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Abstract
Epidemics of communicable diseases place a huge burden on public health infrastructures

across the world. Producing accurate and actionable forecasts of infectious disease inci-

dence at short and long time scales will improve public health response to outbreaks. How-

ever, scientists and public health officials face many obstacles in trying to create such real-

time forecasts of infectious disease incidence. Dengue is a mosquito-borne virus that annu-

ally infects over 400 million people worldwide. We developed a real-time forecasting model

for dengue hemorrhagic fever in the 77 provinces of Thailand. We created a practical

computational infrastructure that generated multi-step predictions of dengue incidence in

Thai provinces every two weeks throughout 2014. These predictions show mixed perfor-

mance across provinces, out-performing seasonal baseline models in over half of prov-

inces at a 2 month horizon. Additionally, to assess the degree to which delays in case

reporting make long-range prediction a challenging task, we compared the performance of

our real-time predictions with predictions made with fully reported data. This paper provides

valuable lessons for the implementation of real-time predictions in the context of public

health decision making.

Author Summary

Predicting the course of infectious disease outbreaks in real-time is a challenging task. It
requires knowledge of the particular disease system as well as a pipeline that can turn raw
data from a public health surveillance system into calibrated predictions of disease inci-
dence. Dengue is a mosquito-borne infectious disease that places an immense public
health and economic burden upon countries around the world, especially in tropical
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areas. In 2014 our research team, a collaboration of the Ministry of Public Health of Thai-
land and academic researchers from the United States, implemented a system for generat-
ing real-time forecasts of dengue hemorrhagic fever based on the disease surveillance
reports from Thailand. We compared predictions from several different statistical mod-
els, identifying locations and times where our predictions were accurate. We also quanti-
fied the extent to which delayed reporting of cases in real-time impacted our predictions.
Broadly speaking, improving real-time predictions can enable more targeted, timely
interventions and risk communication, both of which have a measurable impact on dis-
ease spread in epidemic and pandemic scenarios. It is vital that we continue to build
knowledge about the best ways to make these forecasts and integrate them into public
health decision making.

Introduction
Producing accurate and actionable forecasts of infectious disease incidence at short and long
time scales will improve public health response to outbreaks. Real-time forecasts of infectious
disease outbreaks can facilitate targeted intervention and prevention strategies, such as
increased healthcare staffing or vector control measures. However, we currently have a limited
understanding of the best ways to integrate forecasts into real-time public health decision-
making.

Dengue is a mosquito-borne infectious disease that places an immense public health and
economic burden upon countries around the world, especially in tropical areas. A severe form
of the disease, dengue hemorrhagic fever (DHF), may lead to debilitating pain, organ shock,
and even death [1]. Currently over 2.5 billion individuals worldwide are at risk of infection
with dengue, a mosquito-borne RNA virus [2]. Global incidence of dengue has increased sig-
nificantly over the past few decades, with estimated annual global incidence of about 400 mil-
lion infections each year [3].

Dengue is endemic in Thailand, which has 77 provinces including one large municipality
(Bangkok). National annual incidence rates of reported dengue in Thailand range between 30
cases per 100,000 population and 224 cases per 100,000 population [4]. Some estimates sug-
gest that between 50–80% of cases are inapparent and hence are difficult to detect clinically
and often go unreported [5–7]. Annual outbreaks show dynamic temporal and spatial pat-
terns, with great year-to-year and across-province variation, making public health planning
and resource allocation an ongoing challenge [8, 9].

With the maturation of disease surveillance and reporting systems in recent years, real-
time disease forecasting has become a realistic goal in some settings. Recognizing the impor-
tance of this emerging field, several governmental agencies have established disease prediction
contests in recent years, with the goal of having contestants produce accurate forecasts: e.g. a
2013 CDC influenza prediction challenge [10], a 2014 DARPA chikungunya prediction chal-
lenge [11], and a 2015 National Science and Technology Council interagency Working Group
dengue prediction challenge [12]. However, researchers and practitioners are still working to
understand and establish a set of best practices for implementing real-time prediction algo-
rithms in practice.

Creating predictions in real-time poses logistical, computational, and statistical challenges.
Logistically, raw data must be made available in a standard format for processing into analysis
datasets. Historical data is also needed to allow for training of the prediction model(s). To
enable transparent evaluations, predictions should be formally registered and archived in a
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publicly available database. Computational infrastructure is needed to transform and/or
merge raw data into the analysis dataset and to run the models themselves. Analytical chal-
lenges include appropriate model training, selection, and validation, considering adjustments
for delayed or incomplete case reporting. Depending on the methods used, additional statisti-
cal work may be necessary to accurately report uncertainty in the reported predictions. Below,
we describe our approaches to dealing with these challenges.

In this manuscript we present the results from the first year of forecasting DHF across the
77 provinces in Thailand. In 2014 our research team, a collaboration of the Ministry of Public
Health of Thailand and researchers from multiple academic institutions, implemented a sys-
tem for generating real-time forecasts of DHF based on current disease surveillance reports
from Thailand. This paper illustrates several key components of a rigorous real time predic-
tion framework, including:

• a reliable pipeline for data transfer, cleaning, and analysis, with a data storage architecture
that can recreate datasets that were available at a particular time (Section 2),

• a statistical model of disease transmission used to generate real-time predictions of infec-
tious disease incidence (Section 3),

• an appropriate and rigorous model validation framework, including aggregating evaluations
across location, calendar time, and prediction horizon (Section 4), and

• an assessment of the impact of case reporting delays on the accuracy of predictions (Sections
3.3 and 4.2).

Valuable efforts have been made to create, validate, and operationalize real-time influenza
predictions for the US [13], although these efforts have not faced the same challenges of sys-
tematic delays in reported data. The infrastructure that we present in this manuscript provides
valuable lessons for other collaborative prediction efforts between public health agencies and
academic partners.

Methods

Data overview
The data presented here come from the national surveillance system run by the Ministry of
Public Health in Thailand. Monthly dengue hemorrhagic fever (DHF) case counts for each
province are available from January 1968 through December 2005. Individual case reports
(hereafter referred to as “line-list” data) were available for dengue fever (DF), DHF, and den-
gue shock syndrome from January 1, 1999 through December 31, 2014. The line-list data con-
tains information on each case, including date of symptom onset, home address-code of the
case (similar to a U.S. zip code), disease diagnosis code, and demographic information (sex,
marital status, age, etc.). In years where we had overlapping sources for case data, the line-list
data were used. A summary of province-level characteristics for all provinces in Thailand is
provided in Table C in S1 Appendix. Since 1968, several provinces have split into multiple
provinces. Details on how we accommodate these province separations are available in
Table D in S1 Appendix. In one instance, the counts associated with a province (Bueng Kan)
that split from another (Nong Khai) in 2011 have continued to be counted with the original
province since we do not yet have enough data to predict for the new province.

Theoretical work demonstrates that by choosing the generation time as the discrete time
interval for case reporting, the case reports may more easily be used to model the reproductive
rate of the disease [14]. The generation time for dengue is two weeks, hence we aggregated the
line-list data into biweekly intervals and interpolated the monthly counts into biweekly
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counts. (We used a definition of biweeks that followed a standardized definition based on cal-
endar dates. See Table A in S1 Appendix). Interpolation was performed by fitting a monotoni-
cally increasing smooth spline to the cumulative case counts in each province, and then taking
the differences between the estimated cumulative counts at each interval as the number of
incident cases in a given interval.

We chose to use only DHF cases because: (1) DHF is more consistently reported across the
47 years of data collection, (2) DHF is less likely than DF to be misdiagnosed or to be differen-
tially detected over time, and (3) from a public health perspective, DHF is a more relevant out-
come, as it is a life-threatening condition and requires medical attention.

The analysis was conducted using the R language. [15] Data and code related to the analysis
are available at https://github.com/reichlab/dengue-thailand-2014-forecasts.

Ethics statement
The research aspects of this study were approved by the Johns Hopkins Bloomberg School of
Public Health and University of Massachusetts Amherst institutional review boards. Patient
data was analyzed anonymously.

Real-time data management
We established a secure data transfer process to transmit data from the Thai disease surveil-
lance system to U.S. researchers. Throughout the 2014 calendar year, Thai public health offi-
cials transmitted data approximately every two weeks to a secure server based in Baltimore,
Maryland (Table B in S1 Appendix). These data were then loaded into a PostgreSQL database
containing all of the data, including monthly case counts and a table with all line-list data
received to date. The final report containing a cleaned and finalized record of all cases for the
2014 season was delivered in April 2015. As of that time, this database held records of
2,503,631 unique cases of dengue in Thailand for the years 1968 through 2014, including rec-
ords of 2,029,326 DHF cases (Fig 1).

When forecasting, we will only ever have the cases recorded prior to the time the predic-
tions are made. So that we could compare the expected real-time performance of models as if
they had been applied in real-time, all data were archived in the database with a time-stamp
on arrival. This enabled researchers to “turn back the clock”, i.e. to query data that was avail-
able at a particular point in time. We refer to an “analysis date” as the date at which a multi-
step forecast was made, using available data. Throughout this manuscript, we use the term
“nowcast” to refer to predictions made for timepoints on or prior to the analysis date and
“forecasts” to refer to predictions made for timepoints at or after the analysis date.

Accounting for delays in case reporting
A key property of a surveillance system is the reporting delay, defined for our purposes as the
duration of time between symptom onset and the case being available for analysis. During
2014 reporting delays for dengue ranged from 1 to 50 weeks. This was due to the process of
reporting cases. Case reports typically follow a path of reporting from hospitals to district sur-
veillance centers and then to provincial health offices before arriving at the national surveil-
lance center. In all provinces, 50% of cases were reported within 5 weeks and 75% of cases
were reported within 6 weeks. However, a small fraction of cases took quite a bit longer. To
account for reporting delays, our models specified a reporting lag l, in biweeks. Data with
onset dates within last l biweeks were considered to be not fully reported and left out from the
analysis. We present results from the models with a lag of 6 biweeks (about 3 months), as
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Fig 1. Raw dengue hemorrhagic fever case counts for 77 provinces of Thailand across 47 years (1968–2014). Provinces are ordered by by
population (larger populations on the top). Gray regions indicate periods of time when a province was not in existence.

doi:10.1371/journal.pntd.0004761.g001
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these produced stable predictions across the entire country. More sophisticated adjustments
for reporting delays are the subject of our team’s ongoing research.

Timing of predictions
While the predictions presented in this manuscript were made retrospectively, in 2015 when
complete data were available, they were constructed to mimic real-time predictions by using
only the data available at each analysis date in 2014. During the 2014 calendar year, predic-
tions from a similar model were generated in real-time and disseminated to the Thai Ministry
of Public Health. We chose the set of analysis dates as the first day of each biweek for which
data had been delivered in the previous biweek (Table B in S1 Appendix). For each analysis
date in 2014, we used the candidate model to generate “real-time” province-level biweekly
predictions for the subsequent 10 biweeks (5 months).

Disease model: Features and estimation
Statistical model. We assumed the biweekly province-level reported cases follow a Pois-

son distribution, where the previous biweek’s reported cases serve as an offset term. Let the
number of cases with onset occurring within time interval t in province i be represented as a
random variable Yt, i, then

Yt;i � Poissonðlt;i � yt�1;iÞ

where the lag-1 term yt − 1, i is used as an offset in this model. We adopt the convention of
using lower-case yt, i to indicate previously observed case counts that are treated as fixed
inputs in our model. We explicitly model the rate λ as

log lt;i ¼ fiðbðtÞÞ þ giðtÞ þ
X
j2C

X
k2L

aj;k log
yt�k;j þ 1

yt�k�1;j þ 1
ð1Þ

where C is the set of Jmost-correlated provinces with province i and L is the set of lag times
used in the model; b(t) is the biweek of time t; fi(b(t)) is assumed to be a province-specific
cyclical cubic spline with period of one year (i.e. 26 biweeks); and gi(t) is a province-specific
smooth spline to capture secular trends over time. Adding 1 to the numerator and denomina-
tor of the correlated province covariates ensures that the quantities are defined when no case
counts are observed at a particular province-biweek. This method of adjusting for zero counts
has been interpreted as an “immigration rate” added to each observation [16].

We note that the model can be expressed as

lt;i ¼ E
Yt;i

yt�1;i

jyt�1;i

" #
� Rt;i ð2Þ

which shows that λt, i can be interpreted as the expected reproductive rate at time t in location
i, or Rt, i [14].

These models were fit using the Generalized Additive Model (GAM) framework (i.e. as
generalized linear models with smooth splines estimated by penalized maximum likelihood)
[17], using the mgcv package for R [15, 18]. Each province’s time-series was subset to remove
any cases from the previous l biweeks. The remaining data were smoothed before fitting the
model and making predictions.

Seasonal patterns were modeled using a penalized cubic regression spline, constrained to
have a cycle of one year with continuous second derivatives at the endpoints. Secular trends
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were modeled using penalized cubic splines with 5 equally spaced knots over 47 years (roughly
one knot per decade).

Information on epidemic progression elsewhere in the country was taken into account by
including reported case counts at 1 lagged timepoint for the 3 most correlated provinces with
province i in the data used to fit the model. Details of this model selection are provided in S1
Appendix.

We approximated the predictive distribution for all provinces using sequential stochastic
simulations of the joint distribution of the case counts for each province. We createdM inde-
pendently evolving sequential chains of predictions by drawing, at each prediction time point,
from the province-specific Poisson distribution with means given by eq (1). For example, if
data through time t� was used to fit the models for all locations, then a single simulated pre-
diction consisted of a simulated Markov chain of dependent observations for timepoints
t� + 1, t� + 2, . . ., t� +H, across all provinces, where H was the largest horizon considered. To
make a prediction for province i at time t� + h in themth chain, we draw

ŷmt�þh;i � Poissonðl̂m
t�þh;i � ŷmt�þh�1;iÞ

where l̂m
t�þh;i is computed directly by plugging in the observed and predicted data prior to t� + h

to the fitted model, and we use observed case data in the first step of prediction, i.e. ŷmt� ;i ¼ yt�;i
for allm. Due to the assumed interrelations between the provinces, we simulated counts for all
provinces at a single timepoint before moving on to the next timepoint. For a given prediction
horizon h, this process generates an empirical posterior predictive distribution for each prov-
ince by evaluating theM different predictions for yt�+h, i. Prediction intervals are generated by
taking quantiles (e.g., the 2.5% and 97.5%) of this distribution.

Metrics for evaluating predictions. We used several different metrics for evaluating our
predicted case counts. We calculated Spearman correlation coefficients to measure the agree-
ment between predicted and observed values. We also calculated the mean absolute error
(MAE) by aggregating across analysis times within a given province. We computed the rela-
tive mean absolute error (relative MAE) comparing the predictions for a given province to
predictions from a seasonal median baseline model. The seasonal baseline model for a given
province is the median value of previously observed counts for the given biweek in that prov-
ince over the past 10 years. The use of absolute error metrics over squared error metrics has
been encouraged to enhance interpretability [19, 20]. Additionally, we calculated empirical
95% prediction interval coverage as the fraction of times the 95% prediction interval covered
the true value.

Real-time vs. full-data predictions. We evaluated the performance of our real-time fore-
casts against predictions that could have been made had a full dataset been available at the
analysis dates. To make this comparison, we ran a set of multi-step forecasts for 2014 at each
analysis date using the complete data for 2014 that was finalized in late April 2015. We
designed this experiment to focus on two comparisons. First, we aimed to compare real-time
and full-data predictions where the multi-step predictions began at the same timepoint (Fig
2A vs. 2B). This analysis addressed the question of how much the real-time predictions were
impacted by the delays in case reporting, even after beginning the predictions 3 months in the
past. Second, we aimed to compare, by horizon, the real-time and full-data predictions where
the origin of the multi-step full-data predictions was anchored at the analysis time but the ori-
gin of the real-time predictions was 6 biweeks earlier to account for delayed reporting of case
data (Fig 2A vs. 2C). This analysis addressed the question of how much better or worse our
model would have performed if full data were available without any delays.
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Results

Summary of province-level forecasts
In general, the model predictions showed good, if overconfident, performance at short hori-
zons but less accuracy and high uncertainty at longer horizons. Across all provinces, the cor-
relation between observed and predicted values was 0.89 at a horizon of 1 biweek (2 weeks)
and 0.33 at a horizon of 10 biweeks, or approximately 5 months (see Table 1). Across all
provinces, observed 95% prediction interval coverage was lower than expected at a horizon
of 1 biweek (78%), showing that the models were overconfident in their short-term predic-
tions. This prediction interval coverage increased to 97% at 4 and 5 biweeks (2-2.5 month)
prediction horizon, and was near 95% for longer horizons. This indicates that our models
often had an abundance of uncertainty at mid-term horizons. Fig 3 shows case counts and
predictions aggregated across all provinces at horizons of 1, 2, and 3 biweeks (2, 4, and 6
weeks).

Fig 2. This figure illustrates three different methods used to create forecasts. Panel A shows
predictions made using only data that was available at the analysis time, and ignoring the most recent six
biweeks of reported cases. Panel B shows predictions that used fully observed data (including data that was
not available at the analysis time) but still ignored cases from the six biweeks preceding the analysis time.
Panel C shows predictions that could have been made at the analysis time if no reporting delays existed and
all data that eventually was reported had been available in real-time.

doi:10.1371/journal.pntd.0004761.g002
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Fig 4 shows examples of multi-step predictions from two analysis dates in 2014. We show
the results from nine distinct provinces, representing the best three provinces, the middle
three provinces, and the worst three provinces in terms of relative MAE when compared to a
seasonal baseline model. The increasing uncertainty is visible in many cases, even when the
point-predictions remain close to the true values. The explosive forecasts tended to occur
more frequently in the early- and mid-season, when the historical seasonal trend rises and
when the observed case counts tend to be increasing from one biweek to the next.

There was substantial variation in predictive performance across provinces. Mean absolute
error (MAE) for predictions tended to be larger in provinces with higher populations (Fig 5),
and also tended to increase with the forecast horizon. The observed MAE was less than 10
cases in over 90% of provinces at one time step and in over 50% of provinces at up to 6 time
steps. Fig 6 shows the relative MAE of model predictions compared to a seasonal baseline
model at prediction horizons of 1 through 10 biweeks (2 weeks through 5 months). We note
that predictions during the first three months are nowcasts, as the most recent 6 biweeks of
data are ignored in the fitting process and predictions are made starting from the point at
which full data was assumed.

To compare predictive performance of our model between provinces, we used the relative
MAE with a simple seasonal model as a baseline. Table 1 summarizes relative MAEs by pre-
diction horizon. Relative to seasonal baseline prediction models, a majority of provinces made
better predictions on average than the seasonal model at 1, 2, 3 and 4 biweek (2, 4, 6 and 8
week) prediction horizons (i.e. up to 2 months from the starting point of the predictions). Up
to about 5 months from the origin of the multi-step predictions (and two months from the
analysis time), over 15% of province-specific models made predictions that were on average
better than the seasonal baseline model. Some province-specific models showed substantially
worse predictions when compared to a seasonal baseline at these longer prediction horizons.
No single province feature (e.g. total average cases, strength of seasonal trends, population
size, season-to-season variation) was able to explain the substantial variations in performance,
highlighting the challenges of creating a unified modeling framework for a set of varied loca-
tions (see S1 Appendix).

Table 1. Summary of real-time prediction accuracy, by prediction horizon. These results are aggregated across all provinces. The R2 and 95% PI cov-
erage columns present the overall correlation coefficient and prediction interval coverage. The relative MAE columns show five quantiles of the distribution
of province-level relative MAEs comparing the real-time model at the given horizon to a seasonal baseline model at the given horizon:Q5 (the 5th percen-
tile),Q25 (25th percentile),Q50 (median),Q75 (75th percentile), andQ95 (the 95th percentile). The relative MAEs were calculated as the MAE from the real-
time predictions divided by the MAE from the seasonal average predictions, therefore values larger than 1 indicate that the real-time models showed more
absolute error on average than the seasonal models.

relative MAE (real-time vs. seasonal baseline)

horizon (h) R2 95% PI coverage Q5 Q25 Q50 (median) Q75 Q95

1 0.89 0.78 0.13 0.25 0.38 0.75 1.26

2 0.83 0.92 0.19 0.30 0.47 0.84 1.68

3 0.73 0.95 0.27 0.38 0.65 0.93 1.79

4 0.59 0.97 0.33 0.48 0.78 1.15 1.91

5 0.48 0.97 0.37 0.57 0.98 1.51 2.14

6 0.41 0.97 0.44 0.73 1.15 1.82 2.69

7 0.36 0.97 0.53 0.90 1.32 2.09 3.24

8 0.34 0.95 0.55 0.96 1.55 2.29 4.07

9 0.33 0.93 0.66 0.97 1.77 2.78 4.88

10 0.33 0.93 0.70 1.07 1.95 3.08 5.45

doi:10.1371/journal.pntd.0004761.t001
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Comparing real-time to full-data predictions
We compared real-time and full-data predictions that began at the same timepoint (Fig 2A vs.
2B). This analysis can help answer the question of howmuch the real-time predictions that
removed the most recent 3 months of data were impacted by the delays in case reporting. As
shown in Table 2, these analyses demonstrated that once we went back 3 months to begin the
nowcasting, more than 50% of the provinces had more accurate real-time forecasts than full-
data forecasts at all prediction horizons up to 1.5 months. This suggests that inaccuracies in the

Fig 3. Country-wide real-time predictions for incident dengue hemorrhagic fever.Red lines show predicted case counts, black bars show cases
reported by the end of the 2014 reporting period. The three figures show (top to bottom) one-, two-, and three-biweek ahead predictions. So, for example,
every dot on the top graph is a one-biweek ahead real-time prediction made from all available data at the time of analysis.

doi:10.1371/journal.pntd.0004761.g003
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Fig 4. Ten-step forward predictions made with available data at two time-points in 2014 (each time indicated by a vertical dashed line). Results for
nine provinces are shown, representing (from top to bottom) the best three provinces, the middle three, and the worst three performing provinces in terms of
relative mean absolute error when compared to a seasonal baseline model.

doi:10.1371/journal.pntd.0004761.g004
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real-time predictions once those recent 3 months are discarded are driven less by the reporting
delays than they are by model misspecification and other background noise in the data.

A second analysis compared real-time predictions with a horizon of 7 biweeks with full-
data predictions at 1 biweek (Fig 2A vs. 2C). This analysis can tell us how much better or

Fig 5. Mean absolute error (MAE) of our prediction model by province and step forward (in biweeks). Provinces are sorted by population, with the
most populous at the top of the figure.

doi:10.1371/journal.pntd.0004761.g005
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Fig 6. Relative mean absolute error (MAE) comparing our prediction model vs. a model that predicts a seasonal median, by province and step
forward (in biweeks). Results to the left of the dotted line signify more accurate predictions from our models when compared to the seasonal model, and
results to the right indicate less accurate predictions.

doi:10.1371/journal.pntd.0004761.g006
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worse our model would have done if we did not need to adjust for delays in case reporting by
dropping the past 3 months, i.e. if all of our data were available at the time of analysis. We
refer to this realignment of horizons as the absolute horizon, to suggest that a real-time pre-
diction that removes 6 biweeks of data and then projects 7 steps forward (Fig 2A) is predicting
the same timestep as a full-data prediction that does not remove any data and just projects 1
biweek forward (Fig 2C). Results from this analysis are shown in Table 3 for absolute horizons
of 1 through 4 biweeks. Overall, 74 of the 76 provinces (97%) showed better average perfor-
mance in the full-data forecasts at 1 step ahead than the real-time forecasts at 7 steps ahead
(i.e. had a relative MAE of greater than 1). In over 90% of the provinces at each absolute hori-
zon the full-data forecasts were on average closer to the true value than the real-time forecasts.
However across all the absolute horizons, for between 2 and 7 provinces the full-data predic-
tions had more error than the real-time predictions. Full-data predictions under-performed
real-time predictions in a small number of provinces, reflecting the challenges of making pre-
dictions in such a noisy system. A sample of predictions by province and analysis date are pro-
vided in S1 Appendix to illustrate this challenge.

Table 2. Comparison of province-level prediction accuracy between full-data and real-time predictions, by prediction horizon. These calculations
assume that both the full-data and real-time multi-step predictions began at the same time. The table shows the 5th percentile (Q5), 25th percentile (Q25),
median (Q50), 75th percentile (Q75), and 95th percentile (Q95) value of the relative MAE from each province at the given horizon. The relative MAEs were
calculated as the MAE from the real-time predictions divided by the MAE from the full-data predictions, i.e. values larger than 1 indicate that the real-time
models showed more absolute error on average than the full-data models.

horizon Relative MAE (real-time vs. baseline scores)

Q5 Q25 Q50 (median) Q75 Q95

1 0.78 0.90 1.00 1.06 1.20

2 0.74 0.87 0.95 1.02 1.17

3 0.77 0.90 0.97 1.03 1.11

4 0.82 0.95 1.02 1.08 1.19

5 0.83 0.96 1.04 1.13 1.29

6 0.87 1.02 1.08 1.21 1.45

7 0.88 1.01 1.13 1.28 1.71

8 0.88 1.00 1.15 1.35 1.97

9 0.90 1.01 1.16 1.38 2.22

10 0.88 1.01 1.19 1.42 2.45

doi:10.1371/journal.pntd.0004761.t002

Table 3. Comparison of province-level prediction accuracy between full-data and real-time predictions, by prediction horizon. These results were
computed comparing predictions as if the full data was available at the analysis time with the real-time predictions that build in a 6-biweek (approximately 3
month) buffer to account for delayed case data. The table shows the 5th percentile (Q5), 25th percentile (Q25), median (Q50), 75th percentile (Q75), and 95th
percentile (Q95) value of the relative MAE from each province at the given horizon. The relative MAEs were calculated as the MAE from the real-time predic-
tions divided by the MAE from the full-data predictions, i.e. values larger than 1 indicate that the real-time models showed more absolute error on average
than the full-data models.

Absolute horizon Relative MAE (real-time vs. baseline scores)

Q5 Q25 Q50 (median) Q75 Q95

1 1.37 1.77 2.81 5.55 11.26

2 1.01 1.61 2.89 4.88 12.23

3 0.98 1.68 2.94 4.25 9.55

4 0.92 1.83 2.86 4.14 8.74

doi:10.1371/journal.pntd.0004761.t003
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Discussion
We present the prediction results from our real-time prediction infrastructure established for
dengue hemorrhagic fever in Thailand. This infrastructure addresses several key practical fea-
tures of real-time predictions, including real-time data management, the impact of reporting
delays, and incorporating a disease transmission model that takes into account spatial and
temporal trends.

The infectious disease prediction literature has a rich and varied selection of prediction
algorithms but has not historically focused on the challenges of generating predictions in real-
time. Continued development and refinement of such prediction pipelines, such as that pre-
sented here, will enable existing prediction methods to reach their full potential in making an
impact on public health decision-making and planning.

The infrastructure that we have developed for integrating real-time data into predictions
for the Thai Ministry of Public Health (MOPH) is the result of a long-standing governmental/
academic partnership between the MOPH and U.S.-based researchers. This collaboration has
enabled the creation of a single, unified authoritative source of almost all governmental den-
gue surveillance ever collected in Thailand, dating back nearly 50 years [4]. Additionally, by
enabling the transmitting of surveillance data in near real-time (every two weeks from Octo-
ber 2013 and continuing through the writing of this manuscript in 2016), this effort has cre-
ated a valuable dataset that has catalogued the reporting delays in a live surveillance system.
The predictions described in this manuscript were made available to the MOPH typically
within two weeks of the data being delivered to the U.S. research team via a PDF report and a
private, interactive web application. The MOPH has disseminated these results to provincial,
regional, and national decision-makers for use in planning for and monitoring outbreaks.
Moving forward, to maximize the use of these predictions, the forecasts will be presented at
the monthly high-level meetings of MOPH authorities. Decision makers at the province or
health region level will use these forecasts to inform decisions about launching new interven-
tions. Designing studies to evaluate different methods of incorporating these forecasts into
real-time decision-making is an area of ongoing research for our team.

Formal data archiving protocols should be followed whenmaking real-time predictions.
Real-time predictions should be (1) generated prior to having the final data available and (2) for-
mally registered or time-stamped in an independent data repository. Taking these steps ensures
that no bias (intentional or not) enters the scientific process of evaluating the predictions.

While we are actively developing and validating other prediction models for this data, we
chose to report the results from the prediction model that we used during 2014 to provide
draft predictions to Thai public health officials. We intentionally did not perform extensive
post hocmodel validation or evaluation to minimize the risk of overfitting our model to this
particular dataset.

Our 2014 real-time predictions varied substantially by province in quality and public
health utility. In over half of the Thai provinces, our model out-performed a seasonal baseline
model predicting two months in advance. As the horizon moves forward, the seasonal base-
line model makes better predictions in more provinces: at a 5 month horizon, just over 15% of
provinces are predicted better by our model than the seasonal model.

Our ability to make effective predictions into the future in a majority of provinces is made
difficult by delayed case reporting. Our analyses show that if there were no reporting delays,
our model would make substantially more accurate predictions in nearly all of the Thai prov-
inces (Table 3). In ongoing work, we are focusing efforts on building models that can create
accurate “now-casts” of data, using other more readily available data to increase the accuracy
of forecasts, an approach that has been implemented by other forecasting efforts [21].
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While we have conducted extensive evaluation of the performance of our real-time predic-
tions in 2014, this may not represent the performance of the model in other years. There is
substantial year-to-year variation in annual province-level incidence in Thailand. The annual
total number of cases observed in 2014 was in the lower half of previously observed annual
incidence in 62 of 76 provinces. A complete characterization of our real-time model’s predic-
tive performance will require evaluation across multiple years of data that is arriving in real-
time, or with historical complete data with synthetically created reporting delays.

The simplicity of the statistical prediction models that we present in this manuscript are
both a strength and a weakness. This type of phenomenological time-series model tends to
show good predictive performance in the short term but have known deficiencies when mak-
ing long-term predictions. Additionally, when forecasting forward from auto-regressive mod-
els, this can lead to instabilities and explosive forecasts, as was observed in the predictions
from some of the provinces. Also contributing to the instability of our models in a prediction
context are that we do not incorporate uncertainty in and use a smoothed value of the yi, t − 1

offset term.
The model that we present here has been shown to perform well in contexts where there

are no reporting delays (results not shown). The auto-regressive model used in this work is
based on a standard statistical auto-regressive integrated moving average (ARIMA) models.
In fact, the reformulation of the ARIMA model in a disease transmission model context—
making explicit the connection between modeling auto-regressive counts and the reproduc-
tive number, as shown in eq 2—is an important link between commonly used models in dif-
ferent fields. Model improvements under consideration include veryifying the utility of
spatial features for all provinces, adding spatially smooth seasonal effects, choosing the cor-
related provinces serially through partial correlations, and incorporating overdispersion of
case counts.

The past decade of biomedical research has borne witness to rapid growth in digital surveil-
lance data. A pressing challenge for the professional and academic epidemiological and biosta-
tistical communities is to learn how to turn this deluge of data into evidence that informs
decision making about improving health and preventing illness at the individual and popula-
tion levels. Improving real-time forecasts of infectious disease outbreaks is an important tech-
nical achievement, however, continued research and collaboration in this area is needed to
develop a better understanding of how to communicate these results to public health decision
makers and integrate infectious disease predictions into public health practice. The collabora-
tive effort described by this manuscript provides a template for generating real-time predic-
tions in practice and describes specific results from this effort to integrate modern tools of
data science with public health decision making.

Supporting Information
S1 Appendix. Methodological details, supplemental figures and results.
(PDF)
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