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Hippuristanol - A potent steroid inhibitor of eukaryotic initiation factor 4A
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ABSTRACT
Protein synthesis and its regulatory signaling pathways play essential roles in the initiation and
maintenance of the cancer phenotype. Insight obtained over the last 3 decades on the mechanisms
regulating translation in normal and transformed cells have revealed that perturbed control in
cancer cells may offer an Achilles’ heel for the development of novel anti-neoplastic agents. Several
small molecule inhibitors have been identified and characterized that target translation initiation –
more specifically, the rate-limiting step where ribosomes are recruited to mRNA templates. Among
these, hippuristanol, a polyhydroxysteroid from the gorgonian Isis hippuris has been found to inhibit
translation initiation by blocking the activity of eukaryotic initiation factor (eIF) 4A, an essential RNA
helicase involved in this process. Herein, we highlight the biological properties of this compound,
its potential development as an anti-cancer agent, and its use to validate eIF4A as an anti-neoplastic
target.
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Introduction

Perturbed translational control has been implicated in
the initiation and maintenance of the cancer pheno-
type, supporting angiogenesis, and modulating drug
response.1-3 The energetically demanding process of
translation is highly regulated predominantly at the
level of initiation, with control exerted by 2 factors –
eukaryotic initiation factor (eIF) 2 and eIF4F.4,5 The
role of eIF2 in translation initiation under normal
physiological or stress conditions has been extensively
reviewed4,5 and regulation imposed at this step pro-
foundly inhibits translation of a majority of
mRNAs.4,5 Since perturbation of eIF2 activity in can-
cer biology is less characterized and understood than
the role of eIF4F, this review will focus solely on the
latter.

The eIF4F complex consists of 3 subunits that func-
tion to recruit ribosomes to mRNAs (Fig. 1A). The
eIF4E subunit recognizes 50 cap structures (m7GpppN,
where N is any nucleotide), eIF4A is an RNA helicase
required to remodel secondary structure proximal to
the cap structure, and eIF4G provides a platform for
subunit association, participates in RNA binding, and
recruits the 40S ribosome (with associated factors)

through bridging interactions with ribosome-bound
eIF3.6-8 The eIF4F complex does not bind all mRNAs
equally, but rather appears to favor templates with an
accessible cap structure9-12 and reduced cap-proximal
secondary structure.12-16 Assembly of the eIF4F com-
plex is regulated by mTOR via phosphorylation of
eIF4E-Binding Proteins (4E-BPs – of which there are
3 genes with 4E-BP1 being the best characterized).
Stimulation of mTOR signaling results in phosphory-
lation of 4E-BPs, dissociating 4E-BP:eIF4E complexes
and enabling eIF4E to associate with eIF4G.17

eIF4E appears to be the least abundant of all the
initiation factors (0.2–0.3 molcules/ribosome)18,19

implying that mRNAs must compete for the limiting
amounts of eIF4F during translation initiation with
the outcome dictated, in part, by structural elements
in the 50 untranslated region (UTR). This point has
been challenged since reductions in eIF4E levels in
eIF4EC/¡ mice show little effect on global transla-
tion (at least in MEFs) and has been interpreted to
indicate that eIF4E is not rate-limiting in vivo.20

However, similar observations had been previously
documented in cells treated with anti-sense oligonu-
cleotides21 or shRNAs22,23 targeting eIF4E. eIF4E is
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Figure 1. A. Simplified model of eIF4F-dependent initiation displaying cap recognition and subsequent destabilization of local second-
ary structure. eIF4H and eIF4B share a common binding site on eIF4A and these interactions are mutually exclusive.111 Not shown is
mRNA circularization mediated through poly(A) tail:poly(A)-binding protein (PABP) and eIF4G. B. Schematic diagram illustrating targets
of various small molecules and anti-sense oligonucleotides (ASO) that target eIF4E-cap interaction (4Ei-1), prevent synthesis of the eIF4E
subunit (4E ASO), inhibit eIF4E:eIF4G interaction (4E1RCat, 4E2RCat, 4E3RCat (unpublished data), 4EGI-1), and interfere with eIF4A heli-
case activity (silvestrol, hippuristanol, pateamine A). (Note that although ribavirin has been claimed to inhibit eIF4E-cap interaction,112

this has been questioned.)113,114
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under homeostatic control via regulation of 4E-BP
levels and reductions in eIF4E levels leads to
increased degradation of 4E-BP1, buffering against
changes in eIF4F levels.24

Changes in eIF4F activity is not expected to impact
all mRNAs equally but rather cause a small change in
global translation with a disproportionate, selective
alteration in translation of a subset of mRNAs.1-3 As it
turns out, several of these eIF4F-dependent mRNAs
fuel tumorigenesis and thus one way to impact on
tumor maintenance is to block eIF4F activity.1-3 There
has therefore been intense interest in identifying small
molecule inhibitors of eIF4F. Several HTS assays and
directed synthetic efforts have identified compounds
that target eIF4E-cap interaction,25 prevent synthesis
of the eIF4E subunit,21,26 inhibit eIF4E:eIF4G interac-
tion,27-29 and interfere with eIF4A helicase activity30-32

(Fig. 1B). Although these have been reviewed,1-3 here
we update the current development status of hippuris-
tanol, a polyhydroxysteroid first isolated from the
coral Isis hippuris,33 and for which until recently, bio-
logical characterization was delayed due to limitations
in supply.

eIF4A and translation initiation

eIF4A is a prototypical member of the DEAD-box
family of RNA helicases and one of the more abun-
dant translation factors (approximately 3 copies/ribo-
some).34,35 Given that eIF4E levels are approximately
10-fold lower,34,35 the majority (approximately 90%)
of eIF4A exists as free form while only a small fraction
is present in the eIF4F subunit.36-38 The higher abun-
dance of eIF4A, relative to eIF4F, as well as the ability
to crosslink (in a cap-dependent manner) eIF4A to
sites located 52 nucleotides downstream of the cap
structure, has lead to models invoking recycling of
eIF4A through the eIF4F complex during translation
initiation (Fig. 1A). 39,40 Mammals have 2 eIF4A pro-
teins (eIF4AI [DDX2A] and eIF4AII [DDX2B]) which
share approximately 90% sequence identity at the
amino acid level.41 Although eIF4AI and eIF4AII are
functionally interchangeable in vitro,42 they do not
appear to be equivalent in vivo. eIF4AI, but not
eIF4AII, is required for cell viability19,43 and eIF4AII
is not capable of rescuing the inhibition of translation
that ensues following suppression of eIF4AI.19 In gen-
eral, eIF4AI is the more abundant protein41,44,45 and
the majority of biochemical studies assessing eIF4A

activity have been performed with eIF4AI. eIF4AI and
eIF4AII possess both RNA-stimulated ATPase and
ATP-stimulated RNA-binding activity. The eIF4A
helicase and ATPase activities are strongly stimulated
when eIF4A is part of the eIF4F complex or is associ-
ated with either of 2 RNA binding proteins, eIF4B or
eIF4H46 47 (Fig. 1A).

Dominant-negative (dn) mutants of eIF4A have
highlighted the critical role that this factor plays in
translation.48,49 One such mutant is capable of assem-
bling into the eIF4F complex and prevents cap recog-
nition.49 Supplementing translation extracts with dn
eIF4A mutants has revealed that translation inhibition
is directly related to the degree of 50 UTR secondary
structure. Analysis of transcripts sensitive to eIF4A
inhibition by silvestrol (another eIF4A inhibitor) is
consistent with the concept that structural barriers
within the 50 UTR are a key determinant of eIF4A
dependency.50-52

The activity of eIF4A can be negatively regulated by
PDCD4, a tumor suppressor gene product.53-55

PDCD4 associates with eIF4A, displacing eIF4G and
RNA,54 and resulting in preferential suppression of
translation of mRNAs with structured 50 UTRs.53,56

The association between PDCD4 and eIF4A is regu-
lated by the PI3K/mTOR signaling pathway through
the downstream S6K branch.57 Phosphorylation of
PDCD4 by S6K1 leads to its ubiquitin-mediated deg-
radation, freeing eIF4A for assembly into the eIF4F
complex.57

Data implicating a direct role for dysregulated
eIF4A levels contributing to tumor initiation or
maintenance is sparse. This might be expected for
an abundant protein, if its critical functional role is
one mediated through a rate-limiting complex. On
the other hand, there is a significant body of work
indicating that eIF4F activity or eIF4E levels will
drive tumor initiation, support tumor cell mainte-
nance, and contribute to chemoresistance.1-3 Ex vivo
experiments have shown the efficacy of targeting
eIF4A using ASOs58 or ectopic PDCD4 expression
to block transformation59 and delay tumor onset
and progression in a chemically-induced skin tumor
model.60 As well, another eIF4A inhibitor, silvestrol,
has shown activity in a variety of pre-clinical cancer
models.31,50,51,61-63 Presumably, these physiological
responses are due to inhibition of eIF4F activity.
Given the difficulty in “translating” biologicals such
as proteins and ASOs into therapeutics, there was
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excitement when hippuristanol emerged from a high
throughput screen aimed at identifying novel inhibi-
tors of cap-dependent translation.32,64

Hippuristanol – A selective inhibitor of eIF4A

Hippuristanol is a member of one of 4 classes of poly-
oxygenated steroids. These include (i) the hippurin or
hippuristanol type containing a spiroketal ring, (ii) the
gorgosterol type containing a cyclopropane residue;
(iii) the hippuristerone type possessing a 3-keto func-
tionality, and (iv) the hippuristerol type (Fig. 2A).
Although a large number of compounds from the var-
ious groups have been isolated and characterized,
those belonging to the hippurin or hippuristanol class
exhibit the most potent cytotoxic activity ex vivo
against tumor cell lines, underscoring the importance
of the spiroketal group for activity.32,33,65-67 Some
members of the gorgosterol class exhibit moderate
cytotoxicity68,69 (IC50 approximately 2 mM against
NBT-T2 rat bladder epithelial cells and approximately
15 mM [for presumably a 4 day exposure period70])
and have shown activity against human epidermoid
carcinoma KB drug-resistant cells expressing the drug
transporter, ABCB1/P-glycoprotein (approximately
6–10 greater activity than against cells not expressing
ABCB1), but less so against cells expressing multi-
drug resistance protein-1 (MRP1).68 Tumor cell cyto-
toxicity has been reported for compounds of the hip-
puristerone family66 but these are far less potent than
hippurin or hippuristanol-like compounds. There is
also one report describing moderate activity of a hip-
puristerone against human cytomegalovirus (HCMV)
(EC50 approximately 10 mM), while (together with 4
other hippuristerones) the same compound showed
no activity against P-388 mouse lymphocytic leuke-
mia, HT-29 human colon carcinoma, or human
embryonic lung cells.71 Acknowledging the fact that
not all gorgosterols, hippuristerones, and hippurista-
nols isolated to date have been tested for cytotoxic-
ity,72-75 in general it is the hippurin/hippuristanol
class of compounds that exhibit the highest level of
activity against tumor cells in culture (e.g. IC50

approximately 700 nM against HeLa cells for a 24 hrs
exposure32).

Hippuristanol’s mechanism of action differs signifi-
cantly from that of 2 other eIF4A inhibitors, pate-
amine A and rocaglates. Whereas pateamine A and
rocaglates appear to act as chemical inducers of

dimerization by stimulating eIF4A:RNA binding, hip-
puristanol prevents both free eIF4A and eIF4F-bound
eIF4A from interacting with RNA.32 Hippuristanol
does not inhibit ATP binding.32 Single molecule FRET
experiments have shown that hippuristanol locks
eIF4AI in a closed conformation preventing its transi-
tion from a closed to an open state, an event essential
to eIF4AI’s helicase activity.76 Since eIF4A does not
normally sample the closed state (transition to the
closed conformation is eIF4G- and eIF4B-stimulated)
and the eIF4A closed conformation is normally RNA
bound,77 hippuristanol may be locking eIF4A in an
aberrant closed complex that can no longer participate
in initiation.

NMR and site-directed mutagenesis studies have
revealed that hippuristanol interacts with the C-termi-
nal domain of eIF4A in a pocket involving amino
acids within and spanning conserved motifs V and VI
(Fig. 2B).32,78 These studies provided valuable insight
into some of the key residues involved in the interac-
tion of eIF4A with hippuristanol.32,78 Hippuristanol is
thought to make direct contacts with mouse eIF4AI
residues G335I336, V338, L343V344, as well as K369 - V371

whereas residues T328 - N346 and R368 - I373 lie within
5A

�
of hippuristanol (Fig. 2B). Residues making direct

contacts with hippuristanol are conserved among
eIF4AI, eIF4AII, as well as the yeast TIF1 and TIF 2
homologues (Fig. 2B).78 These results have been vali-
dated by mutagenesis studies of the hippuristanol
binding site which led to altered sensitivity (RNA
binding and helicase activity of recombinant proteins)
to hippuristanol in vitro.78 Hippuristanol-resistant
eIF4A alleles were able to rescue in vitro inhibition of
translation by hippuristanol, consistent with the
effects of this small molecule on translation being
mediated through eIF4A inhibition.78 Hippuristanol
inhibits the RNA-stimulated ATPase activity of both
eIF4AI and eIF4AII to similar extents.78

Among all members of the DEAD-box helicase
family, eIF4AIII [DDX48]) [implicated in non-
sense-mediated decay (NMD)79-82] has the most
related hippuristanol binding site - differing by 6
amino acids compared to the eIF4AI site (Figs. 2B
and 3). Consequently ten times more hippuristanol
is required to inhibit the ATPase activity of
eIF4AIII compared to eIF4AI or eIF4AII.78

Increased sensitivity to hippuristanol has been engi-
neered into eIF4AIII by grafting the eIF4AI hippur-
istanol binding site into eIF4AIII.78 Other members
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of the DEAD-box helicase family display higher
degeneracy within the hippuristanol-binding site
(Fig. 3) and are thus not expected to be as sensitive
to hippuristanol as eIF4AI or eIF4AII. Indeed, to

date none have been found to be responsive to hip-
puristanol concentrations as high as 50 mM.78

Whether hippuristanol targets other cellular pro-
teins is unknown.

Figure 2. A. Structure of representative molecules from the 4 polyoxygenated steroid classes. B. Schematic diagram illustrating charac-
teristic domains that comprise DEAD-box RNA helicases with functions of the motifs indicated. Primary amino acid sequence of con-
served motifs V and VI (indicated by overline) and neighboring amino acids of the indicated helicases. Direct protein-hippuristanol
NOEs are highlighted in bold and light blue and those within »5A

�
are in orange shading.

TRANSLATION e1137381-5



The selectivity of hippuristanol for eIF4A has pro-
vided a powerful tool by which to probe for eIF4A-
dependent processes. Hippuristanol has been used to
characterize viral and cellular IRESes in vitro and in
vivo32,83-86 and to probe the eIF4A-dependency of cel-
lular mRNAs.87-91 As well, it has been used to investi-
gate the effects of Herpes Simplex Virus 1 (HSV 1)
virion host shutoff (vhs) protein on cell type specific
translation of viral late RNAs,92 the effect of HSV 1

host translation shutoff on nuclear envelope-derived
autophagy,93 and the dependency of Influenza virus
A polymerase on eIF4F.94 As might be expected,
hippuristanol exhibits anti-viral activity,29 but
whether it can be used as an anti-viral therapeutic
remains untested. Hippuristanol has also been
used to characterize the eIF4A dependency of
translational events required for long-term synaptic
plasticity and potentiation.95,96

Figure 3. Cladogram displaying the multiple sequence alignment obtained with murine DEAD-box RNA helicase family members using
Clustal Omega (http://www.ebi.ac.uk/clustalw/). Alignments were performed with sequences spanning and immediately flanking con-
served motifs V and VI only. For example, this would correspond to 328-TTDLLARGIDVQQVSLVIN—-HRIGRGGRFGRKGVAINM-375 for
eIF4AI. A complete list of sequences compared can be found in Figure S2 of Ref.78 The Entrez Protein IDs are in parenthesis. eIF4AI and
eIF4AII are highlighted in yellow for easy reference.
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Anti-neoplastic activity of hippuristanol

Hippuristanol as a single agent has shown promis-
ing anti-neoplastic activity. In 1981, Higa et al.33

reported that hippuristanol inhibited the growth of
DBA/MC fibrosarcoma cells and exhibited in vivo
activity against lymphocytic leukemia P-388 tumors
in mice. More recently, hippuristanol has shown
activity against human adult T-cell leukemia (ATL)
in vitro and in vivo in a xenograft model.97 Addi-
tionally, hippuristanol is active against primary effu-
sion lymphoma (PEL), causing cell cycle arrest and
caspase activation followed by apoptosis.98 What is
currently required is a comprehensive understand-
ing of the pharmacokinetic/pharmacodynamics
properties of hippuristanol so that an optimal dos-
ing schedule and route of administration can be
determined for testing in a larger number of xeno-
graft and genetically engineered mouse models
(GEMMs) of cancer.

Elevated eIF4E levels and eIF4F activity have also
been linked to acquired resistance of PI3K and
MAPK pathway targeted therapies (reviewed in
Refs.1-3). Increased eIF4E levels are associated with
resistance to PI3K/mTOR targeted therapies in cell
based models,99,100 as well as doxorubicin101 and
rapamycin102 resistance in the Em-Myc lymphoma
model.101 In addition, elevated eIF4F levels have
been associated with resistance to anti-BRAF and
anti-MEK therapies103 and targeting eIF4F syner-
gizes with anti-BRAF therapy.103 Targeting eIF4A
has also been shown to be a viable approach for
overcoming some of this acquired resistance. More
specifically, in a Myc-driven lymphoma model (the
Em-Myc mouse) hippuristanol is capable of resensi-
tizing tumor cells to DNA damaging agents (doxo-
rubicin).104 As well, hippuristanol is capable of
synergizing with the Bcl-2 family inhibitor, ABT-
737, to induce a potent synergistic response that
triggers cell death in mouse and human lymphoma
and leukemia cells.104 Multiple myeloma cells are
sensitive to hippuristanol (IC50 approximately
50 nM for a 48 h exposure)105 and hippuristanol
synergizes with dexamethasone ex vivo, a frontline
glucocorticoid used in the management of this dis-
ease.105 These studies demonstrate a role for eIF4F
in contributing to drug resistance and proof-of-con-
cept for overcoming this with eIF4A inhibitors.

Structure-activity relationships of hippuristanol

Hippuristanol is a rare natural product and it was
critical to develop synthetic routes to obtain suffi-
cient material for biological studies as well as
undertaking structure-activity relationship (SAR)
studies. Four synthetic routes to hippuristanol have
been published and used as starting material either
hydrocortisone or hecogenin acetate/11-ketotigige-
nin106-109 (Fig. 4A). These routes were employed to
generate a number of analogs that have been tested
for translation inhibition activity106,109 and inhibi-
tion of cell proliferation against HeLa cells.106

Taken together with data assessing the activity of
several naturally occurring hippuristanol congeners
in translation and eIF4A helicase activity,32 we
have a fairly good understanding of the essential
features required for optimal hippuristanol activity
(Fig. 4B). The R stereochemistry at C22 is essential
for activity32 as are the gem-dimethyl substitutions
on the F ring.110 Appending functionalities onto R1
results in a 3-fold decrease in activity, whereas
altering the R2 OH leads to a 25-fold decrease in
activity.32,109 Converting the R4 OH to a ketone or
acetate diminishes activity approximately 25- and
>2000 -fold, respectively.32 Eliminating the R5 CH3

group decreases activity approximately 5–8 fold,
whereas increasing the bulkiness at R5 decreases
activity >15-fold.109 The rank order of inhibition
obtained in in vitro translation assays was similar
to when several of the same congeners were
assessed for direct inhibition of eIF4A RNA heli-
case activity32 - consistent with eIF4A being the
target through which hippuristanol exerts its inhib-
itory effects on protein synthesis. These results
demonstrate that a large surface area of hippurista-
nol likely participates in binding to eIF4A.

Future perspectives

There are several issues that will need to be resolved
as hippuristanol is developed for clinical assessment.
A detailed assessment of the pharmacological prop-
erties is urgently needed. In the past this informa-
tion could not be obtained due to limitations in
compound availability, but this has recently been
overcome by synthetic routes allowing access to suf-
ficient quantities of material for pharmacological
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studies. A better understanding of the types of
tumor cells that are most likely to respond to eIF4A
inhibition is required. The identification of surro-
gate biomarkers that can report on eIF4A/eIF4F

inhibition will also be important to ensure that tar-
get inhibition is maintained in vivo. As challenging
as these are, they are essential to optimizing the
chances of success for eIF4A inhibitors as they

Figure 4. A. Several synthetic routes to hippuristanol have been elaborated, involving hydrocortisone,106,109 hecogenin acetate,108 or
11-ketotigogenin107 as starting material. B. Structure-activity relationship for hippuristanol. See text for details.
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move forward from being powerful tools used in the
laboratory to potential drugs for blocking eIF4A/
eIF4F function in tumor cells. We look forward
helping extend the paradigm of targeting eIF4F for
the treatment of cancer.
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