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Background: Prospective pain genetics research is hindered by a lack of data on the 
prevalence of polymorphisms in pain-relevant genes for patients with sickle cell 
disease (SCD). For African–Americans in general, limited information is available 
in public databases. Methods: We prioritized and examined the genotype and 
allele frequencies of 115 SNPs from 49 candidate pain genes in 199 adult African–
Americans and pediatric patients of African origin with SCD. Analyses were 
performed and compared with available data from public databases. Results: 
Genotype and allele frequencies of a number of SNPs were found to be different 
between our cohort and those from the databases and between adult and pediatric 
subjects. Conclusion: As pain therapy is inadequate in a significant percentage of 
patients with SCD, candidate pain genetic studies may aid in designing precision 
pain medicine. We provide prevalence data as a reference for prospective genetic 
studies in this population.

Keywords:   African–American • genotype • pain • pharmacogenomics • polymorphisms  
• population • sickle cell disease • SNPs

Pain is pervasive throughout the life of those 
with sickle cell disease (SCD) and it signifi-
cantly impacts their quality of life [1–3]. SCD 
is characterized by both acute and chronic 
pain, that is highly variable in frequency 
and severity  [4–6]. Moreover, it was found 
that one in three patients were not satisfied 
with their level of pain relief from analgesics 
including opioids  [4]. Understanding indi-
vidual differences in pain and pain relief will 
not only help to elucidate underlying pain 
mechanisms, but could have a potential to 
guide precision pain medicine for those with 
SCD [7].

There have been several genetic stud-
ies focusing on SCD, with few small studies 
dedicated to sickle cell pain [7–12]. Identifying 
genetic polymorphisms and their influence on 
pain phenotypes may explain some of the pain 
variation seen in SCD [7]. The lack of data on 

polymorphism frequencies for pain-relevant 
SNPs in SCD patients significantly hinders 
the proper design of prospective studies. For 
African–Americans, only a small number of 
samples with genotype and allele frequency 
information are found in public databases. 
Because of the significant genetic admixture 
that is found in African–Americans, many 
genetic studies are typically not generalizable 
to this population. SCD occurs in 90,000–
100,000 Americans and in about 1 out of 
every 500 African–American births [13]. Sickle 
cell trait, where a person inherits one sickle 
hemoglobin gene and one normal hemoglobin 
gene, occurs in 1 in 12 African–Americans. 
In this study, we are able to identify and pri-
oritize candidate genes that may contribute to 
pain in SCD. We have investigated 115 SNPs 
in a total of 49 genes that were chosen based 
on their relevance for pain.
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Methods
Subjects
The Institutional Review Boards of the University of 
Illinois at Chicago (UI) and Northwestern University 
(NU) approved the study. All participants gave writ-
ten informed consent and provided blood or buccal 
swab samples. Patients were recruited during routine 
outpatient clinic visits (i.e., patients were not seeking 
immediate or urgent medical care). Eligibility criteria 
for patient recruitment is described in detail in another 
article [14]. For this study, 199 self-reported people of 
African background were included.

Candidate gene identification
Literature searches were performed to identify SNPs 
that had been associated with pain in previous stud-
ies in PubMed, using the key words: pain, polymor-
phism, association, genetic, pharmacogenetic and 
other related words including substance abuse and 
psychiatric disorders that are known comorbidi-
ties  [15,16]. A total of 115 SNPs from 49 genes were 
prioritized for this exploratory study, which is not an 
exclusive list of all pain-related SNPs.

Genotyping
Genotyping was performed for all but four SNPs 
by the MassARRAY iPLEX Platform (Sequenom, 
CA, USA)  [7]. PCR-RFLP was used to genotype the 
remaining four SNPs: rs1799971  [17], rs2075572  [17], 
rs222747  [18] and rs224534  [18], as published. 
Genotyping success rate was >98%.

Statistical analysis
Hardy–Weinberg equilibrium was calculated using 
χ2 goodness-of-fit test with a significance level 
α = 10–3 [19]. The χ2 test for independence or Fisher’s 
exact test was used where appropriate to compare 
genotype or allele frequencies of different samples. 
Haplotypes are not analyzed for this study because of 
the lack of clinical relevance it would have, based on 
the limited number of SNPs per gene.

Results
Subject demographic data including age, gender 
and sickle cell genotypes are provided in Table 1 
for 127 adult patients from the UI and 72 pediatric 
patients from NU. Combined demographics for all 
subjects are also provided in Table 1. The average age 
in the pediatric group was 14 years and 17 patients 
were 18 years or older. There are a disproportional 
number of females enrolled in this study, especially 
for the adult group; however, SCD itself is not known 
to be gender biased. Only a few studies have reported 
gender differences: the mortality was higher in males 

than females among 20–49 year old patients with 
SCD  [20], and males were more frequently admitted 
for acute pain episodes whereas females had signifi-
cantly longer lengths of stay in another study [21].

The genotype frequencies and allele frequencies are 
shown in Table 2 & Supplementary Table 1, respectively. 
For comparison, we also provide genotype and allele 
frequencies from HapMap [22] and 1000 Genomes [23] 
for African–Americans.

Two SNPs (rs2075507 and rs1800871) had 
significant deviations from Hardy–Weinberg equilib-
rium (p < 0.001) for UI and NU samples analyzed 
separately or combined. Two other SNPs (rs41268673 
and rs121918628) were found to be monogenotypes 
in both UI and NU samples. These four SNPs were 
excluded from further statistical analyses.

We further compared our data with the literature 
for both allele and genotype frequencies using the χ2 
and Fisher’s exact test. SNPs exhibiting significant 
deviation from the literature reported allele or geno-
type frequencies are listed in Table 3, with statistically 
significant p-values (p < 0.05) shown in bold. SNPs 
that are significantly different for both genotype and 
allele frequencies include rs1800544 in ADRA2A, 
rs1048101 in ADRA1A, rs167771 and rs3773679 
in DRD3, rs10845840 in GRIN2B, rs13283456 in 
PTGES2, rs841718 and rs3024971 in STAT6 and 
rs6357 in TH.

A previous study reported major opiate-related 
polymorphisms in an SCD cohort  [24]. The survey 
includes genotype and allele frequency data for 
genes including OPRM1 (rs1799971) and ABCB1 
(rs1045642) in an SCD cohort [24]. We found no dif-
ferences between our study population and their two 
cohorts for these two SNPs for either genotype or allele 
frequencies. Between the UI and NU subjects, the 
genotype frequencies of 12 SNPs and allele frequen-
cies of 12 SNPs were statistically different (p < 0.05) 
(Table 4, also noted in Supplementary Table 1). Out of 
these, seven SNPs differ significantly in both genotype 
and allele frequencies.

Discussion
Surveying 115 SNPs in 49 pain-relevant genes, we 
report here genotype and allele frequencies from a 
cohort of 199 patients with SCD who self-identified 
as of African origin. We found that genotype and/or 
allele frequencies for a number of SNPs were statisti-
cally different between our SCD cohort and litera-
ture data for African–Americans and also between 
our UI and NU data. The differences in the frequen-
cies could be due to population stratification and/or 
sample size, among other variables. The admixture in 
the African–American population is about 10–20% 
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from European genetic ancestry and the frequency 
differences observed between any two populations 
that have high admixture has been observed previ-
ously [25,26]. Allele frequency differences in admixed 
populations must be considered in studies performed 
in populations even within the same country [26]. In 
our study, the NU cohort includes more subjects who 
immigrated directly from Africa. Case control studies 
with admixed populations may choose to control for 
population stratification by methods such as genomic 
control or structured association to avoid spurious 
associations  [27]. A review on association studies in 
structured populations has been published [28].

Several SNPs reported in this study show potential 
for spurious associations in an African–American 
population. For example, the rs1800544 SNP has 
been associated with various disorders in many differ-
ent populations. It has been associated with tobacco 
smoking in Brazilians  [29], antipsychotic-induced 
weight gain in European–Americans and Asian pop-
ulations  [30], and schizophrenia in a Czech popula-
tion [31]. Antipsychotic-induced weight gain has been 
studied in an African–American population but was 
not significant, possibly due to small sample size [30]. 
These studies have accounted for genetic admixture, 
and it would be important to consider this for future 
studies that include rs1800544 to avoid any spuri-
ous associations. Our study shows that there is a sig-
nificant difference in frequencies between our study 
population and what is reported in the literature for 
rs1800544.

Fifteen of our 49 genes and 49 out of 115 SNPs 
are related to the monoamine neurotransmitter sys-
tem as a receptor, enzyme or transporter. The mono-
amine neurotransmitter system has previously been 
implicated in pain  [32,33]. It is an important param-

eter to consider when looking for newer therapeutic 
strategies for sickle cell pain. As there are studies 
of therapies targeting the monoamine neurotrans-
mitter system for pain  [34], it will be interesting to 
examine the role of these polymorphisms in SCD 
pain. Transient receptor potential (TRP) channels, 
which show therapeutic promise in pain relief [35] and 
inflammation in SCD also play, a prominent role [6]. 
There also has been a study reporting frequency data 
on major opiate-related polymorphisms in genes 
including OPRM1, COMT, CYP2D6, CYP3A, 
UGT2B7 and ABCB1 in an SCD cohort  [24]. The 
survey includes genotype and allele frequency data 
for genes including OPRM1 (rs1799971) and ABCB1 
(rs1045642). We found no differences between this 
study cohort and our cohort for these two SNPs for 
either genotype or allele frequencies.

A limitation of the study is that the number and 
selection of SNPs included is not an exhaustive list, 
due to the nature of the candidate gene approach. 
We believe many more SNPs and genes are relevant 
for SCD pain as it is a complex phenotype. How-
ever, we have provided a list of pain-related SNPs in 
SCD to start assisting in understanding SCD pain 
mechanisms.

Conclusion
We have reported genotype and allele frequencies 
data for 115 SNPs in 49 selected pain-relevant genes 
from a cohort of 199 patients with SCD. These data 
were obtained from two different academic medical 
centers that serve adult and pediatric patients with 
SCD. These findings will facilitate prospective genet-
ics studies for pain in SCD, including the importance 
of considering polymorphism frequencies in admixed 
populations to avoid spurious associations.

Table 1. Patient demographics.

    UI (n = 127) NU (n = 72) Total (n = 199)

Age (years) Mean ± SD  34.9 ± 11.4 14.3 ± 4.1 27.5 ± 13.7

  Minimum 19 8 8

  Maximum 70 24 70

Gender, n (%) Female 84 (66.1) 40 (55.6) 124 (62.3)

  Male 43 (33.9) 32 (44.4) 75 (37.7)

Sickle cell type, 
n (%) 

SCD-SS 97 (76.4) 56 (77.8) 153 (76.9)

SCD-SC 15 (11.8) 14 (19.4) 29 (14.6)

  SCD-β+ thal 7 (5.5) 1 (1.4) 8 (4.0)

  SCD-β° thal 7 (5.5) 1 (1.4) 8 (4.0)

  SCD-α thal 1 (0.8) 0 (0.0) 1 (0.5)

NU: Northwestern University; SC: Sickle hemoglobin C (SCD-SC, hemoglobin S and hemoglobin C); SCD: Sickle cell disease; SD: Standard 
deviation; SS: Homozygous hemoglobin S (SCD-SS, sickle cell anemia); thal: Thalassemia; UI: University of Illinois at Chicago.
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Future perspective
Sickle cell pain is the most common and debilitating 
symptom in SCD that is highly variable in frequency 
and severity. Little is known about the underlying 
causes, variability and proper therapy of pain in 
SCD [36]. This study opens an avenue to study pain 
genetic mechanisms and consider precision medicine 
strategies for SCD pain. Genetic polymorphisms 
in the monoamine neurotransmitter system, TRP 
channels and other pain-relevant systems remain 
potentially fruitful areas to focus pain genetics stud-
ies. Our study has provided polymorphism preva-
lence data that are essential to properly design future 
prospective studies.

Supplementary data
To view the supplementary data that accompany this paper, 

please visit the journal website at: www.futuremedicine.com/

doi/full/10.2217/PGS.15.126
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Table 3. SNPs differ in genotype and/or allele frequencies between the current study and those 
from literature.

Gene dbSNP ID Major alleles Minor alleles Genotype 
comparisons 
p-value

Allele 
comparisons 
p-value

ADRA1A  1048101 C T 0.002 0.003

ADRA2A 1800544 G C 0.000† 0.000‡

CHRNA4 2236196 G A 0.112 0.034

COMT 4633 C T 0.006 0.233

DRD3 167771 G A 0.014 0.006

  2399504 G A 0.065 0.034

  3773679 G A 0.028 0.037

  7611535 C T 0.071 0.033

FAAH 2295632 A C 0.050 0.014

GRIN2B 10845840 T C 0.038 0.014

MTHFR 1801133 C T 0.010 0.189

PTGES2 13283456 C T 0.022 0.011

SCN9A 41268673 G T 0.064 0.015

STAT6 841718 C T 0.015 0.021

  3024971 A C 0.036 0.036

TH 6357 G A 0.012 0.023

p < 0.05 is indicated in bold. 
†p = 0.000092.
‡p = 0.000042.
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