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Platelets in atherogenesis and atherothrombosis

Atherosclerotic plaque rupture and subsequent arterial plaque-associated thrombus 

formation (atherothrombosis) leads to myocardial infarctions and ischemic strokes. While 

hyperlipidemia and abnormalities in hemostatic balance contribute to atherothrombosis, the 

sequence of events and mechanisms are largely unclear and remain of interest. Platelets are 

thought to play a major role in driving atherothrombosis by localizing to lesions, facilitating 

inflammatory cell infiltration into lesions, and locally delivering prothrombotic and 

proinflammatory molecules.

Mechanisms underlying platelet dysregulation in atherosclerosis may be due to exogenous 

factors, like diet. In fact, Fuller et al. investigated the genetic effects of combined scavenger 

receptor class B, type 1, (SR-B1) and Ldlr−/− (double knockout, dKO) deficiency on 

atherogenesis and the development of occlusive coronary artery atherothrombosis in 

response to four different dietary challenges(1). They observed that dKO mice had increased 

spontaneous coronary artery disease and decreased survival in response to diets containing 

high fat and high cholesterol (22% fat, 0.15% cholesterol), high cholesterol (2% 

cholesterol), and diets high in fat, cholesterol and choline (i.e. the Paigen diet)(1, 2). Diet-

induced mortality in the dKO mice was likely attributed to abundant platelet accumulation 

surrounding atherosclerotic plaques as assessed by CD41 staining. Inflammatory markers 

and plaque-associated monocytes also correlated with increased plaque associated platelets. 

These studies suggest that diet not only contributes to the development of atherosclerosis, 

but also the degree of platelet accumulation within plaques.

Overproduction of platelets is a major risk factor for cardiovascular disease (CVD), yet the 

mechanisms that govern excessive platelet production in hyperlipidemic conditions are 

widely uncharted. Recent findings indicated the lack of ATP-binding cassette (ABC) 

transporters (e.g. ABCG4 and ABCB6) leads to increased platelet production and 

atherosclerosis in hypercholesterolemic mice(3, 4). Specifically, the lack of ABCB6 in the 

bone marrow leads to unrestrained platelet production, enhanced pro-inflammatory platelet 

activity, and accelerated atherosclerosis in Ldlr−/− mice(4, 5). The significance in this work 

lies in the possibility for a novel thrombolytic approach in part by tempering the production 
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of reactive platelets. Because thrombocytosis is a major risk factor for CVD, further studies 

dissecting mechanisms underlying maladaptive platelet production and hyperactivity are of 

immense interest.

Circulating activated platelets adhere to the endothelium and facilitate leukocyte recruitment 

and extravasation, promoting the development of atherosclerotic lesions(6, 7). Activated 

platelets also form complexes with circulating leukocytes, and these platelet-leukocyte 

aggregates (PLAs) are a central feature of inflammatory diseases. Platelet-monocyte 

aggregates (PMAs), in particular, have been shown to be an early predictor for 

cardiovascular events(8). Indeed, recent studies have indicated a fundamental role for 

platelets and their interaction with leukocytes in the development and progression of 

atherosclerosis. In hypercholesterolemic apolipoprotein E-null (ApoE−/−) mice, activated 

platelets and PLAs accumulate in athero-prone regions of the murine carotid artery(9). This 

accumulation of activated platelets and PLAs are thought deliver pro-inflammatory factors 

that in turn amplify the recruitment of monocytes and accelerate atherosclerosis. Another 

study by Badryna et al. indicated that oxLDL stimulated PMA formation, which promoted 

phenotypic changes in monocytes, increased monocyte extravasation and enhanced foam 

cell formation in vitro and in vivo(10). To further probe the mechanism, these investigators 

explored whether blocking cyclooxygenase (COX) by aspirin (ASA) would have an effect 

on oxLDL stimulated PMAs. Indeed ASA suppressed PMA formation in response to oxLDL 

through an undefined mechanism(10). ASA has anti-inflammatory actions that cannot be 

solely attributed to its ability to inhibit prostanoid biosynthesis(11, 12). In this regard, ASA 

can jumpstart the production of specialized pro-resolving mediators (SPMs) that are known 

to temper inflammation, enhance tissue resolution/repair and in some cases even possess 

anti-platelet actions(13, 14). Importantly, SPMs have been shown to decrease PLA 

formation(15, 16) and may be a mechanism underlying ASA's ability to block oxLDL-

stimulated PMA formation. Further mechanistic studies addressing how ASA or SPMs block 

PLAs are of interest.

Platelets are activated by thrombin via the protease activated receptors (PARs) and also 

figure prominently in the terminal occlusive arterial atherothrombotic event. Research by 

Kuipers et al. and van Montfoort et al. focused on the distal events of plaque rupture and 

thrombus development using an ultrasound atherosclerotic plaque rupture model(17). These 

investigations centered on the contribution of the contact activation pathway proteases 

Factors XI and XII on occlusive thrombus formation. Using the ApoE−/− mouse model, FXI 

and FXII deficiency were investigated in the context of atherosclerotic plaque rupture. Van 

Montfoort et al. demonstrated the importance of FXI in atherothrombotic disease by 

showing that the thrombus formation on an acutely ruptured atherosclerotic plaque is 

dependent upon FXI and that thrombus development and platelet accumulation can be 

decreased by reducing FXI levels by antisense oligonucleotides(18). Similarly, using the 

same plaque rupture model, Kuijpers et al. demonstrated that another contact activation 

protease, FXII, regulates the process of thrombus formation on ruptured plaques through the 

use of two FXII pharmacological inhibitors(19). This group also demonstrated that FXII 

binds to immobilized plaque homogenates. Taken together, these studies suggest that the 

contact activation pathway plays an important role in the late events of atherothrombosis and 

thus may be a viable therapeutic target for preventing occlusive thrombus formation in the 
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context of plaque rupture(20). Targeting these molecules may be especially attractive 

because FXI and FXII deficiencies are not associated with increased bleeding tendency.

Platelet granules and granule exocytosis

Platelets are known to contain at least 4 different types of granules: dense, alpha, lysosomal 

and the recently described T granules. However, additional subtypes may yet be identified 

and the heterogeneity within each platelet granule type is also not clearly defined. Dense 

granules contain non-protein prothrombotic, pro-inflammatory and vasoconstrictive 

molecules, while the alpha granular cargo consists of hundreds of proteins both synthesized 

and taken up from the plasma(21). Thus the upkeep of platelet alpha granules is likely a 

dynamic process. Alpha granules function to deliver necessary “just in time” coagulation 

factors to sites of bleeding or tissue injury. As a measure of control against inadvertent or 

accidental activation, platelets also carry antithrombotic molecules.

In an attempt to decipher which granular proteins are jettisoned by the platelets and which 

remain associated, Wijten et al. used a sophisticated reversed releasate proteomics approach 

involving tandem mass spectrometry to quantitate the proteins released from the platelet 

granular contents(22). These investigators stimulated washed platelets from three human 

subjects with thrombin and collagen to release their granular contents and carried out 

proteomic analysis of the releasate compared to non-stimulated platelets. They observed that 

124 proteins were significantly released, which represented less than 3% of the 4,500 

platelet proteins they were monitoring. The released proteins were highly enriched in 

secretion tags and contained all known releasate factors, such as von Willebrand factor, 

factor V, platelet factor 4 and plasminogen activator inhibitor-1, at high concentrations. 

Interestingly, in the lower concentration range of the releasate many novel factors were 

identified. Thus, Wijten et al. devised a new method for measuring platelet releasates that is 

likely to be very useful for future diagnostic approaches. As examples, this new method may 

be useful for identifying and assessing patients with platelet abnormalities and also as a 

research tool for analyzing platelets from patients with known genetic abnormalities in 

platelet specific genes.

The mechanisms underlying the platelet granule release measured in the Wijten study 

remain of interest. The granules must fuse with the platelet plasma membrane and are 

thought to release their contents through a dynamic fusion pore(23). Koseoglu et al. 

investigated this mechanism by using a variety of in vitro and in vivo methods including the 

use of single cell amperometry to measure dense granular serotonin release. These 

investigators previously discovered the existence of dynamin-related protein-1 (Drp1) in 

platelets through a compound screen of the NIH molecular libraries (http://mli.nih.gov/mli/) 

using chemical genetic analysis of a platelet granule secretion-probe(23). Drp1, a GTPase 

most commonly known for its role in mediating mitochondrial fission and fusion, has also 

been reported to play a role in degranulation of Mast cells.

Koseoglu et al. observed that Drp1 is not only found in platelets, but is also phosphorylated 

in an activation-dependent manner and localizes to both membranes and cytosol. Further 

experiments showed that blocking Drp1 via specific small molecule inhibitors impairs the 
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stability of the fusion pore and leads to inhibition of platelet granule exocytosis. Importantly, 

inhibition of Drp1 also disrupted platelet accumulation during thrombus formation in vivo. 

These studies demonstrate a new role for platelet Drp1 and shed light on a potential new 

therapeutic strategy.

Alternative splicing regulates platelet specific expression of TFPI isoforms

Based on the data of the Wijten paper, tissue factor pathway inhibitor (TFPI) is present in 

platelets but is not currently known to reside in any of the described granules. Despite its 

uncertain cellular location, platelet TFPI still plays an extremely important role in 

hemostasis(24). TFPI is a Kunitz type protease inhibitor, which is the sole inhibitor of the 

initial events of blood coagulation. The TFPI gene undergoes alternative splicing to produce 

several isoforms, including TFPI-α and TFPI-β. TFPI-α, or full length TFPI, contains an 

acidic N-terminal region followed by three Kunitz domains and a C-terminal region. Kunitz 

1 and 2 reversibly bind and inhibit the TF/FVIIa/FXa complex. The Kunitz 3 domain binds 

to protein S(25, 26). Rounding out the functional domains is a C-terminal region that has 

been shown to bind to FVa/prothrombinase. The binding of TFPI to FVa is highlighted by 

the FV-short isoform of FV predominant in the East Texas bleeding disorder(27, 28). FV-

short lacks a basic region in its B domain that normally competes with the homologous 

TFPI-α C-terminal region for binding to an acidic region also in the FV B domain(27, 28). 

TFPI-β lacks the third Kunitz and C-terminal domain and is attached to the cell surface via a 

GPI anchor. In humans and mice the primary platelet isoform is TFPI-α, whereas TFPI-β is 

the predominant endothelial isoform. Total absence of TFPI activity leads to thrombosis and 

early death in mice(29).

Two papers in the ATVB by the Mast group have investigated the splicing regulation and 

function of platelet TFPI. Ellery et al. characterized the long known but unstudied alternative 

splicing of human TFPI exon 2(30, 31). This splicing event creates mature TFPI mRNA 

isoforms including or excluding exon 2 in the 5' untranslated region of the mRNA. Exon 2 

was found to negatively regulate the translation of TFPI-β, with no effect on TFPI-α. 

Variability in TFPI-β expression in human endothelial cells suggests that exon 2 splicing 

may play a role in tissue specific control of TFPI-β expression. This novel mechanism of 5' 

untranslated region splicing regulating translation of a specific protein isoform produced via 

a second independent splicing event sheds light on the regulatory potential of alternative 

splicing likely to be found in the control of gene expression of other genes as well.

Wood et al. probed the role of the protein S cofactor function for TFPI-α mediated inhibition 

of Factor Xa(32). It was previously found that Kunitz 3 binds to protein S and that protein S 

inhibits prothrombinase activity via direct interactions with factors Va and Xa in 

humans(33). However, in this study it was found that protein S is a cofactor for platelet 

TFPI-α and acts by tethering soluble TFPI-α to a membrane surface, where it effectively 

inhibits membrane bound FXa(32). The activity of TFPI-β and another GPI-anchored form 

of TFPI containing Kunitz 3 was not altered by protein S. Protein S also was found to 

stabilize the TFPI-α FXa inhibitory complex delaying thrombin generation by 

prothrombinase. This study advances the ever-evolving scope of TFPI function by describing 

how it can delay prothrombinase assembly. One important question is how the recently 
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described TFPI-α interaction with FV fits with this entire process, since it has been well 

documented that protein S is a cofactor for the activated protein C mediated inactivation of 

FVa(34).

Actin cytoskeletal defects influence the platelet reactivity

Actin is the most abundant protein present in platelets and reorganization of the actin 

cytoskeleton is essential for platelet activation. There are a number of proteases such as 

gelsolin, actin-related proteins such as the ARP2/3 complex as well as adapter molecules, 

which serve to translate platelet cell signals into cytoskeletal changes(35). Filamins (FLN) 

are one such class of adapter molecule. These actin-binding proteins act as extended 

homodimers to reversibly crosslink the actin cytoskeleton and connect it to the cellular 

membrane via interactions with membrane proteins(36). Platelets have been shown to 

express predominantly the FLNa gene and transgenic mice with a targeted deficiency of 

megakaryocyte/platelet Flna are characterized by macrothrombocytopenia and increased tail 

bleeding time resulting from impaired alpha granule secretion as well as problems 

translating activation signals from integrin αIIbβ3, collagen receptor glycoprotein VI (GPVI) 

and the C-type lectin-like receptor 2(37).

In humans, the FLNa gene resides on the X chromosome at Xq28 and mutations in this gene 

display striking phenotypic heterogeneity with several human genetic disorders ranging from 

periventricular heterotopia to terminal osseous dysplasia (http://www.omim.org/entry/

300017). Bleeding and thrombocytopenia have been noted in patients with periventricular 

heterotopia due to mutations in FLNa. However, the specific role of FLNa in platelet 

function has not been established. Barrou et al. identified 4 unrelated female patients with 

FLNa mutations and extended their previous studies on the effect of these mutations on 

platelet function(38, 39). In fact, they observed that the three patients with truncating FLNa 

mutations displayed thrombocytopenia and abnormal responses in platelet aggregation and 

adhesion. These FLNa mutations resulted in no detectable truncated FLNa protein 

production. Interestingly, non-mutated FLNa produced from the other intact allele ranged 

from 37–82% and lower levels of FLNa directly correlated with the severity of the observed 

platelet phenotypic defects. The fourth patient in their study had a nonsynonymous 

p.Glu1803Lys mutation. The platelet functional defects in this patient were consistent with a 

dominant negative effect on FLNa. Thus, this study determined that FLNa plays a distinct 

role of in platelet function, including aggregation, spreading and granule release in humans.

Similar to the more recently described FLNa-αIIbβ3 interaction, Kindlins 1–3 are well 

known to interact directly with αIIbβ3 integrin and are thought to mediate its transition from 

a low to a high affinity binding state for fibrinogen. In order to probe the functional 

significance of specifically Kindlin-3 in this process, Xu et al. created a transgenic knock-in 

mouse model with nonsynonymous mutations in two consecutive amino acids (p.Arg597Ala 

and p.Trp598Ala) in the F3 subdomain of Kindlin-3(40). They observed defective 

interactions between their Kindlin-3 mouse mutants and αIIbβ3 that resulted in defective 

platelet spreading, aggregation and thrombus formation in vitro and in vivo. Thus, these 

experiments support the notion that Kindlin-3 contributes significantly to platelet activation 

via the direct interaction of its F3 subdomain with the cytoplasmic tail of αIIbβ3.
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Therapeutic strategies – challenges, promises and the way forward

Since the discovery of platelets over 130 years ago(41), great advances have been made in 

the understanding that these cells are integral to a variety of physiologic and pathologic 

processes. These insights led to the development of several early anti-platelet therapies 

including the P2Y12 and αIIbβ3 antagonist class of drugs that potently block platelet 

activation(42). Although these drugs have not been widely administered as prophylactic 

agents for cardiovascular disease due to safety issues, they have been important in 

procedures such as percutaneous coronary interventions and have represented a first line in 

the attempt to control platelet-mediated disease processes(43). New strategies are emerging 

as we learn more about platelet signaling and biology that could lead to improved safety, 

efficacy and specificity for diseases involving platelets. For example, the glycoprotein 

receptor GPVI is only expressed in platelets and megakaryocytes and loss of GPVI function 

is not associated with severe bleeding complications in vivo and thus represents an attractive 

therapeutic target(44). Insights from elegant studies delineating the complex interactions 

between GPVI and the PARs on platelet activation and thrombosis are refining the basis of 

this approach(45). Recent papers also suggest that blocking P2Y1 may prove amenable as an 

alternative anti-platelet strategy(46) and that inhibition of phosphodiesterase type 4 (PDE4) 

can block platelet-neutrophil interactions at sites of vascular injury(47). Another possible 

anti-platelet therapeutic is the SPM resolvin E1 (RvE1) because of its ability to temper 

adenosine diphosphate (ADP) and thromboxane-stimulated platelet aggregation(14). 

Interestingly, RvE1 was recently shown to block atherogenesis in rabbits(48) and because of 

its ability to reduce platelet activation, may be useful in curtailing atherothrombotic events. 

The mechanisms and cellular targets underlying RvE1's protective actions in this model are 

unknown and are of interest. Further, pro-resolving mediators are not immunosuppressive 

and may be a particularly attractive therapeutic strategy for a disease like atherosclerosis 

where long-term treatment is needed.

In addition, several platelet-derived molecules could eventually result in targeted therapies 

for cardiovascular conditions such as intimal hyperplasia(49, 50), atherothrombosis(20) and 

calcific aortic valve sclerosis(51). The research topics highlighted in this article are likely to 

contribute to advances that will lead to targeted platelet-specific therapeutics for diseases in 

which platelets participate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Platelets are unique anucleate blood cells produced by megakaryocytes that, in addition 

to being the primary effectors of hemostasis, are rapid responders to injury and infection. 

Therefore, platelets have a diverse functional repertoire in their ability to regulate 

inflammation, host defense and tissue repair. This review highlights some of the recent 

ATVB publications regarding the role of platelets in inflammatory vascular disease, the 

mechanisms of platelet thrombotic action, and insights into new anti-platelet therapies.
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