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Abstract

The contribution of repetitive elements to quantitative human traits is largely unknown. Here, we 

report a genome-wide survey of the contribution of Short Tandem Repeats (STRs), one of the most 

polymorphic and abundant repeat classes, to gene expression in humans. Our survey identified 

2,060 significant expression STRs (eSTRs). These eSTRs were replicable in orthogonal 

populations and expression assays. We used variance partitioning to disentangle the contribution 

of eSTRs from linked SNPs and indels and found that eSTRs contribute 10%–15% of the cis-

heritability mediated by all common variants. Further functional genomic analyses showed that 
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eSTRs are enriched in conserved regions, co-localize with regulatory elements, and can modulate 

certain histone modifications. By analyzing known GWAS hits and searching for new associations 

in 1,685 deeply-phenotyped whole-genomes, we found that eSTRs are enriched in various 

clinically-relevant conditions. These results highlight the contribution of short tandem repeats to 

the genetic architecture of quantitative human traits.

Introduction

In recent years, there has been tremendous progress in identifying genetic variants that affect 

expression of nearby genes, termed cis expression quantitative trait loci (cis-eQTLs). 

Multiple studies have shown that disease-associated variants often overlap cis-eQTLs in the 

affected tissue1–3. These observations suggest that understanding the genetic architecture of 

the transcriptome may provide insights into the cellular-level mediators underlying complex 

traits4–6. So far, eQTL-mapping studies have mainly focused on SNPs and to a lesser extent 

on bi-allelic indels and CNVs as determinants of gene expression7–11. However, these 

variants do not account for all of the heritability of gene expression attributable to cis-

regulatory elements as measured by twin studies, leaving on average about 20–30% 

unexplained8,12. It has been speculated that such heritability gaps could indicate the 

involvement of repetitive elements that are not well tagged by common SNPs13,14.

To augment the repertoire of eQTL classes, we focused on Short Tandem Repeats (STRs), 

one of the most polymorphic and abundant types of repetitive elements in the human 

genome15,16. These loci consist of periodic DNA motifs of 2–6bp spanning a median length 

of around 25bp. There are about 700,000 STR loci covering almost 1% of the human 

genome. Their repetitive structure induces DNA-polymerase slippage events that add or 

delete repeat units, creating mutation rates that are orders of magnitude higher than those of 

most other variant types15,17. Over 40 Mendelian disorders, such as Huntington’s Disease, 

are attributed to STR mutations, most of which are caused by large expansions of 

trinucleotide coding repeats18.

Several properties of STRs suggest they may play a regulatory role. In vitro studies have 

shown that STR variations can modulate the binding of transcription factors19,20, change the 

distance between promoter elements21,22, alter splicing efficiency23,24, and induce irregular 

DNA structures that may modulate transcription25. In vivo experiments have reported 

specific examples of STR variations that control gene expression across a wide range of 

taxa, including Haemophilus influenza26, Saccharomyces cerevisiae27, Arabidopsis 
thaliana28, and vole29. Recent studies reported that dinucleotide repeats are a hallmark of 

enhancers in Drosophila and are enriched in predicted enhancers in humans30. Human 

promoters also disproportionately harbor STRs31 and the presence of STRs in promoters or 

transcribed regions greatly increases the divergence of gene expression profiles across great 

apes32, suggesting that STRs play a key role in the evolution of expression. Several 

candidate-gene studies in human indeed reported that STR variations modulate gene 

expression19,33–37 and alternative splicing23,38,39. In one example, a recent study found that 

that underlying mechanism behind a GWAS signal for Ewing Sarcoma is a sequence variant 

in an AAGG repeat that increases the binding of the EWSR1-FLI1 oncoprotein resulting in 
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EGF2 overexpression40. Despite these accumulating lines of evidence, there has been no 

systematic evaluation of the contribution of STRs to gene expression in humans.

To this end, we conducted a genome-wide analysis of STRs that affect expression of nearby 

genes, termed expression STRs (eSTRs), in lymphoblastoid cell lines (LCLs), a central ex-
vivo model for eQTL studies. Next, we used a multitude of statistical genetic and functional 

genomics analyses to show that hundreds of these eSTRs are predicted to be functional. 

Finally, we tested the involvement of eSTRs in clinically relevant phenotypes.

Results

Initial genome-wide discovery of eSTRs

The initial genome-wide discovery of potential eSTRs relied on finding associations 

between STR length and expression of nearby genes. We focused on 311 European 

individuals whose LCL expression profiles were measured using RNA-sequencing by the 

gEUVADIS9 project and whose whole genomes were sequenced by the 1000 Genomes 

Project41. The STR genotypes were obtained in our previous study42 in which we created a 

catalog of STR variation as part of the 1000 Genomes Project using lobSTR, a specialized 

algorithm for profiling STR variations from high throughput sequencing data43. Briefly, 

lobSTR identifies reads with repetitive sequences that are flanked by non-repetitive 

segments. It then aligns the non-repetitive regions to the genome using the STR motif to 

narrow the search, thereby overcoming the gapped alignment problem and conferring 

alignment specificity. Finally, lobSTR aggregates aligned reads and employs a model of 

STR-specific sequencing errors to report the maximum likelihood genotype at each locus. 

lobSTR recovered most (r2=0.71) of the variation in STR locus lengths in the 1000 Genomes 

datasets based on large-scale validation using 5,000 STR genotype calls obtained by 

capillary electrophoresis, the gold standard for STR genotyping42. The majority of genotype 

errors were from dropout of one allele at heterozygote sites due to low sequencing coverage. 

We simulated the performance of STR associations using lobSTR calls compared to the 

capillary calls. This process showed that STR genotype errors reduce the power to detect 

eSTRs by 30–50% but importantly do not create spurious associations (Supplementary Note 

and Supplementary Fig. 1).

To detect eSTR associations, we regressed gene expression on STR dosage, defined as the 

sum of the two STR allele lengths in each individual. We opted to use this measure based on 

previous findings that reported a linear trend between STR length and gene 

expression19,34,36 or disease phenotypes44,45. As covariates, we included sex, population 

structure, and other technical parameters (Fig. 1a and Supplementary Methods). We 

employed this process on 15,000 coding genes whose expression profiles were detected in 

the RNA-sequencing data. For each gene, we considered all polymorphic STR variations 

that passed our quality criteria (Online Methods) and were within 100kb of the transcription 

start and end sites of the gene transcripts as annotated by Ensembl46. On average, 13 STR 

loci were tested for each gene (Supplementary Fig. 2), yielding a total of 190,016 STR×gene 

tests.
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Our analysis identified 2,060 unique protein-coding genes with a significant eSTR (gene 

level FDR≤5%) (Fig. 1b and Supplementary Table 1). The majority of these were di- and 

tetra-nucleotide STRs (Supplementary Tables 2 and 3). Only 13 eSTRs fall in coding exons, 

but eSTRs were nonetheless strongly enriched in 5’UTRs (p=1.0×10−8), 3’UTRs 

(p=1.7×10−9) and regions near genes (p<10−28) compared to all STRs analyzed 

(Supplementary Table 4). Overall, there was no bias in direction of effect (Supplementary 

Table 5). We also repeated the association tests with two negative control conditions by 

regressing expression on (i) STR dosages permuted between samples and (ii) STR dosages 

from randomly chosen unlinked loci (Fig. 1b and Supplementary Fig. 3). Both negative 

controls produced uniform p-value distributions expected under the null hypothesis. This 

provides support for the absence of spurious associations due to inflation of the test statistic 

or the presence of uncorrected population structure. To assess the effect of low sequencing 

coverage on our results, we generated high coverage targeted sequencing of 2,472 promoter 

STRs and repeated the eSTR analysis (Online Methods). We found that association results 

were largely reproducible across datasets, with 80% of tested eSTRs showing the same 

direction of effect (p=9.9×10−12; n=126) (Supplementary Note and Supplementary Fig. 4). 

Three previous studies described candidate gene studies of expression STRs and involved 

STRs that were tested in our framework19,36,47. Our genome-wide approach was able to 

replicate the association between PIG3 and the pentanucleotide STR in the 5’UTR of the 

gene and showed the same direction of effect. However, the other two candidate genes did 

not meet the multiple hypothesis p-value threshold (Supplementary Table 6).

The initial discovery set of eSTRs was largely reproducible in an independent set of 

individuals using an orthogonal expression assay technology. We obtained an additional set 

of over 200 individuals whose genomes were also sequenced as part of the 1000 Genomes 

Project and whose LCL expression profiles were measured by Illumina expression array48. 

These individuals belong to cohorts with African, Asian, European, and Mexican ancestry, 

enabling testing of the associations in a largely distinct set of populations. The Illumina 

expression array allowed us to test 882 eSTRs out of the 2,060 identified above. The 

association signals of 734 of the 882 (83%) tested eSTRs showed the same direction of 

effect in both datasets (sign test p=2.7×10−94) and the effect sizes were strongly correlated 

(R=0.73, p=1.4×10−149) (Fig. 1c), despite only moderate reproducibility of expression 

profiles across platforms (Supplementary Note and Supplementary Fig. 5). For comparison, 

only 54% of non-eSTRs showed the same direction of effect, close to the expected value of 

50% for null associations. Overall, these results show that eSTR association signals are 

robust and reproducible across populations and expression assay technologies.

Partitioning the contribution of eSTR and nearby variants

An important question is whether eSTR association signals stem from causal STR loci or are 

merely due to tagging SNPs or other variants in linkage disequilibrium (LD). Previous 

results reported that the average STR-SNP LD is approximately half of the traditional SNP-

SNP LD42,49,50, but there are known examples of STRs tagging GWAS SNPs51.

To address this question, we partitioned the relative contributions of eSTRs versus all 

common (MAF≥1%) bi-allelic SNPs, indels, and structural variants (SV) in the cis region of 
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each gene using a linear mixed model (LMM) (Fig. 2a). Multiple studies have used this 

approach to measure the total contribution of common variants to the heritability of 

quantitative traits and to partition the contribution of different classes of variants52,53. Taking 

a similar approach, we included two types of effects for each gene: a random effect  that 

captures all common bi-allelic loci detected within 100kb of the gene and a fixed effect 

 that captures the lead STR. To test whether other causal variants in the local region 

could inflate the estimate of the STR contribution, we simulated gene expression with one or 

two causal SNP eQTLs per gene while preserving the local haplotype structure. In this 

negative control scenario, the LMM correctly reported a median  across all 

conditions (Supplementary Note and Supplementary Fig. 6–7), where . This 

suggests that other causal variants in LD do not inflate the estimator of the relative 

contribution of STRs. However, simulations based on capillary electrophoresis data suggest 

that the variance explained by STRs is downwardly biased in the presence of genotyping 

errors (Supplementary Note and Supplementary Fig. 8), suggesting that the reported  is 

likely to be conservative.

The LMM results showed that eSTRs contribute about 12% of the genetic variance 

attributed to common cis polymorphisms. For genes with a significant eSTR, the median 

 was 1.80%, whereas the median  was 12.0% (Fig. 2b), with a median ratio of 

 of 12.3% (CI95% 11.1%–14.2%; n=1,928) (Supplementary Table 7). We repeated 

the same analysis for genes with at least moderate (≥5%) cis-heritability (Online Methods) 

regardless of the presence of a significant eSTR in the discovery set. The motivation for this 

analysis was to avoid potential winner’s curse54 and to obtain a transcriptome-wide 

perspective on the role of STRs in gene expression (Fig. 2c). In this set of genes, eSTRs 

contribute about 13% (CI95% 12.2%–13.4%; n=6,272) of the genetic variance attributed to 

cis common polymorphisms. The median  was 1.45% of the total expression variance, 

whereas the median  was 9.10% (Table 1). Repeating the analysis while considering STRs 

as a random effect showed highly similar results (Supplementary Note, Supplementary Table 

8, and Supplementary Fig. 9). Taken together, this analysis shows that STR variations 

explain a sizeable component of gene expression variation after controlling for all variants 

that are well tagged by common bi-allelic markers in the cis region.

The effect of eSTRs in the context of individual SNP eQTLs

To further assess the contribution of eSTRs in the context of other variants, we also 

inspected the relationship between eSTRs and individual cis-SNP eQTLs (eSNPs). We 

performed a traditional eQTL analysis using the whole genome sequencing data for 311 

individuals that were part of the discovery set to identify common eSNPs [minor allele 

frequency (MAF) ≥5%] within 100kb of each gene. This process identified 4,290 genes with 

an eSNP (gene-level FDR≤5%). We then re-analyzed the eSTR association signals while 

conditioning on the genotype of the most significant eSNP (Fig. 3a). For each eSTR, we 

ascertained the subset of individuals that were homozygous for the major allele of the lead 

eSNP in the region. If the eSTR simply tags this eSNP, its conditioned effect should be 

randomly distributed compared to the unconditioned effect. Alternatively, if the eSTR is 
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causal, the direction of the conditioned effect should match that of the original effect. We 

conducted this analysis for eSTR loci with at least 25 individuals homozygous for the lead 

eSNP and for which these individuals had at least two unique STR genotypes (1,856 loci). 

After conditioning on the lead eSNP, the direction of effect for 1,395 loci (75%) was 

identical to that in the original analysis (sign test p<4.2×10−109) and the effect sizes were 

significantly correlated (R=0.52; p=3.2×10−130) (Fig. 3b). This further supports the 

additional role of eSTRs beyond traditional cis-eQTLs.

We also found that hundreds of eSTRs in the discovery set provide additional explanatory 

value for gene expression beyond the lead eSNP. ANOVA model comparison showed that 

for 23% of the cases, a model with an eSTR significantly improved the explained variance of 

gene expression over considering only the lead eSNP according to an (FDR<5%) (Fig. 3c–e 

and Online Methods). Combined with the 183 genes with an eSTR but no significant eSNP, 

these results show that at least 30% of the eSTRs identified by our initial scan cannot be 

fully attributed to tagging of the lead eSNP. Given the reduced quality of STR compared to 

SNP genotypes, this analysis is likely to underestimate the true contribution of STRs. 

Nonetheless, our results show concrete examples for hundreds of associations in which the 

eSTR increases the variance explained by the lead eSNP.

Conservation and epigenetics signals support the functional role of eSTRs

To provide further evidence of their regulatory role, we analyzed eSTRs in the context of 

functional genomics data. First, we assessed the potential functionality of STR regions by 

measuring signatures of purifying selection, since previous studies reported that putatively 

causal eSNPs are slightly enriched in conserved regions55. We inspected the sequence 

conservation56 across 46 vertebrates in the sequence upstream and downstream of the eSTRs 

in our discovery dataset (Fig. 4a). To tune the null expectation, we matched each tested 

eSTR to a random STR that did not reach significance in the association analysis but had a 

similar distance to the nearest transcription start site (TSS). The average conservation level 

of a ±500bp window around eSTRs was slightly but significantly higher (p<0.03) compared 

to control STRs. Tightening the window size to shorter stretches of ±50bp showed a more 

significant contrast in the conservation scores of the eSTRs versus the control STRs 

(p<0.01) (Fig. 4a inset), indicating that the excess in conservation comes from the vicinity 

of the eSTR loci. Taken together, these results show that eSTRs discovered by our 

association pipeline reside in regions exposed to relatively higher purifying selection, further 

suggesting a functional role.

eSTRs substantially co-localize with functional elements. They show the strongest 

enrichment closest to transcription start sites (Fig. 4b) and to a lesser extent in or near 

predicted enhancers (Supplementary Fig. 10). We also inspected the co-localization of 

eSTRs with histone modifications as annotated by the Encode Consortium7 in LCLs. eSTRs 

were strongly enriched in peaks of histone modifications associated with regulatory regions 

(H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K9ac) and transcribed regions 

(H3K36me3) and were depleted in repressed regions (H3K27me3) (Fig. 4b). To test the 

significance of these signals, we constructed a null distribution for each histone modification 

by measuring the co-localization of eSTRs with randomly shifted histone peaks similar to 
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the fine-mapping procedure of Trynka et al57. This null distribution controls for the co-

occurrence of eSTRs and histone peaks due to their proximity to other causal variants. We 

found eSTR/histone co-localizations were significant (weakest p-value<0.01) after the peak 

shifting procedure, suggesting that these results stem from the eSTRs themselves 

(Supplementary Table 9). We also performed a peak-shifting analysis using ChromHMM 

annotations58 (Fig. 4c) which indicated that eSTRs are most strongly enriched in weak-

promoters (p<0.002) and weak-enhancers (p<0.004). Again, this analysis shows overlap of 

eSTRs with elements that are predicted to regulate gene expression.

We also found that eSTR length variations are more likely to modulate the presence of 

certain histone marks (Supplementary Note and Supplementary Fig. 11). We introduced 

different eSTR alleles to GERV59, a machine learning approach that examines the effect of 

DNA sequence on histone marks. This process found that eSTRs have significantly greater 

effects than control STRs on predicted regulatory regions (H3K4me3 p=0.00109, DNAseI 

hypersensitivity p=0.00045, H3K9ac p=0.00462) and transcribed regions (H3K36me3 

p=0.01336). These results are consistent with the analysis of chromatin modifications above. 

Importantly, since the input material for this analysis is solely STR variations that are 

independent of any linked variants, these results provide an orthogonal piece of evidence for 

the functionality of eSTRs and suggest histone mark modulation as a potential mechanism.

The potential role of eSTRs in human conditions

Encouraged by the evidence for the regulatory role of eSTRs, we wondered about their 

potential involvement in clinically-relevant conditions. First, we tested whether genes 

implicated by previous GWAS scans listed in the NHGRI GWAS catalog60 are enriched for 

eSTR genes. We focused on seven complex disorders: rheumatoid arthritis, Crohn’s disease, 

type 1 diabetes, type 2 diabetes, blood pressure, bi-polar disorder, and coronary artery 

disease. The first three conditions have a strong autoimmune component, rendering them 

more relevant to the LCL data used for eSTR discovery. To create a proper null, we 

compared the overlap of eSTR genes to randomly chosen sets of genes matched to the tested 

GWAS genes on both gene expression level in LCLs and on cis heritability.

We found that GWAS genes for Crohn’s disease are significantly (p<0.001) enriched for 

eSTR hits (Figure 5a and Supplementary Fig. 12). Moderate enrichment for eSTRs 

(p=0.074) was found in GWAS genes for rheumatoid arthritis, consistent with the known 

role of immune function in these traits. Enrichments were 2–3 times higher for autoimmune 

diseases than for the other conditions (average overlap: 6%). Interestingly, for seven 

overlapping genes, the eSTRs explained more variance in gene expression than the lead 

eSNP of the gene. Furthermore, for close to thirty genes, a joint model of the lead eSTR and 

eSNP explained significantly more variance in gene expression than the eSNP alone, raising 

the possibility of an etiological role.

Next, we performed an association study using eSTRs to further test the hypothesis that 

eSTRs underlie clinically relevant phenotypes. For this, we turned to ~1,700 unrelated 

individuals that were sequenced to medium coverage (6×) with 100bp paired-end reads 

using Illumina as part of the TwinsUK cohort of the UK10K project61 and were phenotyped 

for a wide array of quantitative traits, primarily blood metabolites and anthropometric traits. 
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While most of these conditions are not directly related to the immune system, we 

hypothesized that similar to other eQTLs3, some of the discovered eSTRs are shared across 

tissues and could play a role in additional tissues. After genotyping STRs with lobSTR, we 

tested for association between eSTRs and each of the 38 reported phenotypes, while 

controlling for sex, age, and population structure. To enrich for STR loci that are likely to be 

causal for gene expression variation, we restricted analysis to eSTRs that significantly 

improved the explained variance of gene expression over a model with the lead eSNP alone. 

In total, we obtained 499 eSTRs after applying this condition and excluding eSTRs that were 

genotyped in <1000 individuals.

We identified 12 significant associations (FDR per phenotype<10%) between eSTRs and the 

clinical phenotypes in the TwinUK data (Figure 5b and Supplementary Table 10). Only one 

association overlapped a known GWAS hit: an AAAC repeat on 4p16 was associated with 

decreased expression of SLC2A9 and increased uric acid in serum samples of the TwinsUK, 

which matches previous studies with SNPs62–65. The other 11 associations involved changes 

in blood metabolites such as albumin and C-reactive protein and physical traits such as 

diastolic blood pressure and FEV1 lung function and have yet to be described before in 

GWAS catalogs, suggesting novel loci. We caution that full validation of each of these 

associations will require replication in additional cohorts. Nonetheless, as we were mainly 

interested in the overall trend for eSTRs, we repeated the association of the 38 phenotypes in 

the TwinsUK cohort with a similar number of random STR loci matched on distance to 

transcription start sites, repeat motif, and number of genotyped samples. One hundred 

rounds of bootstrapping showed that eSTRs produced significantly more associations than 

the matched STR controls (mean for controls: 6.8 associations at FDR<10%, p<1.8×10−16). 

Repeating this test with a more stringent FDR of 5% revealed a similar picture: the eSTRs 

produced 6 associations passing this threshold (Supplementary Table 10), significantly more 

that the matched STR controls (mean for controls: 3.2 associations at FDR<5%, 

p<1.1×10−5). Taken together, our results show that eSTR signals are enriched in clinical 

phenotypes both in known and potentially novel GWAS hits. These results could inform 

future efforts for disease mapping studies.

Discussion

Repetitive elements have often been considered as neutral with no phenotypic 

consequences16. This coupled with the technical difficulties in analyzing these regions has 

led large-scale genetic studies to largely overlook the putative contribution of repeats to 

human phenotypes. Our study focused on short tandem repeats, one of the most polymorphic 

classes of loci that comprise 1% of the human genome. Despite being less abundant than 

SNPs, previous studies have shown that STRs are enriched in promoters and enhancers, 

where they frequently induce multiple base-pair variations, increasing the prior expectation 

of their ability to explain gene expression variation. Following these observations, we 

conducted a genome-wide scan for the contribution of STRs to gene expression. Our scan 

identified over 2,000 potential eSTRs and found that eSTRs contribute on average about 10–

15% of the cis-heritability of gene expression attributed to common (MAF≥1%) 

polymorphisms. Functional genomics analyses provided further support for the predicted 
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causal role of eSTRs. Finally, we found that eSTRs are enriched in clinically relevant 

phenotypes.

We hypothesize that there are more eSTRs to find in the genome as our analysis had several 

technical limitations. First, the higher genotyping error rates for STRs compared to SNPs 

limited our power to detect eSTRs and likely downwardly biased their estimated 

contribution in the LMM and ANOVA analyses. In addition, about 10% of STR loci in the 

genome could not be analyzed because they are too long to be spanned by current 

sequencing read lengths42. Second, based on previous findings in humans19,34,36, our 

association tests focused on a linear relationship between STR length and gene expression. 

However, experimental work in yeast reported that certain loci exhibit non-linear 

relationships between STR length and expression27, which are unlikely to be captured in our 

current analysis. Finally, our association pipeline takes into account only the length 

polymorphisms of STRs and cannot distinguish the effect of sequence variations inside STR 

alleles with identical lengths (dubbed homoplastic alleles66). Addressing these technical 

complexities would likely require phased STR haplotypes and longer sequence reads that are 

currently unavailable for large sample sizes. We envision that recent advancements in 

sequencing technologies67 will further expand the catalog of eSTRs.

Despite these technical limitations, our findings show that repetitive elements in the human 

genome extensively contribute to expression variation and are enriched in clinically relevant 

phenotypes. Our results are consistent with a recent study that reported that haplotypes of 

common SNPs, which capture genetic variants poorly tagged by current genotype panels, 

can explain substantially more heritability than common SNPs alone68. We anticipate that 

integrating the analysis of repetitive elements, specifically STR variations, will explain 

additional heritability and will lead to the discovery of new genetic variants relevant to 

human conditions.

Online Methods

Code availability

All code and data used for this manuscript are available on github at https://github.com/

mgymrek/estrs under the GPLv3 license.

Genotype datasets

lobSTR genotypes were generated for the phase 1 individuals from the 1000 Genomes 

Project as described in42. Variants from the 1000 Genomes Project phase 1 release were 

downloaded in VCF format from the project website. HapMap genotypes were used to 

correct association tests for population structure. Genotypes for 1.3 million SNPs were 

downloaded for draft release 3 from the HapMap Consortium webpage. SNPs were 

converted to hg19 coordinates using the liftOver tool and filtered using Plink69 to contain 

only the individuals for which both expression array data and STR calls were available. 

Throughout this manuscript, all coordinates and genomic data are referenced according to 

hg19.
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Targeted sequencing of promoter region STRs

We used a previously published method using capture and high-throughput sequencing70 to 

sequence 2,472 STRs located in gene promoters (TSS +/− 1kb) in 120 HapMap individuals 

of European (58 CEU individuals) and African (62 YRI individuals) ancestry. Briefly, the 

method uses a custom Nimblegen EZ Capture system to enrich the genomic sequence 

flanking, and sometimes including, the target STRs to be genotyped prior to sequencing 

using an Illumina Hiseq2000 instrument. We multiplexed 24 individuals per sequencing lane 

and utilized 100bp single-end reads. We used lobSTR version 3.0.3 to genotype STRs in 

these samples.

Expression datasets

RNA-sequencing datasets from 311 HapMap lymphoblastoid cell lines for which STR and 

SNP genotypes were also available were obtained from the gEUVADIS Consortium. Raw 

FASTQ files containing paired end 100bp Illumina reads were downloaded from the EBI 

website. The hg19 Ensembl transcriptome annotation was downloaded as a GTF file from 

the UCSC Genome Browser71,72 ensGene table. The RNA-sequencing reads were mapped 

to the Ensembl transcriptome using Tophat v2.0.773 with default parameters. Gene 

expression levels were quantified using Cufflinks v2.0.274 with default parameters and 

supplied with the GTF file for the Ensembl reference version 71. Genes with median FPKM 

of 0 were removed, leaving 23,803 genes. We restricted analysis to protein coding genes, 

giving 15,304 unique Ensembl genes. Expression values were quantile-normalized to a 

standard normal distribution for each gene.

The replication set consisted of Illumina Human-6 v2 Expression BeadChip data from 730 

HapMap lymphoblastoid cell lines from the EBI website. These datasets contain two 

replicates each for 730 unrelated individuals from 8 HapMap populations (YRI, CEU, CHB, 

JPT, GIH, MEX, MKK, LWK) and were generated as described by Stranger et al.75. 

Background corrected and summarized probeset intensities (by Illumina software) contained 

values for 7,655 probes. Additionally, probes containing common SNPs were removed76. 

Only probes with a one-to-one correspondence with Ensembl gene identifiers were retained. 

We removed probes with low concordance across replicates (Spearman correlation ≤ 0.5). In 

total we obtained 5,388 probes for downstream analysis.

Each probe was quantile-normalized to a standard normal distribution across all individuals 

separately for each replicate and then averaged across replicates. These values were 

quantile-normalized to a standard normal distribution for each probe.

eQTL association testing

Expression values were adjusted for individual sex, individual membership, gene expression 

heterogeneity, and population structure (Supplementary Methods). Adjusted expression 

values were used as input to the eSTR analysis. To restrict to STR loci with high quality 

calls, we filtered the call set to contain only loci where at least 50 of the 311 samples had a 

genotype call. To avoid outlier genotypes that could skew the association analysis, we 

removed any genotypes seen less than three times. If only a single genotype was seen more 

than three times, the locus was discarded. To increase our power, we further restricted 
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analysis to the most polymorphic loci with heterozygosity of at least 0.3. This left 80,980 

STRs within 100kb of a gene expressed in our LCL dataset.

A linear model was used to test for association between normalized STR dosage and 

expression for each STR within 100kb of a gene (Supplementary Methods). Dosage was 

defined as the sum of the deviations of the STR allele lengths from the hg19 reference. For 

example, if the hg19 reference for an STR is 20bp and the two alleles called are 22bp and 

16bp, the dosage is equal to (22−20)+(16−20) = −4bp. STR genotypes were zscore-

normalized to have mean 0 and variance 1. For genes with multiple transcripts, we defined 

the transcribed region as the maximal region spanned by the union of all transcripts. The 

linear model for each gene is given by:

where y⃗g = (yg,1, …, yg,n)T with yg,i the normalized covariate-corrected expression of gene g 
in individual i, n is the number of individuals, αg is the mean expression level of 

homozygous reference individuals, βj,g is the effect of the allelic dosage of STR locus j on 

gene g, x⃗j = (xj,1, …, xj,n)T with xj,i the normalized allelic dosage of STR locus j in the ith 

individual, and εj⃗,g is a random vector of length n whose entries are drawn from 

where  is the unexplained variance after regressing locus j on gene g. The association 

was performed using the OLS function from the Python statsmodels package. For each 

comparison, we tested H0: βj,g = 0 vs. H1: βj,g ≠ 0 using a standard t-test. We controlled for a 

gene-level false discovery rate (FDR) of 5% (Supplementary Methods).

Partitioning heritability using linear mixed models

For each gene, we used a linear mixed model to partition heritability between the lead 

explanatory STR and other cis variants. We used a model of the form:

where:

• y⃗g, αg, βj,g, x⃗j, and ε⃗j,g are as described above.

• u⃗g is a length n vector of random effects and  with 

the percent of phenotypic variance explained by cis bi-allelic variants for gene 

g.

• Kg is a standardized n × n identity by state (IBS) relatedness matrix 

constructed using all common bi-allelic variants (MAF≥1%) reported by phase 

1 of the 1000 Genomes Project within 100kb of gene g. This includes SNPs, 

indels, and several bi-allelic structural variants and is constructed as 

 where p is 

the total number of variants considered, x⃗i is a length n vector of genotypes for 
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variant i, and 1n is a length n vector of ones. Note the mean diagonal element 

of Kg is equal to 1.

We used the GCTA program77 to determine the restricted maximum likelihood estimates 

(REML) of βj,g and . To get unbiased values of , the --reml-no-constrain option was 

used.

We used the resulting estimates to determine the variance explained by the STR and the cis 
region. We can write the overall phenotypic variance-covariance matrix as:

where:

• var(y⃗g) is an n × n expression variance-covariance matrix with diagonal 

elements equal to 1, since expression values for each gene were normalized to 

have mean 0 and variance 1.

• In is the n × n identity matrix.

This equation shows the relationship:

where:

•  is the phenotypic variance, which is equal to 1.

•  is the variance explained by the STR. This is equal to 

since the STR genotypes were scaled to have mean 0 and variance 1.

•  is the variance explained by bi-allelic variants in the cis region. This is 

approximately equal to  since the local IBS matrix Kg has a mean diagonal 

value of 1.

We estimated the percent of phenotypic variance explained by STRs, , using the unbiased 

estimator , where β̂j,g is the estimate of βj,g returned by GCTA, 

and SE is the standard error on the estimate, using the fact that βĵ,g ~ N(βj,g, SE). We 

estimated the percent of phenotypic variance explained by bi-allelic markers as . Note that 

for this analysis the STR was treated as a fixed effect. We also reran the analysis treating the 

STR as a random effect and found very little change in the results (Supplementary Note).

Results are reported for all eSTR-containing genes and for all genes with moderate total cis 

heritability, which we define as genes where . We used this approach as to 

our knowledge there are no published results about the cis-heritability of expression of 
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individual genes in LCLs from twin studies. We used 10,000 bootstrap samples of each 

distribution to generate 95% confidence intervals for the medians.

Comparing to the lead eSNP

We identified SNP eQTLs using SNPs with MAF ≥ 1% as reported by phase 1 of the 1000 

Genomes Project. We used an identical pipeline to our eSTR analysis to identify SNP 

eQTLs after replacing the vector x⃗j with a vector of SNP genotypes (0, 1 or 2 reference 

alleles) that was z-normalized to have mean 0 and variance 1. To determine whether our 

eSTR signal was indeed independent of the lead SNP eQTL at each gene, we repeated 

association tests between STR dosages and expression levels while holding the genotype of 

the SNP with the most significant association to that gene constant. For this, we determined 

all samples at each gene that were either homozygous reference or homozygous non-

reference for the lead SNP. For the SNP allele with more homozygous samples, we repeated 

the eSTR linear regression analysis and determined the sign and magnitude of the slope. We 

removed any genes for which there were less than 25 samples homozygous for the SNP 

genotype or for which there was no STR variation after holding the SNP constant, leaving 

1,856 genes for analysis. We used a sign test to determine whether the direction of effects 

before and after conditioning on the lead SNP are more concordant than expected by chance.

We used model comparison to determine whether eSTRs can explain additional variation in 

gene expression beyond that explained by the lead eSNP for each gene. For each gene with a 

significant eSTR and eSNP, we analyzed the ability of two models to explain gene 

expression:

where αg is the mean expression value for the reference haplotype, y⃗g is a vector of 

expression values for gene g, βeSNP,g is the effect of the eSNP on gene g, βeSTR,g is the effect 

of the eSTR on gene g, x⃗eSNP,g is a vector of genotypes for the lead eSNP for gene g, x⃗eSTR,g 

is a vector of genotypes for the best eSTR for gene g, and ε⃗j,g gives the residual term. A 

major caveat is that the eSNP dataset has significantly more power to detect associations 

than the eSTR dataset due to the lower quality of the STR genotype panel (Supplementary 

Note), and this analysis is therefore likely to underestimate the true contribution of STRs to 

gene expression. We used ANOVA to test whether the joint model performs significantly 

better than the SNP-only method. We obtained the ANOVA p-value for each gene and used 

the qvalue package to determine the FDR.

Conservation analysis

Sequence conservation around STRs was determined using the PhyloP track available from 

the UCSC Genome Browser. To calculate the significance of the increase in conservation at 

eSTRs, we compared the mean PhyloP score for each eSTR to that for 1000 random sets of 
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STRs with matched distributions of the distance to the nearest transcription start site. For 

each STR, we determined the mean PhyloP score for a given window size centered on the 

STR. The p-value given is the percentage of random sets whose mean PhyloP score was 

greater than the mean of the observed eSTR set.

Enrichment of STRs and eSTRs in predicted enhancers

H3K27ac peaks produced by the ENCODE7 Project were used to determine predicted 

enhancers in GM12878. Peaks were downloaded from the UCSC Genome Browser and 

converted to hg19 coordinates using the liftOver tool. Any peak overlapping within 3kb of a 

transcription start site was removed to exclude promoter regions from the analysis.

Enrichment in histone modification peaks

Chromatin state and histone modification peak annotations generated by the Encode 

Consortium for GM12878 were downloaded from the UCSC Genome Browser. Because 

variants involved in regulating gene expression are more likely to fall near genes compared 

to randomly chosen variants, naïve enrichment tests of eSTRs vs. randomly chosen control 

regions may return strong enrichments simply because of their proximity to genes. To 

account for this, we randomly shifted the location of eSTRs by a distance drawn from the 

distribution of distances between the best STR and lead SNP for each gene. We repeated this 

process 1,000 times. For each set of permuted eSTR locations, we generated null 

distributions by determining the percent of STRs overlapping each annotation. We used 

these null distributions to calculate empirical p-values for the enrichment of eSTRs in each 

annotation.

Effects of eSTRs on modulating regulatory elements

One potential mechanism by which eSTRs may act is by modulating epigenetic properties. 

The GERV (Generative Evaluation of Regulatory Variants)59 model predicts ChIP-

sequencing experiments directly from genomic sequences and optional covariates such as 

DNAse-seq data. We used the non-covariate version of this technique to assess the effect of 

STR variations on the occupancy of chromatin marks.

GERV builds on a kmer-based statistical model to predict the signal of ChIP-seq 

experiments from a DNA sequence context. Briefly, the model considers that each k-mer has 

a spatial effect on ChIP-seq read counts in a window of [−M, M−1] bp centered at the start 

of the k-mer. The read count at a given base is then modeled as the log-linear combination of 

the effects of all k-mers whose effect ranges cover that base, where k ranges from 1 to 8.

For each eSTR in our dataset, we generated sequences representing each observed allele. We 

filtered STRs with interruptions in the repeat motif, since the sequence for different allele 

lengths is ambiguous for these loci. For each mark, we used the model to predict the read 

count for each allele in a window of ±M bp from the STR boundaries, where M was set to 

1,000 for all marks except p300, for which M was set to 200. Previous findings of GERV 

showed that these values of M give the best correlation between predicted and real ChIP-seq 

signals using cross validation. For each alternate allele, we generated a score as the sum of 

differences in read counts from the reference allele at each position in this window. We 
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regressed the number of repeats for each allele on this score and took the absolute value of 

the slope for each locus. We repeated the analysis on a set of randomly chosen negative 

control loci. Control loci were chosen to match the distribution of repeat lengths and 

absolute signal for each mark in the reference genome. We used a Mann-Whitney rank test 

to compare the magnitudes of slopes between the eSTR and control sets for each mark.

Overlap of eSTR and GWAS genes

Aggregate results for seven common diseases (rheumatoid arthritis, Crohn’s disease, type I 

diabetes, type 2 diabetes, blood pressure, bi-polar disorder, and coronary artery disease) 

were downloaded from the NHGRI GWAS catalog accessed on June 12, 2015. Relevant 

genes were taken from the columns “Reported Gene(s)” and “Mapped_gene”. To generate a 

null distribution, we chose 1000 sets of randomly selected genes matched to eSTR genes on 

expression in LCLs (difference in RPKM < 10) and on cis heritability (difference in variance 

explained by cis bi-allelic variants < 5%). We compared the overlap of GWAS genes with 

eSTR genes vs. the 1000 control sets to determine an empirical p-value.

eSTR associations with human traits

To generate STR genotypes for each of the individuals in the UK10K TwinsUK dataset, we 

ran lobSTR v2.0.3 on each BAM using the options fft-windowsize=16, fft-window-step=4 

and bwaq=15. The resulting BAM files were analyzed using v2.0.3 of the lobSTR 
allelotyper using default options, resulting in STR genotypes for 1,685 individuals.

We then performed an association test between each STR and each phenotype. To control for 

population structure, we adjusted STR dosages and phenotypes for the top 10 ancestry 

principal components based on common SNPs (MAF>=5%) after LD-pruning. Principal 

components were computed using EIGENSTRAT78 v5.0.1. Phenotypes were further 

adjusted for the age at which the phenotype was measured. Association tests were performed 

between the adjusted dosages and the quantile-normalized adjusted phenotypes.

We were able to analyze TwinsUK cohort for the following 38 phenotypes [in parentheses, 

the PMID reference given by TwinsUK to describe the phenotype measurement procedure]: 

Albumin (19209234), Alkaline phosphatase (19209234), Apolipoprotein A-I (15379757), 

Apolipoprotein B (15379757), Bicarbonate, Bilirubin (19209234), Body mass index, 

Creatinine (11017953), Diastolic blood pressure (16249458), Heart Rate (19587794), FEV1 

(17989158), FEV1/FVC ratio (17989158), FVC (17989158), Gamma-Glutamyl 

Transpeptidase (19209234), Glucose (19209234), High density lipoprotein (19016618), 

Standing height (17559308), Hemoglobin (19862010), Hip circumference (17228025), 

Homocysteine (18280483), C-reactive protein (21300955), Insulin (16402267), Mean 

corpuscular volume (19862010), Packed Cell Volume (10607722), Phosphate (12193151), 

Platelet count (19221038), Red blood cell count (19820697), Sodium (18179892), Systolic 

blood pressure (16249458), Total cholesterol (19820914), Triglycerides (15379757), Urea 

(18179892), Uric acid (19209234), Waist circumference (17228025), White blood cell count 

(19820697), Weight (17016694), and Waist to Hip ratio.

We then examined the association in the 666 eSTR loci that contained an eSTR that 

significantly improved the gene expression variance when combined with the lead eSNP 
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(nominal ANOVA p<0.05). Out of these eSTRs, 499 were genotyped in >1000 participants. 

For each phenotype, q values were calculated by adjusting the p-values using the Benjamini-

Hochberg procedure. Only hits with a q-value < 0.1 were reported.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. eSTR discovery and replication
(a) eSTR discovery pipeline. An association test using linear regression was performed 

between STR dosage and expression level for every STR within 100kb of a gene (b) 
Quantile-quantile plot showing results of association tests. The gray line gives the expected 

p-value distribution under the null hypothesis of no association. Black dots give p-values for 

permuted controls. Red dots give the results of the observed association tests (c) Comparison 

of eSTR effect sizes as Pearson correlations in the discovery dataset vs. the replication 

dataset. Red points denote eSTRs whose directions of effect were concordant in both 

datasets and gray points denote eSTRs with discordant directions.
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Figure 2. Variance partitioning using linear mixed models
(a) The normalized variance of the expression of gene Y was modeled as the contribution of 

the best eSTR and all common bi-allelic markers in the cis region (±100kb from the gene 

boundaries) (b–c) Heatmaps show the joint distributions of variance explained by eSTRs and 

by the cis region. Gray lines denote the median variance explained (b) Variance partitioning 

across genes with a significant eSTR in the discovery set and (c) Variance partitioning across 

genes with moderate cis heritability.
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Figure 3. eSTR associations in the context of eSNPs
(a) Schematic of the eSTR effect versus the effect conditioned on the lead eSNP genotype. 

Under the null expectation, the original association (red line) comes from mere tagging of 

eSNPs. Thus, the eSTR effect disappears when restricting to a group of individuals (dots) 

with the same eSNP genotype (colored patches). Under the alternative hypothesis, the effect 

is concordant between the original and conditioned associations (b) The original eSTR effect 

versus the conditioned eSTR effect. Red points denote eSTRs whose direction of effect was 

concordant in both datasets and gray points denote eSTRs with discordant directions (c) 
Quantile-quantile plot of p-values from ANOVA testing of the explanatory value of eSTRs 

beyond that of eSNPs (d) STK33 is an example of a gene for which the eSTR (red rectangle) 

has a strong explanatory value beyond the lead eSNP (blue circle) based on ANVOA. When 
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conditioning on individuals that are homozygous for the “C” eSNP allele (bottom left, green 

dots), the STR dosage still shows a significant effect (bottom right) (e) C11orf24 is an 

example of a gene for which the eSTR was part of the discovery set but did not pass the 

ANOVA threshold. After conditioning on individuals that are homozygous for the “G” eSNP 

allele (bottom left, green dots), the STR effect is lost (bottom right).
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Figure 4. Conservation and epigenetic analysis of eSTR loci
(a) Median PhyloP conservation score as a function of distance from the STR. Red: eSTR 

loci, gray: matched control STRs. Inset: the difference in the PhyloP conservation score 

between eSTRs and matched control STRs as a function of window size around the STR. (b) 
The probability that an STR scores as an eSTR in the discovery set as a function of distance 

from the transcription start site (TSS). eSTRs show clustering around the TSS (black line). 

Conditioning on the presence of a histone mark (colored lines) significantly modulated the 
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probability that an STR is an eSTR (c) The enrichment of eSTRs in different chromatin 

states.
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Figure 5. Association of eSTRs with clinical phenotypes
(a) The overlap between eSTRs and Crohn’s disease GWAS genes (red) versus random 

subsets of genes (gray) matched on expression and heritability profiles in LCLs (b) quantile-

quantile plots of eSTR associations in the TwinsUK data. Only traits with significant 

(FDR<0.1) associations are plotted. Closed circles: significant, open circles: non-significant. 

A: albumin; C: C-reactive protein; D: diastolic blood pressure, F: FVC, M: mean 

corpuscular volume, P: phosphate, U: Urea, Ua: Uric acid.
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