template; for example, regions in early visual cortex for orientation-specific templates 

[50,51] or regions in high-level visual cortex for category-level templates [28,52].

Box 3

The search template for real-world search

It has been proposed that visual search involves the matching of visual input to an 

internal representation that approximates the sensory input, an attentional ‘template’ that 

comprises attributes distinguishing targets from non-targets [5]. When preparing to 

search for a specific target object defined by specific features (e.g., a particular shape), 

neurons that are selective for those features are activated before the onset of the search 

array [18]. This preparatory activity then biases processing in favor of the target object 

[18].

If the specific features of the target object are known in advance (e.g., red horizontal 

line), the optimal search template comprises these specific features [94,95]. In most real-

world searches, however, the specific features of the target object are not known in 

advance due to moment-to-moment differences in, for example, viewpoint, lighting, 

viewing distance, and occlusion. This raises the question of what features real-world 

search templates comprise; the template must generalize across real-world viewing 

conditions but at the same time be diagnostic of the target relative to the many possible 

distracter objects that could be present in the scene. Results of behavioral studies suggest 

that search for familiar object categories in real-world scenes is mediated by templates 

comprising a collection of intermediate-level category-diagnostic features [96,97]. This 
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notion is supported by computational studies showing that objects are best classified by 

features of intermediate-level complexity, such as the wheel of a car [98].

An important aspect of real-world search is that target-diagnostic features depend on the 

other objects that are present in the scene. For example, an effective template for finding 

a person in a desert might comprise vertical features, whereas such a template would be 

useless when searching for a person in a forest. Thus, search templates for real-world 

search depend on scene context (Box 2). This context-dependent nature of the search 

template remains poorly understood, especially at the neural level.

‘Where’ templates are also shaped by scene context and episodic memory. Scene context 

facilitates search by specifying likely target locations within the scene (Box 2). Context-

based spatial expectations are reflected in activity patterns in regions of the occipitotemporal 

cortex and PPC [29]. Finally, episodic memory-based attentional orienting has been shown 

to involve the hippocampus [32] and to result in spatially specific anticipatory activity in the 

occipitotemporal cortex [31].

Both ‘what’ and ‘where’ templates constitute internal representations that are generated 

based on current behavioral goals, context, and knowledge of the world. Once these 

templates have been generated, they need to be maintained over multiple fixations to serve a 

behavioral goal. The maintenance of target templates across intervening stimuli has 

classically been associated with the PFC [53], with important evidence coming from monkey 

physiology [20,21]. Recent evidence suggests that, at least in humans, the PPC may also 

contribute to the maintenance of ‘what’ and ‘where’ templates. The PPC is interconnected 

with object-selective cortex as well as the PFC and medial temporal lobe long-term memory 

systems [54]. In humans, the PPC has highly advanced object-vision capabilities [55], is 

topographically organized [56], and has been implicated in both feature-based and space-

based attentional control [57,58]. Simultaneously, the human PPC is an integral part of an 

extended working-memory system [59]. Thus, the PPC is well positioned to maintain both 

‘what’ and ‘where’ attentional search templates. Future work is needed to address the 

specific roles of, and interactions between, the visual cortex, PFC, and PPC in the 

representation and maintenance of target templates.

It is important to note that our framework does not consider several variables that will need 

implementation to develop a more complete account of attentional selection from natural 

scenes. Such factors include, but are not limited to, low-level visual saliency [60,61] and 

saliency due to objects’ reward history [62,63], affective properties [64], and social 

relevance [65].

Concluding remarks and future directions

We have argued that attentional selection under naturalistic conditions uses additional and 

partly different mechanisms compared with those that have been studied using artificial 

displays. This provides only one example indicating that a full understanding of cognition 

will be possible only by considering the complexity of the real world [1,66]. There are many 

outstanding questions (Box 4). Addressing these questions will require consideration of 
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findings from multiple fields, including not only classical studies on visual search and 

attention but also findings from studies investigating the neural basis of scene perception, 

object perception, perceptual learning, and memory.

Box 4

Outstanding questions

• Are ‘what’ and ‘where’ templates represented in common regions of visual 

and parietal cortex? How do these templates interact (Figure 4)?

• What are the temporal dynamics of the matching of visual input to ‘what’ 

and ‘where’ templates? Do top-down templates modulate early sensory 

processing [99,100]? Does this time course differ for ‘what’ and ‘where’ 

templates?

• How do neural mechanisms of attention overlap and interact with neural 

mechanisms of expectation [101]?

• To further approximate the real world, an important avenue for future 

research will be to study neural mechanisms of visual search in situations 

that include multiple modalities [102], depth, a realistic temporal structure 

[61], and active exploration.

References

1. Gibson, JJ. The Ecological Approach to Visual Perception. Houghton Mifflin; 1979. 

2. Wolfe JM, Horowitz TS. What attributes guide the deployment of visual attention and how do they 
do it? Nat. Rev. Neurosci. 2004; 5:495–501. [PubMed: 15152199] 

3. Treisman AM. A feature-integration theory of attention. Cogn. Psychol. 1980; 12:97–136. [PubMed: 
7351125] 

4. Wolfe JM, et al. Guided search: an alternative to the feature integration model for visual search. J. 
Exp. Psychol. Hum. Percept. Perform. 1989; 15:419–433. [PubMed: 2527952] 

5. Duncan J, Humphreys GW. Visual search and stimulus similarity. Psychol. Rev. 1989; 96:433–458. 
[PubMed: 2756067] 

6. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 
1995; 18:193–222. [PubMed: 7605061] 

7. Mitchell JF, et al. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. 
Neuron. 2009; 63:879–888. [PubMed: 19778515] 

8. Cohen MR, Maunsell JH. Attention improves performance primarily by reducing interneuronal 
correlations. Nat. Neurosci. 2009; 12:1594–1600. [PubMed: 19915566] 

9. Fries P, et al. Modulation of oscillatory neuronal synchronization by selective visual attention. 
Science. 2001; 291:1560–1563. [PubMed: 11222864] 

10. Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and 
posterior parietal cortices. Science. 2007; 315:1860–1862. [PubMed: 17395832] 

11. Gregoriou GG, et al. High-frequency, long-range coupling between prefrontal and visual cortex 
during attention. Science. 2009; 324:1207–1210. [PubMed: 19478185] 

12. Saalmann YB, et al. The pulvinar regulates information transmission between cortical areas based 
on attention demands. Science. 2012; 337:753–756. [PubMed: 22879517] 

13. Ray S, Maunsell JH. Differences in gamma frequencies across visual cortex restrict their possible 
use in computation. Neuron. 2010; 67:885–896. [PubMed: 20826318] 

Peelen and Kastner Page 10

Trends Cogn Sci. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Sundberg KA, et al. Spatial attention modulates center-surround interactions in macaque visual 
area v4. Neuron. 2009; 61:952–963. [PubMed: 19324003] 

15. Maunsell JH, Treue S. Feature-based attention in visual cortex. Trends Neurosci. 2006; 29:317–
322. [PubMed: 16697058] 

16. Treue S, Martinez Trujillo JC. Feature-based attention influences motion processing gain in 
macaque visual cortex. Nature. 1999; 399:575–579. [PubMed: 10376597] 

17. Bichot NP, et al. Parallel and serial neural mechanisms for visual search in macaque area V4. 
Science. 2005; 308:529–534. [PubMed: 15845848] 

18. Chelazzi L, et al. A neural basis for visual search in inferior temporal cortex. Nature. 1993; 
363:345–347. [PubMed: 8497317] 

19. Luck SJ, et al. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of 
macaque visual cortex. J. Neurophysiol. 1997; 77:24–42. [PubMed: 9120566] 

20. Miller EK, et al. Neural mechanisms of visual working memory in prefrontal cortex of the 
macaque. J. Neurosci. 1996; 16:5154–5167. [PubMed: 8756444] 

21. Rao SC, et al. Integration of what and where in the primate prefrontal cortex. Science. 1997; 
276:821–824. [PubMed: 9115211] 

22. Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu. Rev. 
Neurosci. 2000; 23:315–341. [PubMed: 10845067] 

23. Siegel M, et al. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 2012; 
13:121–134. [PubMed: 22233726] 

24. Vo ML, Wolfe JM. The interplay of episodic and semantic memory in guiding repeated search in 
scenes. Cognition. 2013; 126:198–212. [PubMed: 23177141] 

25. Cukur T, et al. Attention during natural vision warps semantic representation across the human 
brain. Nat. Neurosci. 2013; 16:763–770. [PubMed: 23603707] 

26. Guo F, et al. Feature-independent neural coding of target detection during search of natural scenes. 
J. Neurosci. 2012; 32:9499–9510. [PubMed: 22787035] 

27. Peelen MV, et al. Neural mechanisms of rapid natural scene categorization in human visual cortex. 
Nature. 2009; 460:94–97. [PubMed: 19506558] 

28. Peelen MV, Kastner S. A neural basis for real-world visual search in human occipitotemporal 
cortex. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:12125–12130. [PubMed: 21730192] 

29. Preston TJ, et al. Neural representations of contextual guidance in visual search of real-world 
scenes. J. Neurosci. 2013; 33:7846–7855. [PubMed: 23637176] 

30. Seidl KN, et al. Neural evidence for distracter suppression during visual search in real-world 
scenes. J. Neurosci. 2012; 32:11812–11819. [PubMed: 22915122] 

31. Stokes MG, et al. Long-term memory prepares neural activity for perception. Proc. Natl. Acad. Sci. 
U.S.A. 2012; 109:E360–E367. [PubMed: 22109554] 

32. Summerfield JJ, et al. Orienting attention based on long-term memory experience. Neuron. 2006; 
49:905–916. [PubMed: 16543137] 

33. Potter MC. Short-term conceptual memory for pictures. J. Exp. Psychol. Hum. Learn. 1976; 2:509–
522. [PubMed: 1003124] 

34. Shiffrin RM, Schneider W. Controlled and automatic human information processing: 2. Perceptual 
learning, automatic attending and a general theory. Psychol. Rev. 1977; 84:127–190.

35. Li FF, et al. Rapid natural scene categorization in the near absence of attention. Proc. Natl. Acad. 
Sci. U.S.A. 2002; 99:9596–9601. [PubMed: 12077298] 

36. Poncet M, et al. A need for more information uptake but not focused attention to access basic-level 
representations. J. Vis. 2012; 12:15. [PubMed: 22262913] 

37. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the 
cat’s visual cortex. J. Physiol. 1962; 160:106–154. [PubMed: 14449617] 

38. Grill-Spector K, Malach R. The human visual cortex. Annu. Rev. Neurosci. 2004; 27:649–677. 
[PubMed: 15217346] 

39. Martin A. The representation of object concepts in the brain. Annu. Rev. Psychol. 2007; 58:25–45. 
[PubMed: 16968210] 

Peelen and Kastner Page 11

Trends Cogn Sci. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40. Patterson K, et al. Where do you know what you know? The representation of semantic knowledge 
in the human brain. Nat. Rev. Neurosci. 2007; 8:976–987. [PubMed: 18026167] 

41. Peelen MV, Caramazza A. Conceptual object representations in human anterior temporal cortex. J. 
Neurosci. 2012; 32:15728–15736. [PubMed: 23136412] 

42. Dilks DD, et al. The occipital place area is causally and selectively involved in scene perception. J. 
Neurosci. 2013; 33:1331–1336. [PubMed: 23345209] 

43. Epstein RA. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends 
Cogn. Sci. 2008; 12:388–396. [PubMed: 18760955] 

44. Kravitz DJ, et al. Real-world scene representations in high-level visual cortex: it’s the spaces more 
than the places. J. Neurosci. 2011; 31:7322–7333. [PubMed: 21593316] 

45. Walther DB, et al. Natural scene categories revealed in distributed patterns of activity in the human 
brain. J. Neurosci. 2009; 29:10573–10581. [PubMed: 19710310] 

46. Aminoff EM, et al. The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. 2013; 
17:379–390. [PubMed: 23850264] 

47. Bar M. Visual objects in context. Nat. Rev. Neurosci. 2004; 5:617–629. [PubMed: 15263892] 

48. Burgess N, et al. The human hippocampus and spatial and episodic memory. Neuron. 2002; 
35:625–641. [PubMed: 12194864] 

49. Wagner AD, et al. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 
2005; 9:445–453. [PubMed: 16054861] 

50. Harrison SA, Tong F. Decoding reveals the contents of visual working memory in early visual 
areas. Nature. 2009; 458:632–635. [PubMed: 19225460] 

51. Serences JT, et al. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 
2009; 20:207–214. [PubMed: 19170936] 

52. Summerfield C, et al. Predictive codes for forthcoming perception in the frontal cortex. Science. 
2006; 314:1311–1314. [PubMed: 17124325] 

53. Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. 
Trends Cogn. Sci. 2003; 7:415–423. [PubMed: 12963473] 

54. Lewis JW, Van Essen DC. Corticocortical connections of visual, sensorimotor, and multimodal 
processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 2000; 428:112–
137. [PubMed: 11058227] 

55. Konen CS, Kastner S. Two hierarchically organized neural systems for object information in 
human visual cortex. Nat. Neurosci. 2008; 11:224–231. [PubMed: 18193041] 

56. Silver MA, Kastner S. Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 
2009; 13:488–495. [PubMed: 19758835] 

57. Egner T, et al. Neural integration of top-down spatial and feature-based information in visual 
search. J. Neurosci. 2008; 28:6141–6151. [PubMed: 18550756] 

58. Szczepanski SM, et al. Mechanisms of spatial attention control in frontal and parietal cortex. J. 
Neurosci. 2010; 30:148–160. [PubMed: 20053897] 

59. Todd JJ, Marois R. Capacity limit of visual short-term memory in human posterior parietal cortex. 
Nature. 2004; 428:751–754. [PubMed: 15085133] 

60. Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. 
Vision Res. 2000; 40:1489–1506. [PubMed: 10788654] 

61. Nardo D, et al. Stimulus-driven orienting of visuo-spatial attention in complex dynamic 
environments. Neuron. 2011; 69:1015–1028. [PubMed: 21382559] 

62. Chelazzi L. Visual selective attention and the effects of monetary rewards. Psychol. Sci. 2006; 
17:222–227. [PubMed: 16507062] 

63. Hickey, C.; Peelen, M. 2013 Annual Meeting Program. Vol. 181. Cognitive Neuroscience Society; 
2013. Reward guides attention to object categories in real-world scenes. 

64. Ohman A, et al. Emotion drives attention: detecting the snake in the grass. J. Exp. Psychol. Gen. 
2001; 130:466–478. [PubMed: 11561921] 

65. Ro T, et al. Attentional biases for faces and body parts. Vis. Cogn. 2007; 15:322–348.

66. Neisser, U. Cognition and Reality. W.H. Freeman; 1976. 

Peelen and Kastner Page 12

Trends Cogn Sci. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



67. Thorpe S, et al. Speed of processing in the human visual system. Nature. 1996; 381:520–522. 
[PubMed: 8632824] 

68. Ehinger KA, et al. Modeling search for people in 900 scenes: a combined source model of eye 
guidance. Vis. Cogn. 2009; 17:945–978. [PubMed: 20011676] 

69. Wolfe JM, et al. Visual search for arbitrary objects in real scenes. Atten. Percept. Psychophys. 
2011; 73:1650–1671. [PubMed: 21671156] 

70. Purves D, et al. Understanding vision in wholly empirical terms. Proc. Natl. Acad. Sci. U.S.A. 
2011; 108(Suppl. 3):15588–15595. [PubMed: 21383192] 

71. Gilbert CD, Li W. Adult visual cortical plasticity. Neuron. 2012; 75:250–264. [PubMed: 
22841310] 

72. Baker CI. The neural basis of visual object learning. Trends Cogn. Sci. 2010; 14:22–30. [PubMed: 
19945336] 

73. Hershler O, Hochstein S. The importance of being expert: top-down attentional control in visual 
search with photographs. Atten. Percept. Psychophys. 2009; 71:1478–1486. [PubMed: 19801608] 

74. Malinowski P, Hubner R. The effect of familiarity on visual-search performance: evidence for 
learned basic features. Percept. Psychophys. 2001; 63:458–463. [PubMed: 11414133] 

75. Wang Q, et al. Familiarity and pop-out in visual search. Percept. Psychophys. 1994; 56:495–500. 
[PubMed: 7991347] 

76. Op de Beeck HP, et al. Discrimination training alters object representations in human extrastriate 
cortex. J. Neurosci. 2006; 26:13025–13036. [PubMed: 17167092] 

77. Gauthier I, Logothetis NK. Is face recognition not so unique after all? Cogn. Neuropsychol. 2000; 
17:125–142. [PubMed: 20945176] 

78. Logothetis NK, et al. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 
1995; 5:552–563. [PubMed: 7583105] 

79. Liu H, et al. Timing, timing, timing: fast decoding of object information from intracranial field 
potentials in human visual cortex. Neuron. 2009; 62:281–290. [PubMed: 19409272] 

80. Serre T, et al. A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. 
U.S.A. 2007; 104:6424–6429. [PubMed: 17404214] 

81. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 
1999; 2:1019–1025. [PubMed: 10526343] 

82. Roelfsema PR. Cortical algorithms for perceptual grouping. Annu. Rev. Neurosci. 2006; 29:203–
227. [PubMed: 16776584] 

83. Downing PE, Peelen MV. The role of occipitotemporal body-selective regions in person 
perception. Cogn. Neurosci. 2011; 2:186–203. [PubMed: 24168534] 

84. van Koningsbruggen MG, et al. A causal role for the extrastriate body area in detecting people in 
real-world scenes. J. Neurosci. 2013; 33:7003–7010. [PubMed: 23595757] 

85. Evans KK, et al. The gist of the abnormal: above-chance medical decision making in the blink of 
an eye. Psychon. Bull. Rev. 2013; 20:1170–1175. [PubMed: 23771399] 

86. Kuai SG, et al. Learning optimizes decision templates in the human visual cortex. Curr. Biol. 2013; 
23:1799–1804. [PubMed: 24012311] 

87. Chun MM. Contextual cueing of visual attention. Trends Cogn. Sci. 2000; 4:170–178. [PubMed: 
10782102] 

88. Biederman I, et al. Scene perception: detecting and judging objects undergoing relational 
violations. Cogn. Psychol. 1982; 14:143–177. [PubMed: 7083801] 

89. MacEvoy SP, Epstein RA. Constructing scenes from objects in human occipitotemporal cortex. 
Nat. Neurosci. 2011; 14:1323–1329. [PubMed: 21892156] 

90. Greene MR, Oliva A. Recognition of natural scenes from global properties: seeing the forest 
without representing the trees. Cogn. Psychol. 2009; 58:137–176. [PubMed: 18762289] 

91. Torralba A, et al. Contextual guidance of eye movements and attention in real-world scenes: the 
role of global features in object search. Psychol. Rev. 2006; 113:766–786. [PubMed: 17014302] 

92. Wolfe JM, et al. Visual search in scenes involves selective and nonselective pathways. Trends 
Cogn. Sci. 2011; 15:77–84. [PubMed: 21227734] 

Peelen and Kastner Page 13

Trends Cogn Sci. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



93. Oliva A, Torralba A. The role of context in object recognition. Trends Cogn. Sci. 2007; 11:520–
527. [PubMed: 18024143] 

94. Vickery TJ, et al. Setting up the target template in visual search. J. Vis. 2005; 5:81–92. [PubMed: 
15831069] 

95. Wolfe JM, et al. How fast can you change your mind? The speed of top-down guidance in visual 
search. Vision Res. 2004; 44:1411–1426. [PubMed: 15066400] 

96. Delorme A, et al. Key visual features for rapid categorization of animals in natural scenes. Front. 
Psychol. 2010; 1:21. [PubMed: 21607075] 

97. Reeder RR, Peelen MV. The contents of the search template for category-level search in natural 
scenes. J. Vis. 2013; 13:13. [PubMed: 23750015] 

98. Ullman S, et al. Visual features of intermediate complexity and their use in classification. Nat. 
Neurosci. 2002; 5:682–687. [PubMed: 12055634] 

99. Mangun GR, Hillyard SA. Modulations of sensory-evoked brain potentials indicate changes in 
perceptual processing during visual–spatial priming. J. Exp. Psychol. Hum. Percept. Perform. 
1991; 17:1057–1074. [PubMed: 1837297] 

100. Zhang W, Luck SJ. Feature-based attention modulates feedforward visual processing. Nat. 
Neurosci. 2009; 12:24–25. [PubMed: 19029890] 

101. Summerfield C, Egner T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 2009; 
13:403–409. [PubMed: 19716752] 

102. Nardo, D., et al. Spatial orienting in complex audiovisual environments. Hum. Brain Mapp. 2013. 
http://dx.doi.org/10.1002/hbm.22276

Peelen and Kastner Page 14

Trends Cogn Sci. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1002/hbm.22276


Figure 1. 
Search in real-world scenes versus search in artificial scenes. (A) Detecting the presence of 

people in these real-world scenes requires only a single glance, despite the large number and 

variety of distracter objects and the differing appearances of people in the four scenes. (B) 

Detecting the presence of a red horizontal line in the left display (feature search) is highly 

efficient, such that reaction times (RTs) are largely independent of the number of distracter 

items [2]. Detecting the same target is more difficult in the right display (conjunction 

search), with RTs increasing with each additional distracter added to the display [2]. Most 

experimental work has studied visual search using simplified displays like these.
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Figure 2. 
Naturalistic vision is highly efficient. (A) The detection of familiar object categories (e.g., 

animals, vehicles) in scenes is extremely rapid, with electroencephalography (EEG) 

measures showing differences between target and no-target scenes starting at around 150 ms 

[67]. Reproduced, with permission, from [67]. (B) Li et al. [35] showed that participants 

could accurately detect animals or vehicles in natural scenes without focused spatial 

attention. In a dual-task paradigm, participants were instructed to prioritize a demanding 

visual-discrimination task at fixation (not shown). While they performed the central 

discrimination task, they additionally detected animals in scenes presented in the periphery. 

To obtain a baseline measure of performance, each of these tasks was also performed 

separately under single-task conditions. The graph on the left shows performance for the 

central and peripheral tasks normalized according to single-task performance. Importantly, 

performance on the peripheral animal detection task was only mildly impaired by 

simultaneously performing the central discrimination task. This was in stark contrast to 

superficially simpler peripheral tasks such as discriminating red–green from green–red disks 

(right panel); although these tasks were easy to perform on their own, performance dropped 

to chance level in the dual-task condition [35]. Reproduced, with permission, from [35]. 

Copyright (2002) National Academy of Sciences, USA. (C) Scene context guides search. 

Dots indicate the first three fixations of each of 14 observers searching for people in 

photographs of real-world scenes [68]. The target is absent in these scenes. Fixations were 

restricted to small regions of the scenes and were consistent across observers, reflecting 

contextual guidance. Reproduced, with permission, from [68]. (D) Search in real-world 

scenes is highly efficient [69]. Participants in this study searched for target objects, indicated 

by a word cue (e.g., ‘lamp’), in indoor scenes. Reaction time (RT) was plotted as a function 

of set size, the total number of objects present in a scene. It was found that each additional 

object in the scene added only about 5 ms to the RT, a highly efficient search. This contrasts 

with search for objects in artificial arrays, in which each distracter item adds >40 ms to the 

RT [69]. Reproduced, with permission, from [69].
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Figure 3. 
Neural basis of category-level search in real-world scenes. (A) Method used in functional 

MRI (fMRI) studies to measure category information in the visual cortex during scene 

perception [27,28,30]. fMRI response patterns evoked by a scene, here schematically 

illustrated for object-selective cortex, are compared with fMRI response patterns evoked by 

objects shown in isolation in a separate experiment. The similarity of the scene-evoked 

patterns and the patterns evoked by each of the object categories (people, trees, cars) is 

measured as a function of the task relevance of the objects in the scene. In this example, 

people are the target (task-relevant) category, trees are the neutral (never-relevant) category, 

and cars are the distracter (previously relevant) category [30]. (B) Category information 

contained in scene-evoked response patterns in object-selective cortex was modulated by 

task relevance. The scene-evoked response pattern was more similar to the target category 

than to a neutral category, indicating attentional enhancement. Furthermore, the scene-

evoked pattern was less similar to the distracter (previously relevant) category than to a 

neutral category, indicating attentional suppression [30]. Visual search in real-world scenes 

thus involves both attentional enhancement of targets and attentional suppression of 

distracters. Reproduced, with permission, from [30]. (C) Paradigm to measure top-down 

attention signals during search in real-world scenes [28]. On each trial, a symbolic cue (e.g., 

a digit) indicated the category (people, cars) that participants were instructed to detect in the 

subsequent scene. Importantly, on 33% of trials the cue was presented but was not followed 

by a scene, allowing the isolation of purely top-down attention signals. Reproduced, with 

permission, from [28]. (D) Response patterns in object-selective cortex on cue-only trials 

resembled those evoked by viewing pictures of the cued object category (x-axis). The 

category specificity of this top-down attention signal was strongly negatively correlated 

(across participants) with reaction time (RT; y-axis), indicating that category-level search in 

real-world scenes is guided by top-down search templates [28]. Reproduced, with 

permission, from [28].
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Figure 4. 
Framework for top-down attentional influences during search in real-world scenes. In this 

framework, content-specific (‘what’) and location-specific (‘where’) attentional templates 

guide search in scenes. ‘What’ templates comprise attributes distinguishing target from 

distracter objects and thus integrate target and distracter properties of the scene. 

Representations of target and distracter attributes are influenced by the current scene context 

and by knowledge of the specific scene being searched (episodic memory). ‘Where’ 

templates represent the locations where targets are expected to occur, influenced by current 

scene context and episodic memory. Each component of the framework is associated with 

putative brain regions, further discussed in the main text. PPA, parahippocampal place area; 

RSC, retrosplenial cortex; TOS, transverse occipital sulcus; MPFC, medial prefrontal cortex; 

MTL, medial temporal lobe; PPC, posterior parietal cortex; OTC, occipitotemporal cortex; 

PFC, prefrontal cortex.
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