Differences in Enzymatic Properties Allow SodCI but Not SodCII To Contribute to Virulence in *Salmonella enterica* Serovar Typhimurium Strain 14028

Radha Krishnakumar,¹ Maureen Craig,¹ James A. Imlay,¹ and James M. Slauch^{1,2*}

Department of Microbiology¹ and College of Medicine,² University of Illinois, Urbana, Illinois 61801

Received 19 March 2004/Accepted 11 May 2004

Salmonella enterica serovar Typhimurium produces two Cu/Zn cofactored periplasmic superoxide dismutases, SodCI and SodCII. While mutations in *sodCI* attenuate virulence eightfold, loss of SodCII does not confer a virulence phenotype, nor does it enhance the defect observed in a *sodCI* background. Despite this in vivo phenotype, SodCI and SodCII are expressed at similar levels in vitro during the stationary phase of growth. By exchanging the open reading frames of *sodCI* and *sodCII*, we found that SodCI contributes to virulence when placed under the control of the *sodCII* promoter. In contrast, SodCII does not contribute to virulence even when expressed from the *sodCI* promoter. Thus, the disparity in virulence phenotypes is due primarily to some physical difference between the two enzymes. In an attempt to identify the unique property of SodCI, we have tested factors that might affect enzyme activity inside a phagosome. We found no significant difference between SodCI and SodCII in their resistance to acid, resistance to hydrogen peroxide, or ability to obtain copper in a copper-limiting environment. Both enzymes are synthesized as apoenzymes in the absence of copper and can be fully remetallated when copper is added. The one striking difference that we noted is that, whereas SodCII is released normally by an osmotic shock, SodCI is "tethered" within the periplasm by an apparently noncovalent interaction. We propose that this novel property of SodCI is crucial to its ability to contribute to virulence in serovar Typhimurium.

Superoxide dismutases (SODs) use metal cofactors to dismutate superoxide (O_2^-) to hydrogen peroxide (H_2O_2) and molecular oxygen: $O_2^- + O_2^- + 2 H^+ \rightarrow H_2O_2 + O_2$. Superoxide is generated in bacterial cytoplasms as an adventitious by-product of normal metabolism (15, 16, 22). Because this O_2^- can damage cytoplasmic targets—notably, the [4Fe-4S] clusters of dehydratases (14–16)—virtually all bacteria synthesize manganese- or iron-cofactored cytoplasmic SODs to scavenge it. Mutants that lack these SODs exhibit growth defects due to enzyme inactivation, and they also exhibit high rates of oxidative DNA damage as an indirect consequence of the iron that is released from the degraded clusters (4, 24).

Many gram-negative bacteria also export copper-containing SODs to their periplasm (reference 1 and reference 26 and references therein). The presence of SODs in the periplasm of intracellular pathogens has led to the hypothesis that these enzymes protect bacteria against macrophage-derived super-oxide (1). Bacteria internalized in macrophage phagosomes are exposed to a variety of reactive oxygen and nitrogen species: notably O_2^- , formed by the phagocytic NADPH oxidase (Phox), and nitric oxide, formed by the inducible nitric oxide synthase (32). Periplasmic SODs could plausibly protect periplasmic targets in the captive bacteria from O_2^- . Further, because O_2^- could be protonated to HO_2^+ in the acidic interior of the phagolysosome, periplasmic SOD could prevent this neutral species from penetrating the membrane and attacking cytosolic targets (25).

The role of Cu/Zn SODs in virulence has been most closely examined in members of the genus Salmonella, intracellular pathogens that are associated with gastroenteritis, septicemia, and typhoid fever. Salmonellae survive and replicate in macrophages during the course of infection (12, 37), and evidence that phagocyte-produced superoxide is important in Salmonella infection is clear: mice and humans who are genetically defective in superoxide production are significantly more susceptible to infection (29, 42, 44). Many Salmonella strains contain two separate periplasmic SODs, termed SodCI and SodCII (10). SodCII is chromosomally encoded and is the ortholog of the Escherichia coli SodC. SodCI is encoded on the fully functional lambdoid prophage Gifsy-2, which integrates into the Salmonella chromosome at centisome 23.8 (13, 20, 21). The Gifsy-2 phage is preferentially found in the most virulent serovars of Salmonella (10, 21), and Gifsy-2 lysogens are significantly more virulent than nonlysogens (13, 20). We have shown that virulence is independent of Gifsy-2 phage per se, as deletion of regions encoding excision, immunity, and replication functions does not attenuate the bacterium. Thus, the two major virulence factors encoded by Gifsy-2, SodCI and GtgE, are expressed independently of phage induction or DNA replication (20).

All known Cu/Zn SODs are structurally related. However, SodCI and SodCII are clearly divergent. The mature SodCI protein shares only 60% identity with SodCII and 58% identity with *E. coli* SodC. SodCII and *E. coli* SodC are 85% identical. The crystal structures of both SodCI (34) and *E. coli* SodC (35) have been determined. Although the overall structures are quite similar, SodC and its close orthologs are monomeric, whereas most Cu/Zn SODs, including SodCI, are dimers.

Periplasmic SOD contributes to virulence in all Salmonella

^{*} Corresponding author. Mailing address: Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801. Phone: (217) 244-1956. Fax: (217) 244-6697. E-mail: slauch@uiuc.edu.

strains that have been tested, including *S. enterica* serovars Typhimurium, Dublin, and Choleraesuis. Farrant et al. (11) showed that *sodCI* mutants in all three backgrounds were recovered in lower numbers than the parental wild-type strains from the spleens and livers of mice 4 days after infection. DeGroote et al. (6) showed that the time to death was significantly longer in mice infected with an *S. enterica* serovar Typhimurium *sodCI* strain. This phenotype was not observed when Phox^{-/-} mice were infected, showing that the defect conferred by *sodCI* is dependent on the oxidative burst of phagocytes (6). Our laboratory has shown that *sodCI* mutants are 7- to 10-fold reduced in virulence as measured in an intraperitoneal competition assay (20, 21). These virulence defects are seen in both Nramp1⁺ and Nramp1⁻ mice (references 10, 38, and 41 and data from this study).

Although there is agreement that SodCs have a role in virulence, there is controversy regarding the relative contributions of SodCI and SodCII. Fang et al. (10) concluded that, in serovar Typhimurium strain 14028, both SodCI and SodCII contributed equally to virulence in Nramp⁺ mice, with the double mutant showing a more severe virulence defect than either single mutant. Sly et al. (39), using Fang's exact strains, came to the same conclusion by examining killing of sodCmutants by a vitamin D₃-induced human macrophage cell line. Sansone et al. (38), using Fang's sodCII allele moved into serovar Choleraesuis, also concluded that both SodCI and SodCII contribute to resistance to phagocytic superoxide, as shown by in vitro and in vivo assays. However, they observed no further defect when both genes were mutant. In contrast, Uzzau et al. (41) showed that, while loss of SodCI conferred a clear virulence defect, deletion of sodCII in serovar Typhimurium strain 14028 had no apparent effect.

In this study we confirm that, while *sodCI* mutations confer a virulence phenotype in serovar Typhimurium 14028, deletion of *sodCII* does not. Moreover, loss of SodCII does not further decrease virulence in a *sodCI* mutant background. By exchanging the open reading frames of SodCI and SodCII and studying the virulence phenotypes of these hybrid constructs, we have found that the *sodCII* promoter is capable of supporting virulence when it drives the expression of SodCI. The SodCI enzyme apparently possesses some unique property that allows only this enzyme and not SodCII to increase survival in the host.

MATERIALS AND METHODS

Strain and plasmid construction. Bacterial strains and plasmids are described in Table 1. Unless otherwise noted, all serovar Typhimurium strains created for this study are isogenic derivatives of strain 14028 (American Type Culture Collection). Strains were constructed by using P22 HT105/1 int-201-mediated transduction (28). Insertion-deletion mutations in the sod genes were obtained by λ Red-mediated recombination (5, 45) as described elsewhere (8). In all cases, the appropriate insertion of the antibiotic resistance marker was checked by P22 linkage to known markers and/or PCR analysis. The constructs resulting from this procedure were then transduced into a clean wild-type background (strain 14028) by using phage P22. The ΔsodCI-1::aph mutation was described by Fang et al. (10). This mutant allele was transduced into a clean background for mouse virulence assays. The sodCI gene was cloned into the vector pWKS30 (43) by using a natural BgIII site and an engineered BamHI site, giving pMC101. The sodCII gene was cloned into pWM73 (31) at the XhoI and SalI sites, giving pMC102. All plasmids were passaged through a restriction-minus modificationplus Salmonella strain (JS198 [8]) prior to transformation into derivatives of strain 14028.

Media and growth of strains. Cultures were maintained in Luria-Bertani (LB) medium (10 g of tryptone, 5 g of yeast extract, and 10 g of NaCl per liter) with 15 g of agar per liter for solid medium. LB was supplemented with 0.2% glucose where noted. The concentrations of the antibiotics used were as follows: ampicillin and kanamycin, 50 μ g/ml; chloramphenicol, 20 μ g/ml; and tetracycline, 25 μ g/ml.

Exchanging the open reading frames of sodCI and sodCII. The open reading frames of sodCI and sodCII were exchanged using the λ Red recombinase method (5, 8). Kanamycin resistance cassettes (from plasmid pKD4 [5]) were inserted immediately downstream of the sodCI (114 bp downstream of the termination codon) or sodCII (131 bp downstream of the termination codon) open reading frames. PCR primers were designed to amplify the region containing the sodCII open reading frame and the downstream kanamycin resistance marker. These primers had 5' extensions of homology to the sodCI locus, allowing precise replacement of the sodCI open reading frame with sodCII starting at the methionine codon. The recipient strain had an insertion-deletion of sodCII and harbored the pKD46 plasmid (5). The hybrid construct in which the sodCI promoter controls the expression of SodCII is described as P_{CI} :: sodCII⁺ Δ sodCI in the text. An analogous procedure was used to place SodCI under the control of the sodCII promoter and is described as $P_{\rm CII}{::}\ sodCI^+ \ \Delta sodCII$ in the text. In this case the primers used to amplify SodCI had 5' extensions of homology to the sodCII locus.

Preparation of cellular fractions. Whole-cell lysates were prepared in ice-cold 50 mM potassium phosphate buffer (pH 7.8) using the French pressure cell and clarified by centrifugation at $13,000 \times g$ for 10 min at 4°C. The supernatants were used to determine SodC activity. When indicated, the whole-cell lysates were centrifuged at $13,000 \times g$ to remove cell debris, and the supernatant was centrifuged at $141,370 \times g$ for 1 h at 4°C in a Beckman ultracentrifuge. The pellet obtained from this centrifugation step was considered the membrane fraction.

Periplasmic extracts were prepared by osmotic shock (23). Briefly, 25-ml overnight cultures were centrifuged, washed in ice-cold 50 mM potassium phosphate buffer (pH 7.4), and resuspended in 5 ml of room temperature plasmolysis buffer (50 mM Tris, 2.5 mM EDTA, 20% [wt/vol] sucrose; pH 7.4). After sitting at room temperature for 10 min, the cells were centrifuged, resuspended in 2.5 ml of ice-cold deionized water, and incubated on ice for 15 min. The cells were recovered by centrifugation, and the supernatant was considered the osmotic shockate.

Periplasmic extracts were also prepared by the lysozyme-EDTA method described by Battistoni et al. (3). Cells were centrifuged, resuspended in a 1/10 volume of an ice-cold solution containing 20% sucrose, 30 mM Tris-HCl (pH 8.0), 1 mM EDTA, and 1 mg of lysozyme/ml, and incubated on ice for 10 min. Cells were recovered by centrifugation, and the supernatant was used as the periplasmic fraction.

Enzyme assays. SOD activity was assayed by the xanthine oxidase-cytochrome c method (30). Glucose-6-phosphate dehydrogenase was assayed as described elsewhere (24). Protein content of the cell extracts was determined using the Coomassie dye-based assay by Pierce (Rockford, Ill.).

For determining SodCI and SodCII activity, SOD mutant strains were used in which both the cytosolic SODs and the complementary periplasmic SOD were deleted. The strains were grown as indicated, and whole-cell extracts were made using the French press. When osmotic shocking was used to release the periplasmic SODs in a background where cytosolic SODs were present, parallel assays were conducted with and without 2 mM potassium cyanide in order to differentiate the cyanide-sensitive Cu/Zn SOD activity from the Mn and Fe SOD activities, which are cyanide resistant. For determining the activity and stability of SodCI and SodCII at various pH, the cytochrome *c* reduction assay was performed in the buffer solutions maintained at the indicated pH.

For peroxide treatment, the extracts were treated with 10 mM hydrogen peroxide for the stated period of time. Since kat^+ strains were used to assay SOD activity, the residual H₂O₂ in the extracts was determined spectrophotometrically at 240 nm. Approximately 80% of the peroxide remained after 5 min of incubation. After incubation, 100 U of catalase was added per ml of extract to remove the peroxide, and the extracts were assayed for SodC activity. The SOD activity recovered from the peroxide-treated samples was compared to that of untreated samples.

To compare the ability of SodCI and SodCII to obtain copper in a copperdeficient environment, the high-affinity Cu(II) chelator N,N'-bis(2-aminoethyl)-1,3-propanediamine (TETA; Aldrich) was used to decrease the concentration of available copper in the growth medium. Strains overexpressing SodCI and SodCII were grown for 16 h in LB medium or LB with 0.01 μ M to 8 mM TETA. Whole-cell extracts were assayed for SodC activity. The extracts were then dialyzed against 10 mM Tris-HCl (pH 7.8) containing 15 μ M CuCl₂ to reactivate

House Wild type ATCC JS135 $zii*8104::Tn1/0dTc$ 40 JS450 $\Delta sodc1/1:aph zii*8104::Tn1/0dTc$ 40 JS451 $\Delta sodc1/1:aph zii*8104::Tn1/0dTc$ 4266593-4267101 JS451 $\Delta sodd102::Kn$ 1509923-1509486 JS453 $\Delta sodd101::Cm$ $\Delta sodB102::Kn$ 1509923-1509486 JS453 $\Delta sodC11-103::Cm$ 1516106-1516488 JS455 $\Delta sodC1-103::Cm$ 1516106-1516488 JS456 $\Delta sodC1-103::Cm$ 130586-1129969 JS456 $\Delta sodC1-105::Cm$ 1300586-1129969 JS457 $\Delta sodC1-105::Cm$ 1300586-1129969 JS458 $\Delta sodC1-105::Cm$ 1300586-1129969 JS461 $\Delta sodR102 \Delta sodR102$ IS488 JS450 $\Delta sodC1-107:sodC1^T-Km$ 1516050-1516703 JS464 $\Delta sodC1-107:sodC1^T-Km$ 1516050-1516703 JS465 $\Delta sodC1-107:sodC1^T-Km$ 1300586-1129969 JS466 $\Delta sodC1-107:sodC1^T-Km$ 1300586-1129969 JS465 $\Delta sodC1-107:sodC1^T-Km$ IS407 JS468	Strain Genotype ^a		Deletion or cloned endpoints	Source or reference ^b	
JS135 zi-8106::Th/l0dTc 40 JS450 AxodCL-1::aph zi-8104::Th/l0dTc 4266593-4267101 JS451 AxodH01::Cm 4266593-4267101 JS452 AxodH01::Cm AxodB102::Kn 1509923-1509486 JS453 AxodCl-103::Cm 1516106-1516488 JS455 AxodCl-103::Cm 1516106-1516488 JS456 AxodCl-1:aph AxodCl-104::Cm 1130586-1129969 JS458 AxodCl-104::Cm 1130586-1129969 JS458 AxodCl-104::Cm 1516050-1516703 JS459 AxodL011 AxodB102 AxodCl-105::Cm 1516050-1516703 JS460 AxodCl-106::eet 1515982-1516773 JS461 AxodCl-106::eet 1516050-1516703 JS463 AxodCl-109::xodCl ⁺ -Km 1516050-1516703 JS464 AxodCl-109::xodCl ⁺ -Km 1130586-1129969 JS465 AxodCl-109::xodCl ⁺ -Km 1130586-1129969 JS466 AxodCl-100::xodCl ⁺ -Km 1130586-1129969 JS465 AxodCl-107:xodCl ⁺ -Km 1130586-1129969 JS466 AxodCl-109::xodCl ⁺ -Km ScdCl-104::Cm JS466 AxodCl-109::xodCl ⁺ -Km AxodCl101 AxodB102 AxodCl-104::Cm JS466	14028	Wild type		ATCC ^c	
JS450 Avod/L-1::aph air-8104::Tn10dTc JS451 Avod/101::Cm 4266593-4267101 JS452 AvodB102::Kn 1509923-1509486 JS453 Avod/L1/103::Cm 1516106-1516488 JS454 Avod/L1/103::Cm 1516106-1516488 JS455 Avod/L1/103::Cm 1516106-1516488 JS457 Avod/L1/103::Cm 130586-1129969 JS458 Avod/L101 AvodB102 Avod/L1/03::Cm 130586-1129969 JS459 Avod/L101 AvodB102 Avod/L1/105::Cm 1516050-1516703 JS459 Avod/L101 AvodB102 Avod/L1/105::Cm 1516982-1516773 JS460 Avod/L101 AvodB102 Avod/L1/105::Cm 1516982-1516773 JS461 Avod/L101 AvodB102 1130586-1129969 JS453 Avod/L101 AvodB102 1130586-1129969 JS464 Avod/L101 AvodB102 1130586-1129969 JS465 Avod/L101 AvodB102 1130586-1129969 JS464 Avod/L101*xmd/L1*Km 1130586-1129969 JS465 Avod/L101*xmd/L1*Km 1130586-1129969 JS464 Avod/L101*xmd/L1*Km Avod/L104::Cm 130586-1129969 JS465 Avod/L101*xmd/L1*Km Avod/L104::Cm 130586-1129969	JS135	zii-8104::Tn10dTc		40	
JS451 AsodA101::Cm 4266593-4267101 JS452 AsodA101::Cm 1509923-1509486 JS453 AsodA101::Cm 1516106-1516488 JS454 AsodCII-103::Cm 1516106-1516488 JS455 AsodCII-103::Cm 1130586-1129969 JS456 AsodCI-105::Cm 1130586-1129969 JS457 AsodCI-105::Cm 1516050-1516703 JS458 AsodA101 AsodB102 AsodCI-105::Cm 1516050-1516703 JS460 AsodA101 AsodB102 AsodCI-105::Cm 1516050-1516703 JS461 AsodA101 AsodB102 AsodCI-105::Cm 1516050-1516703 JS462 AsodCI-107::sodCI ⁺ -Km 1515082-1516773 JS463 AsodCI-107::sodCI ⁺ -Km 1130586-1129969 JS465 AsodCI-107::sodCI ⁺ -Km 1130586-1129969 JS466 AsodCI-107::sodCI ⁺ -Km 1130586-1129969 JS465 AsodCI-107::sodCI ⁺ -Km 1130586-1129969 JS466 AsodCI-107::sodCI ⁺ -Km SodA101 AsodB102 AsodCI-104::Cm JS466 AsodCI-109::sodCI ⁺ -Km AsodA101 AsodB102 AsodCI-104::Cm JS466 JS470 2jg-8103::pir JS471 sodCI-1:sph JS471 sodCI-1:	JS450	Δ <i>sodCI-1</i> ::aph <i>zü-8104</i> ::Tn10dTc			
JS452 AsodH012::Kn 1509923-1509486 JS453 Asod/I01::Cm AsodB102::Kn 1516106-1516488 JS454 AsodCII-103::Cm 1516106-1516488 JS455 AsodCII-103::Cm 130586-1129969 JS457 AsodCII-103::Cm 1130586-1129969 JS457 AsodCII-105::Cm 1516050-1516703 JS459 AsodCII AsodB102 AsodCII-105::Cm 1516050-1516703 JS460 AsodA101 AsodB102 AsodCII-105::Cm 151982-1516773 JS461 AsodCII-107::sodCIT +Km 1516050-1516703 JS462 AsodCII-107::sodCIT +Km 1516050-1516703 JS464 AsodCII-107::sodCIT +Km AsodCI-104::Cm 1130586-1129969 JS465 AsodCII-107::sodCIT +Km AsodCI-104::Cm 1130586-1129969 JS466 AsodCII-107::sodCIT +Km AsodCII-104::Cm 1130586-1129969 JS465 AsodCII-107::sodCIT +Km AsodCII-104::Cm 130586-1129969 JS466 AsodCII-107::sodCIT +Km AsodCII-104::Cm 130586-1129969 JS467 AsodCII-107::sodCIT +Km AsodII01 AsodB102 AsodCI-104::Cm JS468 JS468 AsodCII-107::sodCIT +Km AsodII01 AsodB102 AsodCII-105::Cm JS469 JS470 rig-8103::pir	JS451	$\Delta sodA101::Cm$	4266593-4267101		
JS453 Asod/11::Cm AsodB102::Kn 1516106-1516488 JS454 Asod/CII-103::Cm 1516106-1516488 JS455 Asod/CII-103::Cm 130586-1129969 JS456 Asod/CII-105::Cm 1130586-1129969 JS457 Asod/OI AsodB102 Asod/CI-104::Cm 1516050-1516703 JS459 Asod/I01 AsodB102 Asod/CI-105::Cm 1516050-1516703 JS460 Asod/I01 AsodB102 Asod/CI-105::Cm 1516050-1516703 JS461 Asod/II AsodB102 1516050-1516703 JS463 Asod/II-106::tet 1515982-1516773 JS464 Asod/II-107::sod/CI ⁺ -Km 1516050-1516703 JS465 Asod/II-107::sod/CI ⁺ -Km 1516050-1516703 JS466 Asod/CI-109::sod/CI ⁺ -Km 1130586-1129969 JS465 Asod/CI-109::sod/CI ⁺ -Km 1130586-1129969 JS466 Asod/CI-109::sod/CI ⁺ -Km 1130586-1129969 JS465 Asod/CI-109::sod/CI ⁺ -Km Sod/CI-104::Cm JS466 Asod/CI-109::sod/CI ⁺ -Km Sod/CI-104::Cm JS468 Asod/CI-103::Cm JS469 Asod/CI-103::Cm JS470 zig-8103::pir JS471 sod/CI-1:sisph JS471<	JS452	$\Delta sodB102$::Kn	1509923-1509486		
JS454 AcodCII-103::Cm 1516106-1516488 JS455 AsodCII-103::Cm 130586-1129969 JS457 AsodCII-103::Cm 1510050-1516703 JS457 AsodCII-103::Cm 1510050-1516703 JS458 AsodCII-103::Cm 1510050-1516703 JS459 AsodCII-105::Cm 1510050-1516703 JS460 AsodA101 AsodB102 AsodCII-105::Cm 1515982-1516773 JS461 AsodCII-106::et 1515982-1516773 JS462 AsodCII-107::sodCIT+-Km 1516050-1516703 JS464 AsodCII-107::sodCIT+-Km 1510050-1516703 JS465 AsodCII-107::sodCIT+-Km 1510050-1516703 JS464 AsodCII-107::sodCIT+-Km 1130586-1129969 JS465 AsodCI-107::sodCIT+-Km 1130586-1129969 JS466 AsodCI-107::sodCIT+-Km SodCII-104::Cm JS467 AsodCII-107::sodCIT+-Km AsodA101 AsodB102 AsodCII-105::Cm JS469 JS468 AsodCII-107::sodCIT+-Km AsodA101 AsodB102 AsodCII-105::Cm JS470 J3490 JS470 zig-8103::pir JS471 sodCI-103::Cm JS471 AsodCI-103::Cm JS472 AsodCI-103::Cm	JS453	$\Delta sodA101::$ Cm $\Delta sodB102::$ Kn			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	JS454	$\Delta sodCII-103::Cm$	1516106-1516488		
JS456 ΔsodCl-1:aph ΔsodClI-103::Cm 1130586-1129969 JS457 ΔsodCl-104::Cm 1516050-1516703 JS458 ΔsodA101 ΔsodB102 ΔsodClI-104::Cm 1516050-1516703 JS459 ΔsodA101 ΔsodB102 ΔsodClI-105::Cm 1516050-1516703 JS460 ΔsodA101 ΔsodB102 ΔsodClI-105::Cm JS461 ΔsodA101 ΔsodB102 1515982-1516773 JS462 ΔsodClI-107::sodCl ⁺ -Km 1515982-1516773 JS464 ΔsodClI-107::sodCl ⁺ -Km 1516050-1516703 JS465 ΔsodClI-107::sodCl ⁺ -Km 1130586-1129969 JS466 ΔsodClI-107::sodCl ⁺ -Km 1130586-1129969 JS465 ΔsodClI-107::sodCl ⁺ -Km ΔsodA101 ΔsodB102 ΔsodCl-104::Cm JS468 JS466 ΔsodCl-109::sodCl ⁺ -Km ΔsodA101 ΔsodB102 ΔsodCl-105::Cm JS468 JS470 zjg-8103::pir JS471 sodCl-1:03::Cm JS471 sodCl-1::aph ΔsodA101::Cm ΔsodB102 zjg-8103::pir/pMC102 SL1344 strains JS473 JS474 ΔsodCl-1::aph ΔsodClI-103::Cm JS474 ΔsodCl-1::aph ΔsodClI-103::Cm LS474 ΔsodCl-1:03::Cm JS474 ΔsodCl-1:03::Cm JS474 ΔsodCl-1::aph ΔsodA101::Cm ΔsodB102 zjg-8103::pir/pMC102	JS455	Δ <i>sodCII-103</i> ::Cm <i>zü-8104</i> ::Tn10dTc			
JS457 ΔsodCl-104 ¹ :Cm 1130586-1129969 JS458 ΔsodCl1-105 ¹ :Cm 1516050-1516703 JS459 ΔsodA101 ΔsodB102 ΔsodCl1-105 ¹ :Cm JS460 JS460 ΔsodA101 ΔsodB102 LsodCl1-105 ¹ :Cm JS461 ΔsodCl1-106 ¹ :ett 1515982-1516773 JS463 ΔsodCl1-107 ¹ :sodCl ⁺ -Km 1516050-1516703 JS464 ΔsodCl1-107 ¹ :sodCl ⁺ -Km AsodCl1 ¹ :etm 1130586-1129969 JS465 ΔsodCl1-107 ¹ :sodCl ⁺ -Km AsodCl1 ¹ :etm 1130586-1129969 JS466 ΔsodCl1-107 ¹ :sodCl ⁺ -Km AsodCl1 ¹ :etm 1130586-1129969 JS465 ΔsodCl ⁻¹ 07 ¹ :sodCl ⁺ -Km AsodAl01 ΔsodB102 ΔsodCl-104 ¹ :Cm JS466 JS466 ΔsodCl ⁻¹ 07 ¹ :sodCl ⁺ -Km AsodAl01 ΔsodB102 ΔsodCl ⁻¹ 04 ¹ :Cm JS467 JS468 ΔsodCl ⁻¹ 07 ¹ :sodCl ⁺ -Km AsodAl01 ΔsodB102 ΔsodCl ⁻¹ 05 ¹ :Cm JS468 JS470 zjg-8103::pir JS467 JS471 sodCl ⁻¹ 1 ¹ :aph ΔsodAl01 ¹ :Cm ΔsodB102 zjg-8103 ¹ :pir/pMC102 St1344 strains JS472 ΔsodCl ⁻¹ 1 ¹ :aph ΔsodCl ⁻¹ 10 ³ ::Cm JS473 ΔsodCl ⁻¹ 1 ¹ :aph ΔsodCl ⁻¹ 10 ³ ::Cm JS474 ΔsodCl ⁻¹ 1 ¹ :aph ΔsodCl ⁻¹ 1 ³ :2 ¹ :aph ΔsodCl ⁻¹ 10 ³ ::Cm I1329 psodC2.3 AB1157 (F-thr-1 leuB6 proA2	JS456	$\Delta sodCI-1::aph \Delta sodCII-103::Cm$			
JS488 ΔsodCII-105::Cm 1516050-1516703 JS459 ΔsodA101 ΔsodB102 ΔsodCI-105::Cm JS460 JS461 ΔsodA101 ΔsodB102 JS461 JS461 ΔsodCII-107::sodCI ⁺ -Km 1515982-1516773 JS463 ΔsodCII-107::sodCI ⁺ -Km 1516050-1516703 JS464 ΔsodCII-107::sodCI ⁺ -Km 130586-1129969 JS465 ΔsodCI-107::sodCI ⁺ -Km ΔsodCI-104::Cm JS467 JS466 ΔsodCI-107::sodCI ⁺ -Km ΔsodAI01 ΔsodB102 ΔsodCI-104::Cm JS468 JS467 ΔsodAI101 ΔsodB102 ΔsodCI-104::Cm JS468 JS468 ΔsodCI-107::sodCI ⁺ -Km ΔsodAI01 ΔsodB102 ΔsodCI-104::Cm JS468 JS470 zjg-8103::pir JS471 sodCI-103::cm / pMC101 JS471 sodCI-103::Cm JS471 SodCI-103::Cm JS472 ΔsodCI-103::Cm JS474 ΔsodCI-103::Cm JS474 ΔsodCI-103::Cm JS474 ΔsodCI-103::Cm JS474 ΔsodCI-103::Cm JS474 ΔsodCI-103::Cm JS474 ΔsodCI-103::Cm JS474 ΔsodCI-103::Cm JS474 ΔsodCI-11::aph ΔsodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec 17 RK94 AB11	JS457	$\Delta sodCI-104$::Cm	1130586-1129969		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	JS458	$\Delta sodCII-105::Cm$	1516050-1516703		
JS460 AsodA101 AsodB102 AsodCII-105::Cm JS451 AsodA101 AsodB102 JS452 AsodCII-100::sodCI ⁺ -Km JS453 AsodCII-107::sodCI ⁺ -Km JS454 AsodCI-109::sodCI ⁺ -Km JS455 AsodCII-107::sodCI ⁺ -Km S4566 AsodCI-109::sodCI ⁺ -Km AsodCI104::Cm JS466 AsodCI-109::sodCI ⁺ -Km AsodCI104::Cm JS467 AsodCI-109::sodCI ⁺ -Km AsodA101 AsodB102 AsodCI-104::Cm JS468 AsodCI-109::sodCI ⁺ -Km AsodA101 AsodB102 AsodCI-105::Cm JS469 AsodA101 AsodB102 AsodB102 AsodCII-105::Cm JS470 zjg-8103::pir JS471 sodCI-1::aph AsodA101::Cm AsodB102 zjg-8103::pir/pMC102 SL1344 strains JS472 AsodCI-1::aph JS474 AsodCII-103::Cm JS474 AsodCII-1	JS459	$\Delta sodA101 \ \Delta sodB102 \ \Delta sodCI-104::Cm$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	JS460	$\Delta sodA101 \Delta sodB102 \Delta sodCII-105::Cm$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	JS461	$\Delta sodA101 \ \Delta sodB102$			
JS463 $\Delta sod CII-107::sod CI^+-Km$ 1516050-1516703 JS464 $\Delta sod CI-109::sod CII^+-Km$ 1130586-1129969 JS465 $\Delta sod CI-109::sod CII^+-Km$ 1130586-1129969 JS466 $\Delta sod CI-109::sod CII^+-Km$ 1130586-1129969 JS466 $\Delta sod CI-109::sod CII^+-Km$ $Asod CI-109::sod CII^+-Km$ $Asod CI-109::sod CII^+-Km$ JS468 $\Delta sod CI-109::sod CII^+-Km$ $Asod A101 \Delta sod B102 \Delta sod CI-105::Cm$ JS469 JS469 $\Delta sod CI-109::sod CII^+-Km$ $\Delta sod A101 \Delta sod B102 \Delta sod CII-105::Cm$ JS470 JS471 $sod CI-1::aph$ JS471 $sod CI-1::aph$ JS472 $\Delta sod CI-103::Cm$ JS474 $\Delta sod CI-1:aph$ JS474 $\Delta sod CI-1:aph$ $\Delta sod CI-103::Cm$ JS474 JJ132 psodC2.3 AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-14 xyl-15 mtl-1 txx-33 plus (sodA::MudPR13)25 (sodB-Km)1-\Delta2/psodC2.3 17 RK94 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-\Delta2 sodC::Spec 17 Plasmids pWC101 pWKS30 sodCI 1129594–1130988 pMC101 pWKS30 sodCI 1129594–1130988 1129594–1130988	JS462	$\Delta sodCII-106::tet$	1515982-1516773		
JS464 $\Delta sodCI-109::sodCII^+ \cdot Km$ 1130586-1129969 JS465 $\Delta sodCI-109::sodCI^+ \cdot Km \Delta sodCI-104::Cm$ 1130586-1129969 JS466 $\Delta sodCI-109::sodCI^+ \cdot Km \Delta sodCII::tet$ JS467 JS468 $\Delta sodCI-109::sodCI^+ \cdot Km \Delta sodA101 \Delta sodB102 \Delta sodCI-104::Cm$ JS468 JS469 $\Delta sodCI-109::sodCI^+ \cdot Km \Delta sodA101 \Delta sodB102 \Delta sodCI-105::Cm$ JS469 JS470 zig-8103::pir JS477 JS471 $sodCI-1::aph \Delta sodA101::Cm \Delta sodB102 zig-8103::pir/pMC102$ SL1344 strains JS472 $\Delta sodCI-1:aph \Delta sodCII-103::Cm$ JS474 JS474 $\Delta sodCI-1:aph \Delta sodCII-103::Cm$ JS474 JS474 $\Delta sodCI-103::Cm$ JS474 JS474 $\Delta sodCI-103::Cm$ JS457 JS474 $\Delta sodCI-103::Cm$ JS457 JS474 $\Delta sodCI-103::Cm$ JS474 JS474 $\Delta sodCI-1:aph \Delta sodCII-103::Cm$ Z4 Xyl-15 mtl-1 tsx-33) plus (sodA::MudPR13)25 (sodB-Km)1-\Delta2/psodC2.3 17 AS391 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-\Delta2 sodC::Spec 17 RK94 AB1157 plus (sodA1::MudPR13)25 (sodB-Km)1-\Delta2 sodC::Spec/pMC101 1129594-1130988 PMC101 pWKS30 sodCI	JS463	$\Delta sodCII$ -107::sodCI ⁺ -Km	1516050-1516703		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	JS464	$\Delta sodCI$ -109::sodCII ⁺ -Km	1130586-1129969		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	JS465	$\Delta sodCII-107::sodCI^+$ -Km $\Delta sodCI-104::$ Cm			
JS467 $\Delta sodCII-107::sodCI^+$ -Km $\Delta sodA101 \Delta sodB102 \Delta sodCI-104::Cm$ JS468 $\Delta sodCI-109::sodCII^+$ -Km $\Delta sodA101 \Delta sodB102 \Delta sodCII-105::Cm$ JS469 $\Delta sodA101 \Delta sodB102 \Delta sodCII-105::Cm / pMC101$ JS470zjg-8103::pirJS471 $sodCI-1::aph \Delta sodA101::Cm \Delta sodB102 zjg-8103::pir/pMC102$ SL1344 strainsJS472JS473 $\Delta sodCI-1::aph \Delta sodCII-103::Cm$ JS474 $\Delta sodCI-103::Cm$ JS475 $\Delta sodCI-1::aph \Delta sodCII-103::Cm$ E. coli strainsJ1132 psodC2.3AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-14 $xyl-15$ mtl-1 tsx-33 plus (sodA::MudPR13)25 (sodB-Km)1-\Delta2 psodC2.3AS391AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-\Delta2 sodC::SpecRK94AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-\Delta2 sodC::Spec/pMC101PlasmidspMC101pWKS30 sodCI1129594-1130988pMC101pWKS30 sodCIpWKS30 sodCI1129594-1130988	JS466	$\Delta sodCI$ -109::sodCII ⁺ -Km $\Delta sodCII$::tet			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	JS467	AsodCII-107::sodCI ⁺ -Km AsodA101 AsodB102 AsodCI-104::Cm			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IS468	$\Delta sodCI-109$ sodCII ⁺ -Km $\Delta sodA101 \Delta sodB102 \Delta sodCII-105$ Cm			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IS469	$\Delta sod A101 \Delta sod B102 \Delta sod CII-105 Cm / nMC101$			
JS471 $sodCI-I$::aph $\Delta sodA10I$::Cm $\Delta sodB102$ zjg-8103::pir/pMC102 SL1344 strains JS472 $\Delta sodCI-I$::aph JS473 $\Delta sodCI-103$::Cm JS474 $\Delta sodCI-1::aph \Delta sodCII-103$::Cm E. coli strains JI132 psodC2.3 AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-14 vyl-15 mtl-1 tsx-33) plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2/psodC2.3 24 AS391 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2 sodC::Spec 17 RK94 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2 sodC::Spec/pMC101 1129594-1130988 Plasmids pMC101 pWKS30 sodCI 1129594-1130988 pMC101 pWK30 sodCI 1129594-1130988 1515730.1516874	IS470	zig-8103···nir			
SL1344 strains JS472 ΔsodCI-1::aph JS473 ΔsodCII-103::Cm JS474 ΔsodCI-1::aph ΔsodCII-103::Cm E. coli strains J1132 psodC2.3 JI132 psodC2.3 AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-14 24 xyl-15 mtl-1 tsx-33) plus (sodA::MudPR13)25 (sodB-Km)1-Δ2/psodC2.3 24 AS391 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec 17 RK94 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec/pMC101 1129594-1130988 pMC101 pWKS30 sodCI 1129594-1130988 pMC102 pWM73 sodCII 155730 1516874	IS471	sodCI-1anh AsodA101Cm AsodB102 zig-8103nir/nMC102			
SL1344 strains JS472 $\Delta sodCI$ -1::aph JS473 $\Delta sodCI$ -103::Cm JS474 $\Delta sodCI$ -1::aph $\Delta sodCI$ -103::Cm E. coli strains J1132 psodC2.3 JI132 psodC2.3 AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-14 24 xyl-15 mtl-1 tsx-33) plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2/psodC2.3 24 AS391 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2 sodC::Spec 17 RK94 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2 sodC::Spec/pMC101 1129594-1130988 pMC101 pWKS30 sodCI 1129594-1130988 pMC102 pWM73 sodCI 1515730.1516874	30471	souer 1uph asournorem asournoz zjg 0105ph/ph/0102			
JS472 $\Delta sodCI-1::aph$ JS473 $\Delta sodCII-103::Cm$ JS474 $\Delta sodCI-1::aph \Delta sodCII-103::Cm$ E. coli strainsJI132 psodC2.3JI132 psodC2.3AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-1424xyl-15 mtl-1 txx-33) plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2/psodC2.324AS391AB1157 plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2 sodC::Spec17RK94AB1157 plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2 sodC::Spec/pMC1011129594-1130988pMC101pWKS30 sodCI1129594-1130988pMC102pWM73 sodCII1515730.1516874	SL1344 strains				
JS473 ΔsodCII-103::Cm JS474 ΔsodCI-1::aph ΔsodCII-103::Cm E. coli strains JI132 psodC2.3 JI132 psodC2.3 AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-14 24 xyl-15 mtl-1 txx-33) plus (sodA::MudPR13)25 (sodB-Km)1-Δ2/psodC2.3 17 AS391 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec 17 RK94 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec/pMC101 1129594-1130988 Plasmids	JS472	$\Delta sodCI-1$::aph			
JS474 ΔsodCl-1::aph ΔsodClI-103::Cm E. coli strains JI132 psodC2.3 JI132 psodC2.3 AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-14 24 xyl-15 mtl-1 txx-33) plus (sodA::MudPR13)25 (sodB-Km)1-Δ2/psodC2.3 17 AS391 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec 17 RK94 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec/pMC101 1129594-1130988 Plasmids pMC101 pWKS30 sodCI 1129594-1130988 pMC102 pWM73 sodCII 1515730.1516874	JS473	$\Delta sodCII-103$::Cm			
E. coli strains JI132 psodC2.3AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-14 xyl-15 mtl-1 tsx-33) plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2/psodC2.324 AS391 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1- Δ 2 sodC::Spec RK9417Plasmids pMC101pWKS30 sodC1 xyl-712 sodC11129594–1130988 1515730 1516874	JS474	$\Delta sodCI-1$::aph $\Delta sodCII-103$::Cm			
JI132 psodC2.3 AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-14 xyl-15 mtl-1 tsx-33) plus (sodA::MudPR13)25 (sodB-Km)1-Δ2/psodC2.3 24 AS391 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 psodC2.3 17 RK94 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec 17 Plasmids 1129594-1130988 1515730.1516874	E. coli strains				
xyl-15 mtl-1 fix-35) plus (sodA::MudPR13)25 (sodB-Km)1-Δ2/psodC2.5 AS391 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec 17 RK94 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec/pMC101 17 Plasmids pMC101 pWKS30 sodCI 1129594–1130988 pMC102 pWM73 sodCII 1515730 1516874	JI132 psodC2.3	AB1157 (F-thr-1 leuB6 proA2 his-4 thi-1 argE2 lacY1 galK2 rspL supE44 ara-14		24	
AS391 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec 17 RK94 AB1157 plus (sodA::MudPR13)25 (sodB-Km)1-Δ2 sodC::Spec/pMC101 17 Plasmids pMC101 pWKS30 sodCI 1129594–1130988 pMC102 pWM73 sodCII 1515730 1516874	4.0201	xy_{l-15} mu-1 lsx-55) plus (souA::MudPK15)25 (souB-Km)1- $\Delta 2$ /psodC2.5		17	
RK94 AB1157 plus (soaA:::MudPR15)25 (soaB-Km)1-Δ2 soaC::Spec/pMC101 Plasmids pMC101 pWKS30 sodCI 1129594–1130988 pMC102 pWM73 sodCII 1515730 1516874	A5391 DV04	AB1157 plus (soaA::MudPR15)25 (soaB-Km)1- $\Delta 2$ soaC::Spec A D1157 plus (soaA::MudPD12)25 (so dB Km)1- $\Delta 2$ so dC::Spec		17	
Plasmids 1129594–1130988 pMC101 pWKS30 sodCI 1515730 pMC102 pWM73 sodCII 1515730	KK94	AB1157 plus (soaA::MudPK15)25 (soaB-Km)1- $\Delta 2$ soac::spec/pMC101			
pMC101 pWKS30 sodCI 1129594–1130988	Plasmids				
pWC102 pWM73 sodCII 1515720 1516974	pMC101	pWKS30 sodCI	1129594-1130988		
pricto2 priviti/5.500CH 1515/50-15106/4	pMC102	pWM73 sodCII	1515730-1516874		

^a Unless otherwise noted, all Salmonella strains are isogenic derivatives of serovar Typhimurium strain 14028.

^b This study, unless specified otherwise.

^c ATCC, American Type Culture Collection.

any apoenzymes that were synthesized in the absence of copper and assayed again.

Mouse virulence assays. Strains were grown overnight (16 h) in LB medium, washed, and diluted in sterile 0.15 M NaCl. For competition assays, female BALB/c or C3H/HeN mice (Harlan Sprague Dawley, Inc.) were inoculated intraperitoneally (i.p.) in groups of 4 to 10 with an equal mixture of mutant and wild-type bacteria (approximately 500 total bacteria). Inocula were plated on LB and then replica plated onto the appropriate selective media to determine the total number and percentage of mutant and wild type bacteria used for the infection. Mice were sacrificed after 4 to 5 days of infection, and their spleens were removed. The spleens were homogenized, diluted, plated on LB medium, and then replica plated onto the selective medium to determine the percent mutant bacteria recovered. The competitive index (CI) was calculated as follows: (percent strain A recovered/percent strain B recovered)/(percent strain A inoculated/percent strain B inoculated). The CI of each set of assays was analyzed statistically using Student's t test. In each case, the strains were rebuilt by P22 transduction, and the mouse assay was repeated to ensure that the virulence phenotype was the result of the designated mutation. For time-to-death assays, six C3H/HeN mice per group were injected i.p. with 2,000 bacteria on day zero, and mortality was assessed daily. Mice were humanely euthanized upon becoming moribund.

RESULTS

SodCI, but not SodCII, contributes to virulence in serovar Typhimurium. Our group's previous studies (21) have suggested that only SodCI has a role in pathogenesis. Yet others have reported that SodCII mutants of Salmonella are attenuated (10, 38, 39). To distinguish between these two possibilities, serovar Typhimurium 14028 strains mutant in sodCI, sodCII, or both genes were tested in i.p. competition assays versus the isogenic wild-type strain. The results (Table 2) showed that the *sodCI* mutant was eightfold attenuated, as previously observed (20, 21). SodCII, however, did not significantly contribute to bacterial survival in the animal. Indeed, even in the absence of SodCI, there was no further effect of knocking out SodCII. Note that the sodCII mutation used in these studies is a complete deletion, which has been confirmed using genetic, molecular, and biochemical methods. We reconstructed these strains and repeated the assays many times and

TABLE 2. sodCI and sodCII competition assays in BALB/c mice

Strain A ^a	Strain B	Median CI ^b	No. of mice ^c	p^d
Background strain 14028				
sodCI	WT	0.13	16	< 0.0005
sodCII	WT	0.74	6	NS
sodCI sodCII	WT	0.14	4	0.011
sodCI sodCII	sodCI	0.97	10	NS
Background strain SL1344				
sodCI	WT	0.031	4	0.0017
sodCII	WT	0.71	10	NS
sodCI sodCII	sodCI	2.1	10	NS

^a Strains used: JS135, JS450, JS455, JS456, SL1344, JS472, JS473, and JS474.

^b CI = [output (strain A/strain B)/ inoculum (strain A/strain B)].

^c Competition assays were performed i.p. in BALB/c mice.

 d Student's *t* test was used to compare the output and the inoculum. NS, not significant.

always obtained the same results. We also performed the same experiments in the serovar Typhimurium SL1344 background and reached the same conclusion (Table 2). Overall, our results are virtually identical to those obtained by Uzzau et al. (41).

The competition assay allows us to directly compare levels of attenuation in different host backgrounds. In C3H/HeN (Nramp1⁺) mice, the *sodCI* strain was 12-fold attenuated and there was no significant effect from loss of *sodCII*, in either the wild-type or *sodCI* backgrounds (data not shown). To further confirm the relative contribution of the two enzymes, we tested our strains in time-to-death assays in C3H/HeN mice (the assay used in reference 10). These results indicated no difference between the wild type and *sodCII* mutant, whereas the *sodCI* mutant was significantly attenuated (Fig. 1). Thus, our results are not dependent on the Nramp status of the mice or the virulence assay.

SodCI and SodCII are produced in laboratory culture. We sought to identify the feature of SodCI that allowed it but not SodCII to contribute to virulence. It seemed possible that SodCI was expressed at a higher level than SodCII and/or that it was produced during a growth phase when SodCII was not. We determined SodCI and SodCII activity in whole-cell ex-

FIG. 1. Relative virulence of *sodCI* and *sodCII* single mutants. Six C3H/HeN mice per group were injected i.p. with 2,000 bacteria on day zero, and mortality was assessed daily. Mice were euthanized upon becoming moribund. Strains used were JS455 and JS450.

FIG. 2. Specific activities of SodCI and SodCII as a function of growth phase. $\Delta sodA101 \Delta sodB102 \Delta sodCI-104$::Cm and $\Delta sodA101 \Delta sodB102 \Delta sodCI-105$::Cm strains were grown overnight for 16 h in LB or LB supplemented with 0.2% glucose, diluted to an optical density at 600 nm (OD₆₀₀) of 0.01, and subcultured until an OD of 0.2 was reached. These log-phase cells were then diluted back to 0.01 in LB (A) or LB plus glucose (B), and aliquots were removed at the specified time to assay SodC activity. The growth curves of both strains were indistinguishable. A representative growth curve is shown in both panels.

tracts. In order to avoid interference in the assay, we used a genetic background where the cytosolic MnSOD and FeSOD, and the complementary periplasmic SOD, were all absent. Neither SodCI nor SodCII was detectable when cells were harvested in exponential phase. In contrast, SodCI and SodCII were induced 5- and 13-fold as cells reached stationary phase in LB (Fig. 2A), and 8- and 16-fold in LB supplemented with

Strain A ^a	Strain B	Median CI ^b	No. of mice ^c	P^d
P_{CII} ::sodCI ⁺ Δ sodCII Δ sodCI	WT	0.76	6	NS
P_{CII} ::sodCI ⁺ Δ sodCII Δ sodCI	$\Delta sodCII$	0.83	4	NS
P_{CII} ::sodCI ⁺ Δ sodCII Δ sodCI	$\Delta sodCI \Delta sodCII$	2.6	5	0.028
P_{CI} ::sodCII ⁺ Δ sodCI Δ sodCII	WT	0.10	4	0.002
P_{CI} ::sodCII ⁺ Δ sodCI Δ sodCII	$\Delta sodCI \Delta sodCII$	0.26	5	NS
P_{CI}^{CI} ::sodCII ⁺ Δ sodCI Δ sodCII	$\Delta sodCI$	0.25	5	0.017

TABLE 3. Competition assay of hybrid constructs with the wild type

^a Strains used: JS465, JS466, JS455, JS450, and JS456

^b CI = [output (strain A/strain B)/ inoculum (strain A/strain B)].

^c Competition assays were performed i.p. in BALB/c mice.

^d Student's t test was used to compare the output and the inoculum. NS, not significant.

0.2% glucose (Fig. 2B). These data are consistent with published results (10, 40). SodCII was produced at slightly higher levels (twofold over SodCI) in stationary phase, and the specific activities of both enzymes were higher when cultures were harvested from LB supplemented with glucose. Loss of either enzyme does not apparently affect the activity of the other: the specific SodC activity was simply additive when both enzymes were present (data not shown). Thus, neither the magnitude nor pattern of SodCI synthesis in vitro explained its phenotypic dominance over SodCII in vivo.

SodCI contributes to virulence even when regulated by the *sodCII* **promoter.** Simplistically, there are two models to explain the differential roles of SodCI and SodCII in the infection process. First, the two enzymes could be differentially regulated such that only SodCI is produced at the time that resistance to extracytoplasmic superoxide is critical. Second, the two proteins could have different physical properties such that SodCII is incapable of acting to protect the cell. The SodCII enzyme could be enzymatically or structurally unstable, or specific interaction between SodCI and some other component in the periplasm could be critical for its stability or role in protection. Note that these models are not mutually exclusive.

To test the above hypotheses, we exchanged the open reading frames of *sodCI* and *sodCII* and compared the relative contributions of the two proteins in vitro and in vivo. If the in vivo phenotypes were simply dependent on differential transcriptional regulation of the two proteins, then SodCII would be functional when under the control of the *sodCI* promoter. If SodCII cannot functionally replace SodCI, this would suggest that there is some difference between the two proteins rather than or in addition to differences in expression. In this case, SodCI should be fully functional at the *sodCII* locus, confirming that expression of SodCII is sufficient but that the enzyme cannot fulfill the function of SodCI.

The appropriate strains were constructed using the λ Red recombinase method (5). We inserted kanamycin resistance cassettes downstream of the *sodCI* and *sodCII* open reading frames such that expression of the genes was unaffected. We confirmed that the insertion downstream of *sodCI* did not affect virulence and that neither insertion affected in vitro enzymatic activity (data not shown). To swap the open reading frames, PCR primers were designed to amplify the *sodCII* open reading frame with the downstream kanamycin resistance marker. This PCR product was integrated at the SodCI locus, precisely replacing the open reading frame beginning at the methionine start codon. Thus, SodCII was produced under the

normal transcriptional and translational control of *sodCI*. An analogous procedure was used to replace the SodCII open reading frame precisely with SodCI. The normal *sodCII* or *sodCI* allele was deleted. Thus, the resulting strains each produced a single SodC enzyme. There was no significant difference in the amount of enzyme produced from the hybrid constructs in comparison to that from the wild-type genes. At 16 h, the specific activity obtained from P_{CII} :: *sodCI*⁺ (JS 467) was 12.2 ± 5.3 U/mg and from P_{CI} :: *sodCI*⁺ (JS 468) it was 7.1 ± 1.5 U/mg. These results suggest that the two enzymes are not only expressed equally in vitro but also have similar turnover numbers.

The P_{CII} :: $sodCI^+$ $\Delta sodCII$ $\Delta sodCI$ strain was competed against the wild type and the sodCII mutant in separate competition assays. In both cases, the hybrid strain was essentially wild type in virulence (Table 3). When the P_{CII} :: $sodCI^+$ $\Delta sodCII$ $\Delta sodCI$ construct was competed against the $\Delta sodCI$ $\Delta sodCII$ double mutant, the hybrid strain out-competed the double mutant by 2.6-fold. This relative level of attenuation of the sodCI double mutant was slightly less than it would be when competed against the wild type (eightfold) (Table 2). Nevertheless, this result confirms that the sodCII promoter is capable of supporting virulence, but only when it drives the synthesis of SodCI rather than SodCII. Wild-type regulation of SodCI in the host is not essential for virulence.

SodCII regulated by the sodCI promoter cannot replace SodCI function. The data above suggest that, although SodCII is normally produced during infection, it does not contribute to virulence. To confirm this conclusion, the hybrid strain P_{CI}:: $sodCII^+ \Delta sodCII \Delta sodCI$ was competed against the wild-type strain. This construct should be attenuated in comparison to the wild type if the difference lay in the identity of the protein rather than the promoter. Indeed, the P_{CI} :: sodCII⁺ Δ sodCII $\Delta sodCI$ strain was 10-fold attenuated in virulence compared to the wild type (Table 3). This level of attenuation is apparently greater than that observed in a sodCI sodCII double mutant. Indeed, when the hybrid strain was competed against a *sodCI* mutant and a sodCI sodCII double mutant, it was fourfold attenuated. Thus, expressing SodCII under sodCI control somehow attenuates the bacterium. Note also that these data are independent confirmation that SodCII does not contribute to survival in the animal.

We conclude that differences in enzyme structure or function are primarily responsible for the ability of SodCI, but not SodCII, to contribute to virulence. SodCII produced by the *sodCI* promoter attenuates virulence, perhaps as a result of

FIG. 3. Activities of SodCI and SodCII at various pH. SodC activity was assayed as described elsewhere (30) except at the indicated pH and in the designated buffer. Activity at pH 7.8 was considered 100% activity. KPi, phosphate buffer; MES, 4-morpholineethanesulfonic acid buffer; Na Ac, sodium acetate buffer. Strains used were JS471 and JS469.

overproduction. This suggests that expression from the *sodCI* promoter in the animal may be higher than expression from *sodCII*, although these differences are not essential for the contribution of SodCI to virulence. This conclusion warrants further confirmation through studies of expression patterns of the two enzymes in vivo. Thus, differences in expression could also contribute to the differential roles of SodCI and SodCII during infection.

SodCI and SodCII are enzymatically similar in vitro. SodCII is apparently made but is nonfunctional during infection. We considered the possibility that SodCI is better suited than SodCII to function in a macrophage. To test this hypothesis, the activities of SodCI and SodCII were assayed under a variety of conditions that could prevail inside a phagosome. For example, the Salmonella-containing vacuole ranges between pH 4.0 and 5.0 (36), and so we tested the sensitivity of the two enzymes to acid. We found no significant difference (Fig. 3). Compared to the activity at pH 7.8, which was considered 100%, both enzymes retained only about 20% activity at pH 4.8, the lowest pH at which the xanthine oxidase system could generate O2⁻. Both SodCI and SodCII retained 100% activity when the extracts containing the enzymes were incubated at pH 4.6 for 2 hours and then assayed at pH 7.8 (data not shown). Thus, SodCII is not detectably more sensitive than SodCI to acid pH in vitro.

Spontaneous or enzymatic dismutation of superoxide produces H_2O_2 , and the eukaryotic Cu/Zn SODs are inactivated by peroxide (2, 27). Therefore, we tested the influence of peroxide on the activity of both SodCI and SodCII. Both enzymes were equally resistant to peroxide treatment over a period of 20 min (Fig. 4).

Another potential difference between the enzymes could be their affinity for copper. It is not clear how these periplasmic enzymes acquire copper, since there are no known copper chaperones for prokaryotic Cu/Zn SODs (17). The simplest model is that the apo-SODs abstract copper from adventitious copper chelates that passively diffuse into the periplasm. The ability to obtain and retain copper could be important, particularly in a copper-deficient environment. To determine if SodCI was able to obtain copper more efficiently than SodCII,

FIG. 4. Sensitivities of SodCI and SodCII to hydrogen peroxide. The activity recovered from the peroxide-treated samples was compared to that of untreated samples to determine the residual activity after treatment. Activity of the untreated sample at pH 7.8 was considered 100%. Strains used were JS471 and JS469.

the amount of SodCI and SodCII activity was measured from cells grown in the presence of the high-affinity Cu(II) chelator TETA. As shown in Fig. 5, the chelator completely inactivated SOD activity when added to cultures at $\sim 100 \ \mu$ M. (Bacterial growth inhibition was not observed until the TETA concentration reached 6 mM). However, there was no significant difference between the amount of enzymatically active SodCI and SodCII from stationary-phase cells that were grown in various concentrations of the chelator (Fig. 5). Both SodCI and SodCII proteins were synthesized and maintained in the inactive form in TETA-treated cells, and the amount of total enzvme present in cells grown in 8 mM TETA was almost identical to the amount found in the control cells without TETA (Fig. 5). The enzymes also regained full activity when copper was added back by dialysis to TETA-treated whole cells (data not shown). These data suggest that the two enzymes do not differ in copper affinity.

FIG. 5. Specific activities of SodCI and SodCII from cells grown in various concentrations of TETA. Strains JS471 and JS469 were cultured for 16 h in either LB without chelator (first point) or LB containing the indicated concentration of chelator. The filled symbols specify the activity recovered from the indicated samples after extracts were dialyzed against copper-containing buffer.

Enzyme ^a	Ster:-b	Sp act ^c (U/ml/OD ₆₀₀) (% of total) ^d			
	Strain	French press	Lysozyme treatment	Osmotic shock	
SodCI	Serovar Typhimurium	0.4	ND	0.02 (5)	
SodCII	Serovar Typhimurium	0.7	ND	0.37 (53)	
SodCI	Serovar Typhimurium psodCI	3.35 ± 0.21	ND	0.12 ± 0.04 (1.2)	
SodCII	Serovar Typhimurium psodCII	5.5 ± 0.77	ND	$4.55 \pm 0.77(75)$	
SodCI	E. coli psodCI	4.7	1.5 (32)	0.01 (0.2)	
SodCec	E. coli psodCec	2.6	1.1(42)	3.7 (142)	
GPDH	E. coli psodCI	1.9	0.02(1)	ND	

TABLE 4. Release of SodCI, SodCII, and SodC by various methods

^a SodCec E. coli SodC; GDPH, glucose-6-phosphate dehydrogenase.

^b Strains used: JS460, JS459, JS471, JS469, RK94, and J1132 psodC2.3. Each strain produces a single SOD. Background is either servora Typhimurium or *E. coli*. ^c KCN-inhibitable SOD activity was assayed as described previously (23, 30). Data are from representative but repeatable experiments. n = 2 where means \pm standard deviations are given. ND, not determined.

^d Amount of enzyme released by French press was considered 100%.

SodCI is not released by osmotic shock. As shown above, SodCI and SodCII behave similarly under a variety of conditions. However, we discovered a fundamental difference in the two enzymes: only SodCII is released by standard osmotic shock. As shown in Table 4, only 5% of SodCI activity was released into osmotic shockates. This was in striking contrast to isogenic strains producing SodCII, where >50% of the enzyme was released. This phenomenon was observed even when the enzymes were 5- to 10-fold overproduced, and it was true in both Salmonella and E. coli. In both backgrounds, <1.5% of the plasmid-encoded SodCI activity was released by osmotic shock compared to 75 to 100% of either SodCII or E. coli SodC (Table 4). Thus, whatever factor keeps SodCI in the periplasm is not specific to Salmonella and is apparently not saturable. SodCI was not inactivated during the process of osmotic shocking; the enzyme was quantitatively recovered when the cell pellet left after osmotic shock was lysed by French press (data not shown). These results suggest that SodCI is somehow "tethered" within the periplasm.

This tethering does not appear to involve a covalent interaction. Several results support this interpretation. First, enzyme released by French press remained in the soluble fraction after membranes were pelleted (92% soluble). Thus, SodCI is not membrane bound. Second, we could release a significant fraction (32%) of SodCI by treating cells with lysozyme. This same treatment caused release of less than 1% of the cytoplasmic enzyme glucose-6-phosphate dehydrogenase (Table 4). Third, the crystal structure of SodCI does not reveal any modifications of the protein (34). Thus, tethering of SodCI within the periplasm is apparently via a noncovalent interaction. Clearly, SodCI and SodCII differ in their association within the periplasm. It is possible that this difference confers the unique virulence property on SodCI.

DISCUSSION

SodCI contributes significantly to *Salmonella* virulence by combating the oxidative burst of phagocytes. Mutants lacking SodCI are attenuated in systemic infection by a variety of assays, and this defect is evident in all *Salmonella* serovars that have been tested (6, 10, 11, 20, 21, 38, 41) (Table 2; Fig. 1). Attenuation is not observed in Phox^{-/-} mice, which lack an oxidative burst (6). Sensitivity of *sodCI* mutants to reactive oxygen species can also be mimicked in vitro (6, 11, 38). Im-

portantly, these mutants show a defect in macrophage survival in tissue culture (6, 38). The simplest interpretation of these data is that SodCI is required for full resistance to superoxide generated in the phagosome of the macrophage.

In this study we have confirmed that only SodCI is important in the virulence of serovar Typhimurium 14028. Although our data are in agreement with those of Uzzau et al. (40), they contradict earlier reports that both SodCI and SodCII contribute to the virulence of serovar Typhimurium. Fang et al. (10) reported that the sodCI sodCII double mutants caused significantly less mortality in Itys C57BL/6 mice and that the single mutants were significantly attenuated in the more resistant Ityr C3H/HeN mouse strain. We have found no contribution of sodCII towards virulence in competition assays (Table 2) or time-to-death assays (Fig. 1) in Ity^r or Ity^s mice. Currently, we are unable to explain this discrepancy. However, several points should be noted. First, the sodCII alleles used here and by Uzzau et al. (41) are both complete deletions. The allele originally constructed by Fang et al. (10) and used in several studies (10, 38, 39) is a replication-defective plasmid inserted by homologous recombination. It is possible that production of the resulting truncated SodCII protein causes a defect unrelated to the lack of enzymatic activity. Indeed, we found that producing SodCII under the control of the sodCI promoter attenuated the bacterium. The simplest interpretation of this result is that overproduction of even wild-type SodCII is detrimental. This effect must be independent of SOD activity, because the hybrid strain produces less activity than the wild type. Second, several published studies have apparently been carried out using a single isolate containing the plasmid-inactivated sodCII allele, and it is not clear that this allele has been transduced into a clean background to confirm that the virulence defect is attributable to the mutation. Third, some studies have been performed using different strain backgrounds and in different Salmonella serovars. There could be differences in the sodCII sequences such that some alleles do contribute during infection.

Uzzau et al. (41), using epitope-tagged constructs, reported that, whereas SodCII accumulated to higher levels than SodCI in laboratory medium, SodCII protein was essentially undetectable and SodCI clearly predominated in vivo. It was suggested that this difference in accumulation of the two Cu/Zn SODs was due to a difference at the transcriptional level and that this explained the selective contribution of SodCI to virulence. Our results do not support this interpretation. Although our data and other published data (9) are consistent with a higher level of expression of SodCI than SodCII during infection, the *sodCII* promoter is clearly active and capable of supporting virulence. Thus, we believe that the two enzymes have structural differences that dictate their activities in the host such that the SodCI protein is better suited to function as a virulence factor.

We have attempted to determine the feature of SodCI that is important for virulence. We have ruled out three important factors: sensitivity to acid and H_2O_2 and affinity for copper. Indeed, both SodCI and SodCII are stable in the absence of copper. However, we have noted a fundamental difference between the two periplasmic enzymes: SodCI is not released from the periplasm by osmotic shock. We are calling this phenomenon tethering. To our knowledge, the inability to release a periplasmic protein by osmotic shock is novel. The size of SodCI alone certainly does not account for tethering; proteins substantially larger than the SodCI dimer are released by osmotic shock (33).

The simplest explanation is that SodCI is in a complex with some periplasmic component. We hypothesize that this association affects the stability or function of SodCI in the phagosome, contributing to its preferential role in virulence. Tethering of SodCI might help the bacterium retain periplasmic SOD activity if the outer membrane were damaged. It is known that modification and stabilization of the outer membrane by components of the PhoPQ and PmrAB regulons are important for virulence (18, 19). Indeed, it has been suggested that host proteases gain access to the periplasm and that enterics, including Salmonella, produce a periplasmic serine protease inhibitor that protects against a subset of these proteases and allows the bacteria to recover, even after the outer membrane has been compromised (7). Another possibility is that SodCI adheres to an unidentified target or source of O_2^{-} in the periplasm. This idea seems unlikely, however, because tethering is apparently not saturable with a 10-fold overproduction of SodCI in serovar Typhimurium or E. coli.

During the course of these studies we have made other interesting observations regarding the periplasmic SodCs. For example, both SodCI and SodCII were synthesized and stable in the apo-enzyme form in the absence of copper and could be spontaneously remetallated by the addition of copper to the growth medium or to the extracts containing the enzymes. The amount of periplasmic Cu/Zn SODs produced in serovar Typhimurium is also striking. The periplasmic SODs of serovar Typhimurium compose almost 50% of the total cellular SOD specific activity (data not shown). Since the periplasm comprises approximately 30% of the total cell volume, it appears that serovar Typhimurium has more SOD (in units per milliliter) in the periplasm than in the cytosol. The abundance of periplasmic SODs in serovar Typhimurium, along with the phenotype exhibited by *sodCI* mutants in vivo and by *sodC* mutants of E. coli in vitro (17), strongly suggest that the presence of periplasmic SODs in these organisms confers a certain advantage.

The physiological need for periplasmic SOD in nonpathogens or outside phagocytes is still unclear. While some O_2^- is released from the periplasmic face of the cytoplasmic membrane (S. S. Korshunov and J. A. Imlay, unpublished data), no periplasmic biomolecules have yet been shown to be vulnerable to O_2^- . The periplasm apparently lacks labile dehydratases of the iron-sulfur class, and *sodC* mutants that lack periplasmic SODs grow at normal rates in laboratory cultures. Still, some target must exist, since *Salmonella* and *E. coli sodC* strains exhibit aberrant sensitivities to oxidants in vitro (6, 11, 17, 38).

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health grant GM49640 to J.A.I. $% \left({{\rm GM}_{\rm T}} \right) = 0.0175$

We thank the Slauch lab and the Imlay lab for valuable comments.

REFERENCES

- Battistoni, A. 2003. Role of prokaryotic Cu,Zn superoxide dismutase in pathogenesis. Biochem. Soc. Trans. 31:1326–1329.
- Battistoni, A., G. Donnarumma, R. Greco, P. Valenti, and G. Rotilio. 1998. Overexpression of a hydrogen peroxide-resistant periplasmic Cu,Zn superoxide dismutase protects *Escherichia coli* from macrophage killing. Biochem. Biophys. Res. Commun. 243:804–807.
- Battistoni, A., A. P. Mazzetti, R. Petruzzelli, M. Muramatsu, G. Federici, G. Ricci, and B. M. Lo. 1995. Cytoplasmic and periplasmic production of human placental glutathione transferase in *Escherichia coli*. Protein Expr. Purif. 6:579–587.
- Carlioz, A., and D. Touati. 1986. Isolation of superoxide dismutase mutants in *Escherichia coli*: is superoxide dismutase necessary for aerobic life? EMBO J. 5:623–630.
- Datsenko, K. A., and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97:6640–6645.
- De Groote, M. A., U. A. Ochsner, M. U. Shiloh, C. Nathan, J. M. McCord, M. C. Dinauer, S. J. Libby, A. Vazquez-Torres, Y. Xu, and F. C. Fang. 1997. Periplasmic superoxide dismutase protects *Salmonella* from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Sci. USA 94:13997–14001.
- Eggers, C. T., I. A. Murray, V. A. Delmar, A. G. Day, and C. S. Craik. 2004. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase. Biochem. J. 379:107–108.
- Ellermeier, C. D., A. Janakiraman, and J. M. Slauch. 2002. Construction of targeted single copy *lac* fusions using lambda Red and FLP-mediated sitespecific recombination in bacteria. Gene 290:153–161.
- Eriksson, S., S. Lucchini, A. Thompson, M. Rhen, and J. C. Hinton. 2003. Unravelling the biology of macrophage infection by gene expression profiling of intracellular *Salmonella enterica*. Mol. Microbiol. 47:103–118.
- Fang, F. C., M. A. DeGroote, J. W. Foster, A. J. Baumler, U. Ochsner, T. Testerman, S. Bearson, J. C. Giard, Y. Xu, G. Campbell, and T. Laessig. 1999. Virulent *Salmonella typhimurium* has two periplasmic Cu, Zn-superoxide dismutases. Proc. Natl. Acad. Sci. USA 96:7502–7507.
- Farrant, J. L., A. Sansone, J. R. Canvin, M. J. Pallen, P. R. Langford, T. S. Wallis, G. Dougan, and J. S. Kroll. 1997. Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol. Microbiol. 25:785–796.
- Fields, P. I., R. V. Swanson, C. G. Haidaris, and F. Heffron. 1986. Mutants of *Salmonella typhimurium* that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83:5189–5193.
- Figueroa-Bossi, N., and L. Bossi. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33:167–176.
- Flint, D. H., J. F. Tuminello, and M. H. Emptage. 1993. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 268: 22369–22376.
- Gardner, P. R., and I. Fridovich. 1991. Superoxide sensitivity of the *Escherichia coli* 6-phosphogluconate dehydratase. J. Biol. Chem. 266:1478–1483.
- Gardner, P. R., and I. Fridovich. 1991. Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 266:19328–19333.
- Gort, A. S., D. M. Ferber, and J. A. Imlay. 1999. The regulation and role of the periplasmic copper, zinc superoxide dismutase of *Escherichia coli*. Mol. Microbiol. 32:179–191.
- Gunn, J. S. 2001. Bacterial modification of LPS and resistance to antimicrobial peptides. J. Endotoxin Res. 7:57–62.
- Guo, L., K. B. Lim, J. S. Gunn, B. Bainbridge, R. P. Darveau, M. Hackett, and S. I. Miller. 1997. Regulation of lipid A modifications by *Salmonella typhimurium* virulence genes, *phoP-phoQ*. Science 276:250–253.
- Ho, T. D., N. Figueroa-Bossi, M. Wang, S. Uzzau, L. Bossi, and J. M. Slauch. 2002. Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of *Salmonella enterica* serovar Typhimurium. J. Bacteriol. 184:5234–5239.
- 21. Ho, T. D., and J. M. Slauch. 2001. Characterization of grvA, an antivirulence

gene on the Gifsy-2 phage in *Salmonella enterica* serovar typhimurium. J. Bacteriol. **183:**611–620.

- Imlay, J. A., and I. Fridovich. 1991. Assay of metabolic superoxide production in *Escherichia coli*. J. Biol. Chem. 266:6957–6965.
- Imlay, K. R., and J. A. Imlay. 1996. Cloning and analysis of *sodC*, encoding the copper-zinc superoxide dismutase of *Escherichia coli*. J. Bacteriol. 178: 2564–2571.
- Keyer, K., and J. A. Imlay. 1996. Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci. USA 93:13635–13640.
- Korshunov, S. S., and J. A. Imlay. 2002. A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of gram-negative bacteria. Mol. Microbiol. 43:95–106.
- Kroll, J. S., P. R. Langford, K. E. Wilks, and A. D. Keil. 1995. Bacterial [Cu,Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all! Microbiology 141:2271–2279.
- Liochev, S. I., and I. Fridovich. 2002. Copper, zinc superoxide dismutase and H₂O₂. Effects of bicarbonate on inactivation and oxidations of NADPH and urate, and on consumption of H₂O₂. J. Biol. Chem. 277:34674–34678.
- Maloy, S. R., V. J. Stewart, and R. K. Taylor. 1996. Genetic analysis of pathogenic bacteria: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
- Mastroeni, P., A. Vazquez-Torres, F. C. Fang, Y. Xu, S. Khan, C. E. Hormaeche, and G. Dougan. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J. Exp. Med. 192:237–248.
- McCord, J. M., and I. Fridovich. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–6055.
- Metcalf, W. W., W. Jiang, L. L. Daniels, S. K. Kim, A. Haldimann, and B. L. Wanner. 1996. Conditionally replicative and conjugative plasmids carrying *lacZ* alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13.
- Miller, R. A., and B. E. Britigan. 1997. Role of oxidants in microbial pathophysiology. Clin. Microbiol. Rev. 10:1–18.
- Nossal, N. G., and L. A. Heppel. 1966. The release of enzymes by osmotic shock from *Escherichia coli* in exponential phase. J. Biol. Chem. 241:3055– 3062.
- 34. Pesce, A., A. Battistoni, M. E. Stroppolo, F. Polizio, M. Nardini, J. S. Kroll, P. R. Langford, P. O'Neill, M. Sette, A. Desideri, and M. Bolognesi. 2000. Functional and crystallographic characterization of *Salmonella typhimurium* Cu,Zn superoxide dismutase coded by the *sodCI* virulence gene. J. Mol Biol. **302**:465–478.

- Pesce, A., C. Capasso, A. Battistoni, S. Folcarelli, G. Rotilio, A. Desideri, and M. Bolognesi. 1997. Unique structural features of the monomeric Cu,Zn superoxide dismutase from *Escherichia coli*, revealed by X-ray crystallography. J. Mol. Biol. 274:408–420.
- Rathman, M., M. D. Sjaastad, and S. Falkow. 1996. Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect. Immun. 64:2765–2773.
- Richter-Dahlfors, A., A. M. Buchan, and B. B. Finlay. 1997. Murine salmonellosis studied by confocal microscopy: *Salmonella typhimurium* resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J. Exp. Med. 186:569–580.
- Sansone, A., P. R. Watson, T. S. Wallis, P. R. Langford, and J. S. Kroll. 2002. The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of *Salmonella choleraesuis*. Microbiology 148:719–726.
- Sly, L. M., D. G. Guiney, and N. E. Reiner. 2002. Salmonella enterica serovar Typhimurium periplasmic superoxide dismutases SodCI and SodCII are required for protection against the phagocyte oxidative burst. Infect. Immun. 70:5312–5315.
- Stanley, T. L., C. D. Ellermeier, and J. M. Slauch. 2000. Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar Typhimurium survival in Peyer's patches. J. Bacteriol. 182:4406–4413.
- Uzzau, S., L. Bossi, and N. Figueroa-Bossi. 2002. Differential accumulation of *Salmonella* [Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity. Mol. Microbiol. 46:147–156.
- 42. Vazquez-Torres, A., J. Jones-Carson, P. Mastroeni, H. Ischiropoulos, and F. C. Fang. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J. Exp. Med. 192:227–236.
- Wang, R. F., and S. R. Kushner. 1991. Construction of versatile low-copynumber vectors for cloning, sequencing and gene expression in *Escherichia coli*. Gene 100:195–199.
- 44. Winkelstein, J. A., M. C. Marino, R. B. Johnston, Jr., J. Boyle, J. Curnutte, J. I. Gallin, H. L. Malech, S. M. Holland, H. Ochs, P. Quie, R. H. Buckley, C. B. Foster, S. J. Chanock, and H. Dickler. 2000. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79:155–169.
- 45. Yu, D., H. M. Ellis, E. C. Lee, N. A. Jenkins, N. G. Copeland, and D. L. Court. 2000. An efficient recombination system for chromosome engineering in *Escherichia coli*. Proc. Natl. Acad. Sci. USA 97:5978–5983.