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This editorial refers to ‘Acute heart failure with cardio-
myocyte atrophy induced in adult mice by ablation of
cardiac myosin light chain kinase’, by M.T. Massengill et al.,
pp. 34–43.

This editorial refers to ‘Essential light chain S195 phosphoryl-
ation is required for cardiac adaptation under physical stress’,
by L.-M. Scheid et al., pp. 44–55.

The process of ATP-dependent cyclic attachments and detachments
of the myosin cross-bridges to actin-containing thin filaments forms
the basis of muscle contraction.1 As such, the myosin cross-bridge is
the molecular motor of the heart. It binds ATP and actin and myosin’s
lever arm region, supported by the regulatory light chain (RLC) and es-
sential light chain (ELC) (Figure 1A and B), amplifies small conformation-
al changes generated in the motor domain into the large movements
needed to produce force and sarcomere shortening.2 As an EF-hand
Ca2+-binding protein, the RLC contains a Ca2+–Mg2+ binding site
that can be occupied by either Ca2+ or Mg2+, and a Ser15 phosphor-
ylation site, a target for cardiac myosin light chain kinase (cMLCK)
encoded by the MYLK3 gene. The ELC is also an EF-hand-like protein;
however, cardiac muscle ELC has developmentally lost its ability to
bind calcium. Proteomic analysis by the Van Eyk’s group revealed
that residue Ser195 of ELC can be phosphorylated in pharmacologically
preconditioned cardiomyocytes, although no specific kinase respon-
sible for Ser195-ELC phosphorylation has yet been identified.3 Two
new articles, published in this issue of Cardiovascular Research by Mas-
sengill et al.4 and Scheid et al.,5 focus on the functional impacts of
myosin RLC and ELC phosphorylation on heart function in a mouse
model of heart failure designed to knockout the Mylk3 gene4 or in a zeb-
rafish model, where inability of ELC to be phosphorylated at Ser195 in
the laz+/2 mutant led to contractile defects and cardiac death5

(Figure 1C). These two articles, with their elegantly executed experi-
ments, pose an important question regarding the role of either myosin
light chain phosphorylation as a mechanism for the regulation of cardiac
myosin function in the healthy heart and, moreover, may well point the
way to potential novel therapeutic targets to treat heart diseases.

Phosphorylation of Ser15 on myosin RLC has been widely recog-
nized to play an important role in cardiac muscle contraction under

both normal and disease conditions.6,7 Reduced RLC phosphorylation
was reported in patients with heart failure8 and also observed in experi-
mental animal models of cardiac disease.9 – 11 Attenuation of RLC phos-
phorylation in cardiac MLCK knockout mice was shown to lead to
ventricular myocyte hypertrophy, fibrosis, and dilated cardiomyop-
athy.12 Changes in RLC phosphorylation were observed to cause ab-
normal heart performance, presumably through morphological and/
or myofibrillar functional alterations (change in force, myofilament cal-
cium sensitivity, ATPase activity, cross-bridge kinetics).13–16 The work
of Massengill et al.4 convincingly shows that even acute (inducible) re-
duction of cMLCK, an enzyme that phosphorylates RLC in the heart,
leads to sarcomeric disorganization, fibrosis, and cell death, and may
cause severe systolic and diastolic dysfunction and rapid progression
to heart failure. Previously, the Kasahara group had elegantly demon-
strated that germline cMLCK-deficient (Mylk32/2) mice exhibit cardiac
hypertrophy, but only moderate heart failure that worsens following
transaortic constriction (TAC)-induced pressure overload.16 In the
current study, they generated tamoxifen-inducible adult Mylk3-
knockout (KO) mice and observed a rapid onset of heart failure, pri-
marily due to systolic dysfunction and severe myocardial morphological
changes.4 In both studies, the reduction of cMLCK (chronic or acute)
resulted in near complete absence of myosin RLC phosphorylation. No
compensatory expression of mRNA of smooth and/or skeletal muscle
MLCK or Dapk3/ZIPK was observed in these mice. Interestingly, when
the hearts of inducible Mylk3-KO mice were subjected to TAC at Day 4
post-tamoxifen injection, myocytes did not increase in size, suggesting
that the loss of cMLCK protein does not always trigger cardiac hyper-
trophy, even under conditions of haemodynamic stress. Examination of
cardiomyocyte Ca2+ homeostasis, important for the proper contract-
ile function of the heart, revealed a reduction of Ca2+-amplitude con-
comitant with a decreased rate of Ca2+ decay, suggesting that the
changes in [Ca2+] homeostasis were most likely responsible for im-
paired contractility and accompanying heart failure that was observed
in these animals. In support of this notion, the hearts of Mylk3-KO mice
displayed a significant reduction in SERCA2a mRNA, implying that the
concentration or activity of the intracellular calcium pump may be de-
creased thereby causing impaired transport of Ca2+ into the sarcoplas-
mic reticulum after contraction. The authors speculated that these
observed changes in intracellular Ca2+ handling in Mylk3-KO mice
may ultimately modulate the activity of Ca2+-dependent kinases and
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phosphatases, activating calcineurin-NFAT signalling pathways. In sum-
mary, the work by Massengill et al.4 convincingly show that rapid, pro-
gressive, and profound heart failure may occur shortly after elimination
of cMLCK triggering a multitude of adverse intracellular defects in-
itiated by compromised interactions between the myosin motor and
actin that lead to impaired contractile force generation. Whether these
changes are due solely to compromised myosin RLC phosphorylation
or due to the absence of cMLCK per se remains to be determined.4 The
question that arises next is whether normalizing RLC phosphorylation
by a serine to aspartic acid (S15D) phosphomimetic mutation would
offset the loss of cMLCK in heart muscle. Of note, cardiac expression
of a S15D phosphomimetic variant of RLC in a hypertrophic cardiomy-
opathy (HCM) animal model was recently shown to prevent develop-
ment of overt cardiac hypertrophy in mice whose diastolic and systolic
function returned to normal in a constitutive phosphorylation mouse
model of HCM.11

The question of a potential protective role of myosin essential light
chain phosphorylation was addressed by Scheid et al.5 Using

heterozygous adult zebrafish lazy Susan mutant (lazm647) of ELC, the
authors show that Ser195-ELC phosphorylation plays a pivotal role
in the adaptation of cardiac function to augmented physical stress.5 In
their previous work, they showed that the homozygous lazm647 zebra-
fish, containing C-terminally truncated ELC, resulted in severe con-
tractile insufficiency and early embryonic death.17 Interestingly, the
lazm647 defect was rescued by the expression of a phosphomimetic
S195D-ELC, but not by the expression of non-phosphorylatable
S195A-ELC.17 In the current study, they employed adult laz+/2 hetero-
zygous animals and examined the response to physical stress using a
multitude of functional assays.5 Echocardiography evaluation showed
that even under basal conditions, adult laz+/2 zebrafish display signs
of systolic dysfunction. Moreover, when subjected to intense physical
stress, cardiac function considerably deteriorated leading to heart
failure and sudden death. Mechanistically, the authors suggest that
Ser195-ELC phosphorylation is critical for the normal function of the
heart and its absence negatively alters acto-myosin interactions and
force development (Figure 1C). Importantly, these contractile defects

Figure 1 Cardiac myosin light chains in health and disease. The cardiac sarcomere contains myosin located in the thick filament and actin located in the
thin filament (A). Cardiac muscle contraction is controlled by access of the myosin heads to actin binding sites on the thin filament. This process starts
with the binding of calcium to troponin (positioned on the thin filament), which causes a structural repositioning of the coiled-coil tropomyosin molecule
within the grooves of the double-stranded actin filament, thereby exposing actin-binding sites on the thin filament for the myosin heads to bind and
develop contractile force. Moreover, it has been suggested that the N-terminus of the ELC may interact with thin-filament actin and functionally modu-
late thin-filament regulation and muscle contraction (A). Each myosin head is composed of the myosin heavy chain (MHC; cyan), one regulatory light
chain (RLC; red), and one essential light chain (ELC; green) (B). Both myosin light chains can be phosphorylated at ELC-Ser195 and RLC-Ser-15 (C ), and
this process has been postulated to play a role in the normal function of the heart. Diminished phosphorylation of either light chain may negatively impact
cardiac function, particularly under conditions of haemodynamic stress (C). Modulation of the light chain phosphorylation (RLC and/or ELC) may provide
a pathway for the development of novel treatment strategies to combat heart failure, an entity of ever increasing clinical significance.
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are substantially exacerbated under physical stress. Analysis of the
functional data clearly demonstrate that following physical stress, acto-
myosin sliding velocity, myosin binding cooperativity, and force
generation in adult laz+/2 zebrafish ventricles are all severely altered
resulting in heart dysfunction. At the molecular level, the authors sug-
gest that ELC phosphorylation may modulate cross-bridge detachment
rate, and that Ser195 phosphorylation stabilizes strong cross-bridge
formation and subsequent force development. It would be interesting
to test whether phosphomimetic S195D-ELC could rescue the pheno-
type as it was shown in their previous study with homozygous
lazm647.17 Along the same lines, S195D pseudo-phosphorylation of
RLC mutants linked to HCM was recently shown to rescue the
abnormally high Ca2+-sensitivity of force and compromised ATPase
activity in ELC-exchanged porcine cardiac muscle preparations.7

Taken together, using different experimental animal models of heart
failure (Figure 1C), both studies highlighted here provide novel insights
into complex genotype–phenotype relationships and present an inter-
esting new concept of cardiac adaptation to physical and/or pharmaco-
logical stress at the level of myofilaments. Highpoints of their elegantly
executed research regard the potential role of myosin regulatory and
essential light chain phosphorylation as a molecular mechanism to at-
tenuate or reverse pathological heart remodelling. Future studies are
needed to test whether these unique phosphorylation sites on myosin
ELC and RLC can serve as potential novel therapeutic targets to battle
heart disease, an entity of ever increasing clinical significance.
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