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Abstract
Using robust, integrated analysis of multiple genomic datasets, we show that genes

depleted for non-synonymous de novomutations form a subnetwork of 72 members under

strong selective constraint. We further show this subnetwork is preferentially expressed in

the early development of the human hippocampus and is enriched for genes mutated in

neurological Mendelian disorders. We thus conclude that carefully orchestrated develop-

mental processes are under strong constraint in early brain development, and perturbations

caused by mutation have adverse outcomes subject to strong purifying selection. Our find-

ings demonstrate that selective forces can act on groups of genes involved in the same pro-

cess, supporting the notion that purifying selection can act coordinately on multiple genes.

Our approach provides a statistically robust, interpretable way to identify the tissues and

developmental times where groups of disease genes are active.

Author Summary

Some genes are extremely intolerant of mutations that alter their amino acid sequence.
Such mutations are highly likely to drive disease, and previous reports have implicated
these genes in multiple diseases. To better understand the function of these constrained
genes and their place in cellular organization, we developed a framework to ask if these
genes form biochemical networks expressed in specific tissues and developmental time-
points. Using clustering analysis over protein-protein interaction maps, we show that 72/
107 such genes form a densely connected network. Using another new method, we found
that these 72 genes are coordinately expressed in fetal brain and early blood cell precur-
sors, but not other tissues, in the Roadmap Epigenomic Project, and then show that this
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gene module is active in very early developmental time points of the hippocampus
included in the Brainspan Atlas. We also show that these genes, when mutated, tend to
cause genetic diseases. Thus we demonstrate that evolution constrains mutation of key
mechanisms that must therefore require careful control in both time and space for devel-
opment to occur normally.

Introduction
Genetic variation is introduced into the human genome by spontaneously arising de novo
mutations in the germline. The majority of these mutations have, at most, modest effects on
phenotype; they are thus subject to nearly neutral drift and can be transmitted through the
population, with some increasing in frequency to become common variants. Conversely, de
novomutations with large effects on phenotype may be subject to many different selective
forces, both positive and negative, with the latter resulting in either the variant being
completely lost from the population or maintained at very low frequencies [1].

Large-scale DNA sequencing can now be used to comprehensively assess de novomutations,
with many current applications focusing on the protein-coding portion of the genome (the
exome). This approach has been used to identify causal genes and variants in rare Mendelian
diseases: for example, exome sequencing of ten affected individuals with Kabuki syndrome
identified the methyl transferase KMT2D (formerlyMLL2) as causal, after substantial post hoc
data filtering [2]. In complex traits, this approach has successfully identified pathogenic genes
harboring de novomutations in autism spectrum disorders [3], intellectual disability [4] and
two epileptic encephalopathies [5]; notably, all these studies sequenced the exomes of parent-
affected offspring trios and quantified the background rate of de novomutations in each gene
using formal analytical approaches. They were thus able to identify genes harboring a statisti-
cally significant number of mutations, which are likely to be causal for disease [5,6].

These large-scale exome sequencing studies have demonstrated that the rate of non-synony-
mous de novomutations is markedly depleted in some genes, and that these genes are more
likely to harbor disease-causing mutations [6]. As synonymous de novomutations occur at
expected frequencies, this depletion is not driven by variation in the local overall mutation rate;
instead, these genes appear to be intolerant of changes to amino acid sequence and are thus
under selective constraint, with non-synonymous mutations removed by purifying selection.
These genes represent a limited number of fundamental biological roles, which suggests that
entire processes, rather than single genes, are under selective constraint. This is consistent with
the extreme polygenicity of most human traits, where hundreds of genes play a causal role in
determining organismal phenotype [7,8]. These genes must participate in the same cellular
processes, but uncovering the relevant connections and the cell populations and developmental
stages in which they occur remains a challenge. We and others have described statistical frame-
works to test connectivity within a nominated set of genes [9–11] by considering how genes
interact either in annotated pathways or in networks derived from protein interactions or gene
co-expression across tissues, and these approaches have been successfully applied to detecting
networks of genes underlying neurodevelopmental disease [12]. These studies have demon-
strated that genes underlying complex diseases tend to aggregate in networks; we hypothesize
that the same is true of constrained genes. However, unlike disease traits where the relevant
organ system is known and hypotheses about pathogenesis can by formulated, the phenotypic
targets of selective forces are usually unknown. Thus, systematic genome-wide approaches to
assessing connectivity between a set of genes of interest and to identify relevant tissues are
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required to investigate how selective constraint acts on groups of genes and uncover the rele-
vant physiology.

To address these issues we have developed a robust, unbiased framework and applied it to
genome-wide selective constraint data derived from exome sequences of 6,503 individuals [6].
We identified a single, statistically significant subnetwork of 72 interacting genes highly intol-
erant of non-synonymous variation, with no other interacting groups of genes showing evi-
dence of such coordinate constraint. To establish biological context for this subnetwork, we
developed a robust approach to test for preferential expression of the module as a whole, rather
than the individual constituent genes. Using gene expression data from the cosmopolitan atlas
of tissues in the Roadmap Epigenome Project [13,14], we found that this subnetwork is prefer-
entially expressed in several early-stage tissues, with the strongest enrichment in fetal brain. To
more carefully dissect the role of this subnetwork in the central nervous system, we analyzed
expression data from BrainSpan [15], an atlas of the developing human brain, and found that
the constrained gene subnetwork is preferentially expressed in the early development of the
hippocampus. Consistent with this observation, this module is enriched for genes mutated in
neurological, but not other, Mendelian disorders. We thus show that selective constraint acts
on a set of interacting genes active in early brain development, and that these genes are in fact
intolerant of mutation. Our Protein Interaction Network Tissue Search (PINTS) framework is
publicly available at https://github.com/cotsapaslab/PINTSv1.

Results

Calculating selective constraint scores
We have previously described a framework to assess selective constraint across coding
sequences in the genome [6]. Briefly, we calibrated an expectation for all possible conversions
of one base to another by mutation from non-coding sequence. For each transition, we mod-
eled the effect of the surrounding sequence and its conservation across species to correct for
context effects. We then counted the number of synonymous and non-synonymous variants in
the coding sequence of each gene in the genome and derived a statistic of constraint on each
class of variation compared to this global expectation. We found that a number of genes show
decreased rates of non-synonymous substitution but expected rates of synonymous substitu-
tion, consistent with purifying selection removing the non-synonymous alleles from the
population.

Analysis framework description
If constrained genes lie in biologically meaningful networks, we expect them to (i) interact and
(ii) be expressed in the same tissues. We developed a robust, modular workflow (PINTS–Pro-
tein InteractionNetwork Tissue Search; Fig 1) to test both of these hypotheses at a genome-
wide level. To detect interactions between constrained genes we used a high-confidence pro-
tein-protein interaction network (InWeb [16]), and employed a clustering algorithm previ-
ously validated on such networks [17]. We assessed significance empirically by randomly
reassigning constraint scores to genes (see Materials and Methods and S1 Text). We then tested
any significant subnetworks for preferential expression in the diverse tissue atlas provided by
the Roadmap Epigenome Project (REP), which assays gene expression in 27 human primary
samples across the developmental spectrum [14]. Our final dataset is comprised of 9729 genes
both present in InWeb and detected in at least one REP tissue.

Our workflow is both modular and flexible: clustering algorithms, gene-gene relationships
and tissue atlases can be replaced as required, so that analyses can be tailored to suit specific
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biological problems. A flexible implementation, including all data described here, is freely
available as an R package at https://github.com/cotsapaslab/PINTSv1.

Highly constrained genes form a protein interaction module expressed in
fetal tissues and the immune system
We define highly constrained genes as those with evidence of constraint on non-synonymous
de novo substitutions (p< 5 x 10−6, Bonferroni correction for the number of genes in our
InWeb dataset) but null synonymous constraint scores, indicating intolerance to functionally
relevant mutation rather than fluctuations in the local mutation rate [6]. Of these, 107/9729
genes pass this stringent threshold (binomial p< 2.2 x 10−16; S1 Table), and form the core of
the analysis presented here. We found that 67/107 form a connected subnetwork (Fig 2A;
Table 1). Five additional genes are included as our cluster detection algorithm by design looks
for a backbone of null nodes connected to many signal nodes. To assess the significance of this
observation, we randomly distribute constraint scores to InWeb nodes 1000 times and find
that the constrained subnetwork is larger (number of nodes: p< 0.001) and more densely

Fig 1. the Protein Interaction Network Tissue Search (PINTS) workflow.We project gene-wise selective constraint scores [6] onto the
InWeb protein-protein interaction dataset [16] and use a heuristic version of the prize-collecting Steiner Tree algorithm [17,29] to detect
clusters of interacting constrained genes. We assess significance empirically, by randomly assigning the scores to genes 1000 times and
calibrating detected subnetwork parameters. We then test any significant subnetwork for usual patterns of preferential expression [32]
across the Roadmap Epigenome Project expression data [14], a cosmopolitan tissue atlas, using a Markov random field approach. The
approach is flexible and modular, so gene interaction and tissue expression reference datasets can be altered according to the application.

doi:10.1371/journal.pgen.1006121.g001
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connected (number of edges: p< 0.001; clustering coefficient: p = 0.008) than expected by
chance (Fig 2B). As such, it also explains more total constraint in the genome than expected
(sum of constraint scores: p< 0.001). After accounting for the genes forming this subnetwork,
we found no evidence that the remaining 35 genes form statistically significant subnetworks by
our criteria.

The genes in the constrained subnetwork appear to represent several fundamental cell pro-
cesses, most notably mitosis and cell proliferation (SMC1A, SMC3, CTNNB1) and transcrip-
tional regulation (CHD3, CHD4, SMARCA4). We performed a formal pathway analysis to
further test this and found enrichment of several annotated pathways reflecting these funda-
mental processes (Table 2). Encouraged that our detected subnetwork represents one or more
biological processes under constraint, we sought to add cellular context to our observations. In
particular, we wanted to determine if this group of genes is preferentially expressed in particu-
lar tissues, indicating a likely site of action. We thus developed an approach to estimate the
joint probability of preferential expression of the genes in the subnetwork in each tissue of an
atlas of expression data, while accounting for how frequently each gene is detected across the
entire atlas. We applied our approach, which uses Markov random fields, to the expression
data on 27 primary tissues and cell lines available from the Roadmap Epigenome Project.
Using two conservative permutation-based significance tests, we find the constrained

Fig 2. selectively constrained genes form a 72-member network, preferentially expressed in fetal brain,
heart and immune cell populations. A: constrained genes form a connected subnetwork of genes in the
extreme of the constraint score distribution. B: the constrained subnetwork contains more genes (node
p < 0.001), has more connections (edge p < 0.001), is more densely connected (clustering coefficient p = 0.008)
and explains more total constraint (sum p < 0.001) than expected by chance (orange dots) compared to networks
discovered in 1000 permutations of the constraint data (boxplots and black dots). C: the constrained subnetwork
is preferentially expressed in a subset of Roadmap Epigenome Project tissues, including fetal brain.
Preferentially expressed nodes and the shortest paths connecting them are in color; grey nodes are not
preferentially expressed in each displayed tissue. D: The most consistent preferential expression signal is seen
in fetal brain, which is robust to stringency of preferential expression threshold.

doi:10.1371/journal.pgen.1006121.g002
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subnetwork is preferentially expressed in a number of fetal and immune tissues (Fig 2C and
Table 3), including fetal brain (permuted p< 0.001), the immune cell subpopulations marked
by CD34 (permuted p< 0.001) and CD8 (permuted p = 0.017) and fetal thymus (permuted
p = 0.048). We note that, whilst only a subset of genes are expressed in any one tissue, the com-
binations of genes expressed in these tissues is highly statistically significant: each gene is only
expressed in a small subset of the tissues interrogated, so the cumulative probability of seeing
these genes coordinately expressed in any one tissue is small.

Table 1. A 72-member constrained gene subnetwork. We find that 67/107 significantly constrained genes form a single protein-protein interaction subnet-
work. Five additional genes are also included (gray shading), as our cluster detection algorithm by design looks for a backbone of null nodes connected to
many signal nodes. As shown in Fig 2, the subnetwork is significantly larger and more densely connected than expected by chance, and is preferentially
expressed in a subset of early-stage neural and immune tissues.

Gene Constraint score Chr Start End Gene Constraint score Chr Start End

DYNC1H1 9.977 14 101964528 102050792 UBR4 4.940 1 19074506 19210276

PRPF8 8.302 17 1650629 1684882 CHD3 4.905 17 7884806 7912760

HUWE1 7.973 X 53532096 53686729 USP7 4.866 16 8892094 8964514

SMARCA4 6.604 19 10961001 11065395 PRPF6 4.826 20 63981135 64033100

POLR2A 6.578 17 7484366 7514618 GNAS 4.806 20 58839718 58911192

RYR2 6.436 1 237042205 237833988 THOC2 4.791 X 123600561 123733056

MED12 6.388 X 71118556 71142454 FRY 4.772 13 32031300 32299122

SNRNP200 6.166 2 96274336 96305515 OGT 4.753 X 71533083 71575897

CHD4 6.162 12 6570083 6607476 POLR2B 4.729 4 56977722 57031168

MTOR 5.974 1 11106535 11262507 KCNMA1 4.687 10 76869601 77638595

GRIN1 5.971 9 137138390 137168762 TAOK1 4.685 17 29390464 29551904

PPFIA3 5.794 19 49119389 49151026 BRWD3 4.683 X 80670854 80809688

MLL 5.747 11 118436490 118526832 SPTAN1 4.671 9 128552558 128633665

UBR5 5.720 8 102253012 102412841 PHIP 4.670 6 78935867 79078236

ITPR1 5.589 3 4493348 4847840 DDB1 4.670 11 61299451 61342596

CLTC 5.547 17 59619689 59696956 HSPA2 4.665 14 64535905 64546173

FLNA 5.541 X 154348524 154374638 SPEG 4.644 2 219434846 219498287

UPF1 5.514 19 18831938 18868236 SMC3 4.639 10 110567691 110604636

HCFC1 5.450 X 153947553 153971807 MYH10 4.629 17 8474205 8630761

DHX30 5.428 3 47802909 47850195 XPO1 4.621 2 61477849 61538626

SPTBN1 5.423 2 54456285 54671445 CUL3 4.610 2 224470150 224585397

SF3B1 5.418 2 197389784 197435091 IRS2 4.592 13 109752698 109786568

SMARCA2 5.387 9 2015219 2193624 ADCY1 4.587 7 45574140 45723116

CACNA1I 5.363 22 39570753 39689737 APC2 4.564 19 1446302 1473244

SMC1A 5.360 X 53374149 53422728 ZBTB17 4.547 1 15941869 15976132

GRIN2B 5.334 12 13537337 13980119 TLN1 4.517 9 35696948 35732395

GRIN2D 5.211 19 48394875 48444931 MYH9 4.496 22 36281281 36388018

TAF1 5.178 X 71366239 71532374 EEF2 4.478 19 3976056 3985469

VCP 5.162 9 35056064 35073249 PDS5A 4.451 4 39822863 39977956

CNOT1 5.146 16 58519951 58629886 PRKD2 4.438 19 46674275 46717127

TRIO 5.109 5 14143702 14532128 BRD4 4.436 19 15235519 15332545

CYFIP2 5.100 5 157266079 157395598 HSPA8 4.364 11 123057489 123063230

SUPT5H 5.065 19 39436156 39476670 CTNNB1 4.198 3 41194837 41260096

FZD8 5.028 10 35638249 35642278 UBC 3.997 12 124911604 124917368

TNPO2 4.993 19 12699194 12724011 PIK3CD 3.858 1 9651732 9729114

GTF2I 4.945 7 74657667 74760692 PIK3R1 2.170 5 68215720 68301821

doi:10.1371/journal.pgen.1006121.t001
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As several tissues are enriched for subnetwork expression, we sought to understand whether
we were capturing the same signature across multiple tissues reflecting a shared process. We
assessed whether the same genes are preferentially expressed in each tissue, and found a dis-
tinct signature in the fetal brain and heart samples and the immune cell subpopulations
(CD34+, CD8+, CD3+, thymus; pairwise p< 0.05 hypergeometric test; S2 Table). To ensure our
tissue expression results are not an artifact of the threshold we set for preferential expression,
we repeated the entire analysis with a range of threshold values and found consistent results
across tissues; this is most notable in fetal brain (Fig 2D and S3 Table), which remains signifi-
cant irrespective of threshold used.

Genes under selective constraint are more likely to harbor pathogenic mutations causing
Mendelian diseases, consistent with intolerance of functional mutations [6]. Accordingly, we
found that our subnetwork of 72 genes is significantly enriched for OMIM annotations (Fish-
er’s exact p = 0.0013). To further elucidate this observation, we mapped all OMIM entries to
Medical Subject Headings (MeSH) disease categories and assessed enrichment per organ sys-
tem category. We found that our subnetwork is significantly enriched for genes mutated in
Mendelian diseases affecting the central nervous system (Fisher’s exact p = 0.0017, S5 Table),
validating our observation of enrichment in fetal brain. We note that this enrichment is not
in the inflammatory/immune neurological disease sub-category, suggesting no overlap with
the discrete immune signature we found. Samocha et al [6] have previously reported that

Table 2. The 72-member constrained gene subnetwork is enriched for canonical pathways reflecting neuronal and immune functionality and
basic aspects of cell cycle control. We tested pathways from two sources (the Reactome database and KEGG, the Kyoto Encyclopedia of Genes and
Genomes), assessing howmany genes are in each pathway (All), howmany map onto the 9729 inteconnected genes in our analysis (Mapped), and how
many are present in the constrained subnetwork (Subnetwork). We assess significance using both the GSEA approach of a Kolmogorov-Smirnov (KS) test
and a simple hypergeometric (HG) test of expected overlaps.

Name All Mapped Subnetwork KS HG

Developmental biology (Reactome) 397 344 10 2.53E-19 1.83E-05

Immune system (Reactome) 934 702 9 4.98E-08 1.96E-02

Adaptive immune system (Reactome) 540 421 8 3.13E-10 2.08E-03

Axon guidance (Reactome) 252 220 8 4.62E-16 1.65E-05

mRNA Processing (Reactome) 162 120 8 9.06E-12 1.05E-07

Calcium signaling pathway (KEGG) 179 163 7 6.00E-08 1.36E-05

Spliceosome (KEGG) 129 85 7 5.32E-21 9.60E-08

mRNA splicing (Reactome) 112 74 7 6.26E-20 3.19E-08

Processing of capped intron containing pre-mRNA (Reactome) 141 102 7 3.21E-13 3.99E-07

Pathways in cancer (KEGG) 329 301 6 4.05E-12 4.21E-03

Regulation of actin cytoskeleton (KEGG) 217 188 6 8.08E-13 2.74E-04

Cell cycle (Reactome) 422 332 6 7.95E-03 7.12E-03

mRNA splicing minor pathway (Reactome) 46 20 6 2.90E-05 3.56E-11

Signalling by NGF (Reactome) 218 191 6 3.04E-21 3.02E-04

Focal adhesion (KEGG) 202 188 5 9.72E-07 1.70E-03

Long term potentiation (KEGG) 71 60 5 9.64E-15 2.97E-06

MAPK signaling pathway (KEGG) 268 233 5 3.02E-15 4.92E-03

HIV infection (Reactome) 208 163 5 1.32E-06 8.12E-04

HIV life cycle (Reactome) 126 95 5 1.03E-02 4.27E-05

Late phase of HIV life cycle (Reactome) 105 85 5 1.36E-02 2.27E-05

Neuronal system (Reactome) 280 219 5 3.80E-28 3.64E-03

NGF signalling via TRKa from the plasma membrane (Reactome) 138 120 5 1.09E-14 1.57E-04

Signaling by GPCR (Reactome) 921 415 5 1.63E-11 6.21E-02

doi:10.1371/journal.pgen.1006121.t002
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constrained genes are also enriched for de novomutations associated with autism spectrum dis-
orders, further strengthening our conclusion that this constrained subnetwork represents a
brain-related biological process.

The constrained module is preferentially expressed in early brain
development
To further elucidate the relevance of our constrained module to brain physiology, we interro-
gated expression data for multiple brain structures across developmental stages from the
BrainSpan project [15]. We found a strong signature of preferential expression in very early
stages of development, which declines rapidly and is absent by mid-gestation and remains
inactive after birth into adulthood (Fig 3A and Table 3). Several transitional structures in the
early brain exhibit significant preferential expression levels, including the ganglionic emi-
nences that eventually form the ventral forebrain and the early structures of the hippocampus.
The latter structure shows the most consistent signature across developmental time, with the
module’s pattern of expression gradually weakening and becoming non-significant by mid
gestation (post-conception weeks 16–18; Fig 3B). These results, taken with the likely involve-
ment of constrained genes in fundamental processes of mitosis and transcriptional regulation,

Table 3. The 72-member constrained gene subnetwork is preferentially expressed in a range of tissues and brain structures. We find strong enrich-
ment in a variety of tissues, predominantly neural and immune-derived samples sourced from the Roadmap Epigenome Project (REP) and the BrainSpan
Atlas. We report only tissues passing significance with two conservative independent empirical approaches: random permutation of preferential expression
values for the subnetwork across tissues (permutation); and comparison to the largest subnetworks detected when we permute constraint scores for all 9729
InWeb genes.

Source Tissue Developmental stage Permutation p-value Resampled p-value Tissue-specific genes

REP CD34+ Perinatal (cord blood) 0.00100 0.00100 10

REP Fetal brain Fetal 0.01100 0.00100 16

REP CD8+ Adult (>20 years) 0.01700 0.00100 10

REP Fetal thymus Fetal 0.04800 0.00100 5

BrainSpan Caudal ganglionic eminence 2A (8–9 pcw) 0.00125 0.00125 20

BrainSpan Dorsolateral prefrontal cortex 2A (8–9 pcw) 0.00125 0.00125 16

BrainSpan Hippocampal anlage 2A (8–9 pcw) 0.00125 0.00125 17

BrainSpan Lateral ganglionic eminence 2A (8–9 pcw) 0.00125 0.00125 19

BrainSpan Primary motor-sensory cortex 2A (8–9 pcw) 0.00125 0.00125 20

BrainSpan Medial frontal cortex 2A (8–9 pcw) 0.00125 0.00125 19

BrainSpan Orbital frontal cortex 2A (8–9 pcw) 0.00250 0.00125 14

BrainSpan Parietal neocortex 2A (8–9 pcw) 0.00250 0.00125 18

BrainSpan Medial ganglionic eminence 2A (8–9 pcw) 0.00375 0.00125 18

BrainSpan Occipital neocortex 2A (8–9 pcw) 0.00500 0.00125 18

BrainSpan Hippocampus 2B (10–12 pcw) 0.00625 0.00125 18

BrainSpan Hippocampus 3A (13–15 pcw) 0.00625 0.00125 19

BrainSpan Primary somatosensory cortex 3A (13–15 pcw) 0.01250 0.00125 20

BrainSpan Primary visual cortex 4 (19–24 pcw) 0.01750 0.00125 22

BrainSpan Posterior superior temporal cortex 3B (16–18 pcw) 0.01875 0.00125 22

BrainSpan Posteroventral parietal cortex 3A (13–15 pcw) 0.02250 0.00125 19

BrainSpan Cerebellar cortex 4 (19–24 pcw) 0.02500 0.00125 19

BrainSpan Primary motor cortex 3A (13–15 pcw) 0.02750 0.00125 19

BrainSpan Striatum 3A (13–15 pcw) 0.04125 0.00125 17

BrainSpan Dorsolateral prefrontal cortex 4A (19–24 pcw) 0.04625 0.00250 21

doi:10.1371/journal.pgen.1006121.t003
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suggest this gene module is relevant to developmental patterning at crucial time points in
early brain development.

Discussion
We have shown that selective constraint influences sets of interacting genes involved in core
cellular control processes, and that these have elevated expression levels in early stages of cen-
tral nervous system development. We found the strongest enrichment in the early hippocampal
stages at post-conception weeks eight and nine, with additional signals in ventral forebrain
structures and the parietal cortical wall. This stage of development involves neuronal prolifera-
tion through carefully orchestrated sequences of cell differentiation during developmental pat-
terning across the brain. As the constrained subnetwork we have detected is enriched for genes
involved in the control of mitosis and transcription, we speculate that it plays a fundamental
role in these processes. Our finding that neurological Mendelian disease genes are over-repre-
sented, combined with previous reports of de novomutations affecting autism spectrum disor-
ders [6,18], intellectual disability [6] and epileptic encephalopathy [5], further support this
notion, indicating that most perturbation leads to severe phenotype. This strong limitation
in tolerance may also explain our observation of enrichment in immune cell populations, as
precise control of developmental decisions is crucial to the correct differentiation of the lym-
phoid and myeloid lineages throughout life. As the selective constraint scores are by design cor-
rected for both coding sequence length and GC bias [6], constraint is more likely to be due to

Fig 3. the 72-member selectively constrained gene subnetwork is active in early brain development,
particularly in the hippocampus. A: the constrained subnetwork shows elevated signatures of preferential
expression in early stages of brain development. B: the signature is most robust in the hippocampus and its
ancestral structures (orange), with some enrichment in ventral forebrain and parietal cortical wall structures
very early in development (8–9 post-conception weeks). C: The constrained subnetwork shows significant
preferential expression in early developmental stages, with patterns of expression losing this enrichment
signature by mid-gestation. Preferentially expressed nodes and the shortest paths connecting them are
colored orange; grey nodes are not preferentially expressed in each displayed tissue. Overall, these data
suggest the constrained subnetwork is specifically active in very early stages of hippocampal formation.

doi:10.1371/journal.pgen.1006121.g003
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intolerance of changes to protein function rather than structural characteristics of the encoded
proteins.

Network analyses have been used to identify interacting groups of genes conserved across
species [19], and to identify groups of co-expressed genes in both healthy individuals [20] and
groups of genes whose expression is coordinately altered in neurological disease [21]. In partic-
ular, network analyses of expression data across species suggest that co-regulated genes form
stable interaction networks that evolve in a coordinate fashion [19]. These diverse analyses all
suggest that functionally linked genes form stable networks and are targets of natural selection
due to their group contribution to specific biological processes [22]. Our own results support
this notion, demonstrating that interacting protein networks are under remarkable constraint
within the human species, presumably because they underlie carefully orchestrated biological
processes.

More broadly, our results present a glimpse into how natural selection may affect entire
groups of genes involved in central homeostatic functions. Most studies of selection aim to
identify specific alleles inconsistent with the nearly neutral model of drift, with particular suc-
cess in studies of recent positive selection [23,24]. We suggest that the majority of these effects
represent near-Mendelian effects on relevant phenotypes, which are the actual targets of selec-
tive forces: for example, variability in lactase persistence is almost entirely explained by any
one of handful of necessary and sufficient alleles [25]. However, the majority of human traits
are polygenic, and selection would likely exert far weaker effects on risk alleles, most of which
have been revealed by GWAS to only explain a fraction of phenotypic variance. Although such
polygenic adaptation [26] has proven difficult to detect thus far, our data provide confirmation
that selective forces can act on groups of genes involved in the same process, supporting the
notion that purifying selection can act coordinately on multiple genes. We describe how selec-
tive constraint acts on groups of genes, suggesting such coordination, though we note that the
constraint statistics contain no information about whether multiple genes are targets of the
same pressure. We further note that the substantial preferential expression we see does not
apply to the entire constrained subnetwork—this may be due either to imprecise specification
of the network itself or limitations in detecting preferential expression in a limited tissue atlas.
However, our results clearly support a coherent physiological role for this network in early fetal
development.

We have presented a robust approach to identifying sets of interacting genes under selective
constraint and placing these into biological context, using the wealth of genome-scale data pro-
duced by large-scale public projects. Our approach builds on robust statistical frameworks to
interrogate single variants or genes and thus provides previously lacking biological context
from which further hypotheses can be drawn. The approach is flexible and not restricted to
studies of constraint: per-gene measures derived from studies of other forms of natural selec-
tion, non-human hominid introgression, common and rare variant disease association can
be analyzed in our framework. Further, as PINTS is modular, appropriate tissue atlases can
be used to meaningfully interpret results. We believe our work represents a new class of
approaches that can leverage multiple genome-scale datasets to gain new insight into biological
activities responsible for health and disease.

Materials and Methods

Selective constraint data
We have used selective constraint scores as previously described [6]. Briefly, we used a muta-
tion rate table—containing the probability of every trinucleotide XY1Z mutating to every other
possible trinucleotide XY2Z—based on intergenic SNPs from the 1000 Genomes project and
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the sequence of a gene to determine that gene’s probability of mutation. These sequence con-
text-based probabilities of mutation were additionally corrected for regional divergence
between humans and macaques as well as the depth of coverage for each base in an exome
sequencing study. Given the high correlation (Pearson’s r = 0.94) between the probability of a
synonymous mutation in a gene with the number of rare (MAF< 0.01%) synonymous variants
in that gene seen in the NHLBI’s Exome Sequencing Project, we used a linear model to predict
the number of rare missense variants expected per gene in the same dataset. The difference
between observation and expectation was quantified as a signed Z score of the chi-squared
deviation. The missense Z score was used as the basis for determining selective constraint. In
this study, we took a conservative approach to assessing selective constraint, using the Bonfer-
roni correction for number of InWeb genes to derive a significance threshold of pc < 5 x 10−6.

Detecting selectively constrained subnetworks in protein-protein
interaction data
We used InWeb, a previously described comprehensive map of protein-protein interactions,
containing 169,736 high-confidence interactions between 12,687 gene products, compiled
from a variety of sources [16]. By mapping ENSEMBL IDs, we were able to identify 9729 genes
with constraint scores from Samocha et al [6] also present in the REP expression data (below),
to which we restricted our analysis.

To detect clusters of interacting constrained genes, we used a heuristic form of the prize-col-
lecting Steiner tree (PCST) algorithm [27,28], which has been previously applied to protein-
protein interaction data[17]. The canonical form of the PCST algorithm takes a connected,
undirected graph G(V,E,w,u) with V vertices and E edges, with vertex weights w and edge
weights u; it then finds the connected subgraph T(V’,E’) with maximal profit(T), which is some
function of (w’-u’). By definition, T is a minimal spanning tree. The algorithm thus identifies
the set of nodes with the strongest signal given the cost of their connecting edges. The classical
PCST algorithm is, however, NP-hard, which makes it computationally intractable on the scale
of InWeb [27]. Several heuristic simplifications have been proposed, including one previously
validated as suitable for protein-protein interaction networks which we use here [17]. This
approach partitions the set V into null (with weights w< 0) and signal (with weights w> 0)
vertices (genes) and equal edge weights e before searching for T. Beisser et al have implemented
this approach in the BioNet package for the R statistical language [29]. Here, we define signal
genes as those with constraint scores passing the Bonferroni threshold of pc< 5 x 10−6, and cal-
culate the weights as w = -log(pc) + log(5 x 10−6). The PCST algorithm returns a single, maximal
T solution; to discover further independent subnetworks, we apply the method iteratively after
we assign gene nodes in the previously discovered solution to be null.

The algorithm always returns a solution for T, so we sought to assess the significance of our
observations empirically. To understand if the observed solution is unlikely by chance, we per-
muted the constraint scores of genes 1000 times and for each iteration ran the heuristic PCST
to generate 1000 random resampled subnetworks (these are also used in the tissue-specificity
analyses described below). We then quantified the following key parameters and assessed how
many random subnetworks had values exceeding those of the true discovered subnetwork: size
(number of gene nodes); density (number of connections); clustering coefficient and total
amount of constraint explained (sum of constraint scores). To address the possible contribu-
tion of degree bias to these results, we also performed biased permutations to select signal
nodes with the same degree distribution as we had previously done for DAPPLE [9]. We found
weak correlation between degree and significance (S1 Fig) and opted for random permutations
where the number of combinations of random genes selected as signal nodes is much larger.
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Gene expression data processing and preferential expression analysis
We obtained gene expression data for a cosmopolitan set of tissues from the Roadmap Epigen-
ome Project (REP) [14]. The REP data consists of 88 samples across 27 tissue types from
diverse human organs, profiled on the Affymetrix HuEx-1_0-st-v2 exon array, which we
downloaded on 9/25/2013 from http://www.genboree.org/EdaccData/Current-Release/
experiment-sample/Expression_Array/. We processed these data using standard methods
available from the BioConductor project [30,31]. Briefly, we removed cross-hybridizing probe-
sets, applied RMA background correction and quantile normalization and then summarized
probesets to transcript-level intensities. We then mapped transcripts to genes using the current
Gencode annotations for human genes (version 12). Transcripts with no match in Gencode
were removed and the remaining transcripts we again quantile normalized. We then assigned
transcript expression levels to their matching genes. Where multiple transcripts mapped to the
same gene we used the transcript with maximum expression over all cell types.

The Brainspan atlas [15] data are available as processed, gene-level expression levels from
http://www.brainspan.org/static/download.html. We mapped these genes to the InWeb gene
set using ENSEMBL IDs, and quantile normalized data for the overlapping genes. We then
grouped replicate data by developmental stage and brain structure and calculated preferential
expression as described above.

We used a previously described approach to detect tissue-specific expression across each tis-
sue atlas [32]. Briefly, we group together replicates from the same cell type and compute pair-
wise differential expression between all pairwise combinations of tissues, using an empirical
Bayes approach to account for variance shrinkage [33]. Thus, for each gene there are 26 linear
model coefficients and associated p values for each tissue, quantifying the comparison to all
other tissues. For each gene in each tissue, we then capture the overall difference in expression
from all other tissues as the sum of these coefficients. To reduce noise, only coefficients with
p< 0.0019 (p< 0.05 with Bonferroni correction for 26 tissues) are considered. Rescaling all
coefficient sums across all genes values to the range [−1,1] gives us a final preferential expres-
sion score. Intuitively, a gene highly expressed in only one tissue would get a high positive
enrichment score in that tissue, as it is differentially expressed compared to all other tissues.
The score is directional, strong negative values indicate very low expression in one tissue com-
pared to all others. We partition the overall distribution into deciles and define preferential
expression in a tissue if a gene has a score> 0.1.

Scoring subnetwork tissue specificity
To score the tissue specific expression of a subnetwork, we detect which genes in the subnet-
work are preferentially expressed in each tissue of our expression atlas and assess the joint
probability of this observation. Rather than ask if some nodes of the subnetwork are preferen-
tially expressed in a given tissue, we developed an approach to account for the connections
between genes; we thus assess whether the pattern of preferential expression across the whole
subnetwork is unusual for a given tissue, suggesting the subnetwork is operational. Formally,
we consider the subnetwork as a Markov random field with a particular configuration of pref-
erentially expressed nodes in each atlas tissue. We compute a score for each configuration
using a standard scoring function [34]:

P ðx1; . . . ; xnÞ ¼
1

Z

Y

ði;jÞ2Edges
Fðxi; xjÞ
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The partition function Z is defined as:

Z ¼
X

x1 ;...;xn

Y

ði;jÞ2Edges
Fðxi; xjÞ

where xi(i = 1, . . ., n)represents a binary tissue specificity of the genes in the subnetwork for a
given tissue with values either 1 (expressed) or 0 (not expressed). The F(xi,xj) factor lists the
co-occurrence of two connected nodes across tissues. This is calculated from the thresholded
preferential expression data, and each pair of connected nodes is assigned exactly one configu-
ration in each tissue, so that

Fðxi ¼ 0; xj ¼ 0Þ þ Fðxi ¼ 1; xj ¼ 0Þ þ Fðxi ¼ 0; xj ¼ 1Þ þ Fðxi ¼ 1; xj ¼ 1Þ
¼ number of tissues

We assess the significance of these scores using two conservative permutation approaches.
First we assess how likely we are to see each observed configuration (i.e. each pattern of
detected/not detected nodes) in each tissue of the atlas. We do this by permuting the preferen-
tial expression scores across tissues for each gene independently and rescoring the configura-
tion found in each tissue. This alters the co-expression structure across genes and empirically
assesses how likely we are to see a particular configuration of a specific subnetwork by chance.
Second, we estimate the probability of observing the extent of tissue specificity in each tissue.
We construct the null expectation by scoring the resampled subnetworks generated by permuta-
tion above in each tissue and compute the empirical significance from this distribution of
scores.

To ensure our results are not artifacts of a specific preferential expression threshold, we
repeat this analysis across a spectrum of preferential expression thresholds (See S3 Table).

Pathway analysis
To test if any biological pathways are over represented in a subnetwork, we use the Gene Set
Enrichment Analysis (GSEA) approach [35]. We obtained the full list of curated canonical
pathways from the GSEA website (http://www.broadinstitute.org/gsea/msigdb/collections.jsp)
and mapped the 9729 genes to each pathway using HUGO IDs. We then test for enrichment of
subnetwork members over background using the hypergeometric test.

Online Mendelian Inheritance in Man (OMIM) analysis
To test if genes in the subnetwork are more likely to harbor pathogenic mutations causing
Mendelian diseases than expected by chance, we retrieved OMIM records for all 9729 genes
using the biomaRt package in BioConductor [31]. We then tested whether the proportion of
107 subnetwork genes with OMIM entries was higher than the background proportion of the
full set of 9729 in our analysis using Fisher’s exact test (S4 Table). We then mapped all OMIM
entries to Medical Subject Headings (MeSH) disease categories using the Comparative Toxico-
genomics Database (CTD) MEDIC disease vocabulary [36] and assessed enrichment in any
disease category, again using Fisher's exact test (S6 Table).

Supporting Information
S1 Table. Significance of the clustering of the top subnetwork in InWeb PPI network. The
mutational constraint signals (genes) in the top subnetwork show the significance clustering in
terms of the number of nodes and edges and the clustering coefficient, and the constraint score
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sum against null expectation suggesting they function together.
(PDF)

S2 Table. Threshold dependence analysis of significant tissues associated with mutational
constraint gene network using Roadmap epigenomics dataset. Shown in the table are the p
values of all significant tissues at a nominal significance (p = 0.05). Fetal brain shows consis-
tently strong signal across all the threshold values. It suggests that fetal brain is most likely tis-
sue of action.
(PDF)

S3 Table. Threshold dependence of tissue specific gene count summary. Shown in the table
includes: i) the number of tissue specific genes in the top subnetwork across the threseholds for
all significant tissues. ii) the average number of tissue specific genes in the top subnetwork as
well as entire network. iii) The median and standard deviation of tissue specific genes per tis-
sues. iv) the mean and the standard deviation of tissue specificity of all genes.
(PDF)

S4 Table. Tissue specific gene overlap among significant tissues.We do not see significant
overlap between the 72 genes in our constrained network that are preferentially expressed in
fetal brain with those preferentially expressed in immune-system related cell types. This sug-
gests that the tissue specific action of fetal brain is independent from that of immune-system
related cell/tissue types.
(PDF)

S5 Table. Online in Man in Mendelian (OMIM) record enrichment analysis of gene sets.
All genes in top subnetwork, tissue-specific genes in the significant tissues such as fetal brain/
CD34/CD8/fetal thymus, and all genome-wide significant mutational constraint genes. The
total counts indicate the number of genes identified to have OMIM entries through biomarRt
R package. The numbers in parenthesis indicate the actual total number of gene sets.
(PDF)

S6 Table. Medical Subject Headings (MeSH) disease category enrichment analysis for all
genes in the top subnetwork. Among all the disease categories mapped to by at least one gene,
only the nervous system disease shows significance.
(PDF)

S7 Table. Pathway enrichment analysis using canonical curated pathways. Each column rep-
resents the following: Column 1: Curated pathway name; Column 2: Number of genes in each
pathway; Column 3: Number of genes that are mapped to InWeb PPI network; Column 4:
Number of genes in top subnetwork; Column 5: p-value of Gene Set Enrichment Analysis (Kol-
mogrov-Smirnov test); Column 6: p-value of hypergeometric test
(PDF)

S8 Table. Binary tissue specificity of all genes in the top subnetwork for a subset of signifi-
cant tissues among all tissues in Roadmap and BrainSpan gene expression dataset.
(PDF)

S1 Fig. Correlation between InWEB node degree and constraint scores. Constraint Z scores
are only weakly correlated with InWEB node degree. Pearson correlation coefficient = 0.022.
(PDF)

S1 Text. Supplementary methods.
(PDF)
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