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Abstract

Objective—Neutrophils are involved in the inflammatory responses during atherosclerosis. 

Human neutrophil peptides (HNPs) released from activated neutrophils exert immune modulating 

properties. We hypothesized that HNPs play an important role in neutrophil-mediated 

inflammatory cardiovascular responses in atherosclerosis.

Methods and Results—We examined the role of HNPs in endothelial-leukocyte interaction, 

platelet activation, and foam cell formation in vitro and in vivo. We demonstrated that stimulation 

of human coronary artery endothelial cells with clinically relevant concentrations of HNPs 

resulted in monocyte adhesion and transmigration; induction of oxidative stress in human 

macrophages, which accelerates foam cell formation; and activation and aggregation of human 

platelets. The administration of superoxide dismutase or anti-CD36 antibody reduced foam cell 

formation and cholesterol efflux. Mice deficient in double genes of low-density lipoprotein 

receptor and low-density lipoprotein receptor–related protein (LRP), and mice deficient in a single 

gene of LRP8, the only LRP phenotype expressed in platelets, showed reduced leukocyte rolling 

and decreased platelet aggregation and thrombus formation in response to HNP stimulation.

Conclusion—HNPs exert proatherosclerotic properties that appear to be mediated through LRP8 

signaling pathways, suggesting an important role for HNPs in the development of inflammatory 

cardiovascular diseases.
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Recent studies have revealed that polymorphonuclear neutrophils (PMNs) participate in the 

development of atherosclerotic lesions.1–5 Indeed, PMNs can be detected in human tissue 

specimens at sites of plaque rupture and erosion or in thrombi from patients with acute 

coronary syndrome.6 The number of PMNs in blood and the levels of elastase and 

myeloperoxidase (MPO) released from PMNs have been reported to be associated with 

atherosclerosis.6–8 A study in more than 350 000 patients with atherosclerosis demonstrated 

that the subjects with higher leukocyte counts have higher relative and absolute acute and 

chronic mortality rates than those with lower leukocyte counts.9 A positive correlation 

between peripheral PMN count and myocardial infarction has also been reported.10,11 In 

patients with chronic stable angina, PMN count and activation are an independent predictor 

of the presence of multiple complex stenoses irrespective of the extent of coronary artery 

disease.7,12 A recent study demonstrated that peripheral blood PMN counts are higher in 

patients with rheumatoid arthritis implicated with premature atherosclerosis than in control 

subjects.13 The increased PMN count is associated with high concentration of inflammatory 

mediators, including interleukin-6, intercellular adhesion molecule-1 (ICAM-1), E-selectin, 

and tumor necrosis factor-α in the blood.13

Using apolipoprotein E–deficient mice with fluorescent PMNs to study specifically PMN 

presence and recruitment in atherosclerotic lesions, Rotzius et al have recently shown that a 

majority of leukocytes interacting with the endothelium on lesion shoulders are PMNs, 

suggesting a significant recruitment of these cells to the plaque.14 The functional importance 

of PMNs in the formation of the atherosclerotic plaque was demonstrated by Zernecke et al,3 

who reported that the size of murine atherosclerotic plaques has been shown to be closely 

correlated with the number of PMNs in the peripheral blood, and depletion of circulating 

PMNs resulted in reduction of plaque formation.

Evidence has shown that several members of PMN-specific proteins, including human 

neutrophil peptides (HNPs) and azurocidin (heparin-binding protein) are found at the 

luminal site of the endothelium,15 suggesting their deposition by PMNs. During 

inflammation, large amounts of intracellular proteins are released from the activated PMNs 

into the extracellular milieu as a consequence of PMN degranulation, leakage during 

phagosome formation, and cell death. The highly homologous HNP-1, -2, and -3, also 

known as α-defensins, make up more than 50% of the total protein content within the 

azurophilic granules of PMNs.16 HNPs have the capacity to kill a wide spectrum of Gram-

positive and Gram-negative bacteria, fungi, and some enveloped viruses in vitro.17 Recent 

studies have demonstrated that other leukocytes, including monocytes, macrophages, T cells, 

and immature dendritic cells, also express HNPs in particular when stimulated with 

cytokines.18–20 Therefore HNPs appear to participate in both innate and acquired immunity.

In healthy volunteers, plasma levels of HNPs range from undetectable to 50 to 100 ng/mL. 

However, mean HNP levels are 2- to 4-fold greater at the onset of bacterial infection and 

during nonbacterial infection compared with healthy volunteers.21 Under septic conditions, 
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plasma HNP levels range from 900 to 170 000 ng/mL, compared with a mean of 42±53 

ng/mL in healthy controls.22 An excellent correlation exists between the concentration of 

HNPs and the number of PMNs in the blood of patients with inflammatory diseases.21 We 

speculate that these proteins released from PMNs and other leukocytes are not bystanders 

but play an active role in the development of atherosclerosis.

Indeed, HNPs are found in the luminal site of human atherosclerotic coronary arteries in 

both large- and small-vessel endothelium.23 HNPs are also found in intimal smooth muscle 

cells of atherosclerotic human cerebral arteries.24 Moreover, a significant correlation is 

observed in men between the amount of HNP deposition in skin and severity of coronary 

artery disease.25 HNP stimulation increased adhesion of the cultured human endothelial 

ECV-304 cells in plastic plate coated with gelatin.26 In porcine coronary artery, 

endothelium-dependent relaxation in response to bradykinin was significantly reduced after 

treatment with HNPs associated with an increased production of superoxide anion and a 

decreased expression of endothelial nitric oxide synthase at both levels of mRNA and 

protein.27 We observed that stimulation of human umbilical vein endothelial cells (HU-

VECs) with HNPs resulted in enhanced formation of peroxinitrite that led to endothelin-1 

production, which was largely attenuated by the treatment with the reactive oxygen species 

scavenger N-acetyl-L-cysteine.28 This observation is of interest because endothelin-1 has 

been found at increased levels in endothelial cells, smooth muscle cells, and macrophages 

within atherosclerotic plaques.25

Retention of lipoproteins within the vasculature is an important event in the pathogenesis of 

atherosclerosis. HNPs have been reported to form stable multivalent complexes with 

lipoprotein(a).29 Whereas HNPs and lipoprotein(a) individually can readily traverse through 

the endothelial cell membranes, HNP/lipoprotein(a) complexes are lodged onto the cell 

surface of endothelial and smooth muscle cells, resulting in a marked increase in the total 

amount of cell-associated lipoprotein.30 Furthermore, HNPs can stimulate the binding of 
125I-low-density lipoprotein (LDL) to cultured HUVECs, smooth muscle cells, and 

fibroblasts in a dose-dependent and saturated manner.30 An antibody against the LDL 

receptor (LDLR) is able to inhibit the binding of 125I-HNPs to HUVECs.30 Moreover, HNPs 

bind directly to isolated α2-macroglobulin receptor (LDLR–related protein [LRP]) in a 

dose-dependent manner, and the binding is inhibited by anti-LRP antibodies and LDLR-

associated protein31 to prevent binding of LRP ligands.

Given its biological nature as an inflammatory marker, the ability to promote cellular 

oxidation, and the interacting capacity with lipoproteins described above, we hypothesized 

that HNPs function as an effector in the pathogenesis of cardiovascular diseases. 

Specifically, HNPs increase monocyte-endothelial cell interaction, accelerate foam cell 

formation, and trigger the activation of platelets through LRP receptors. This hypothesis was 

tested in vitro with cultured primary human coronary endothelial cells, human acute 

monocytic leukemia cell line (THP-1)-derived macrophages, and human primary platelets, 

and in vivo with mice with LDLR and LRP double-gene or LRP8 single-gene deficiency, 

respectively.

Quinn et al. Page 3

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2016 June 15.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Materials and Methods

The study protocol was approved by the institutional Research Ethics Board for isolation of 

HNPs from sputum of patients with cystic fibrosis and for human monocyte and platelet 

isolation from healthy nonsmoking blood donors. The animal experiments were approved by 

the institutional Animal Care and Use Committee.

HNP Isolation

HNPs were purified from pooled sputum of patients with cystic fibrosis as previously 

described32 (see supplemental material, available online at http://atvb.ahajournals.org).

Cell Activation, Adhesion, and Transmigration Assays

Primary human coronary artery endothelial cells (HCAECs) (Cell Applications, San Diego, 

CA) were used within 4 passages. Expression of CD11b was measured to evaluate human 

monocyte activation after HNP stimulation, and monocyte adhesion and transmigration 

assays were performed as previously described33 (see supplemental material).

THP-1-Derived Macrophages Expressing CD36 and CD68

The expression of surface markers CD36 and CD68 was used to identify THP-1 monocyte-

derived macrophages.34 Briefly, THP-1 cells were stimulated with 5 ng/mL phorbol 12-

myristate 13-acetate (Sigma-Aldrich) for 72 hours, and adherent cells were cultured for 

additional 24 hours. The cells were then incubated with mouse anti-human CD36- 

(Invitrogen, Carlsbad, CA) or CD68-FITC antibody (AbD Serotec, Oxford, United 

Kingdom) for 30 minutes followed by flow cytometric analysis (FACSCanto flow cytometer, 

Becton Dickinson, Franklin Lakes, NJ).

Foam Cell Assay

The macrophages described above were incubated with 10 μg/mL HNPs, 50 μg/mL native 

LDL (Calbiochem, La Jolla, CA), or HNPs and LDL together in serum-free medium for 16 

hours. As for the positive control condition, macrophages were incubated with 50 μg/mL 

oxidized LDL (oxLDL) (Kalen Biomedical, Savage, MD) or in combination with HNPs for 

16 hours. To investigate the effects of HNPs on LDL oxidation in macrophages, additional 

cells were treated with the O2
− scavenger superoxide dismutase (200 U/mL, Sigma-Aldrich) 

5 minutes before the incubation with HNPs and LDL. The foam cell formation was 

evaluated as previously described.35

Cholesterol Efflux Assay

To label the intracellular cholesterol pool, the THP-1 monocyte-derived macrophages were 

loaded with HNPs, LDL, oxLDL, anti-CD36 antibody and fluorescent Pennsylvania 

Green/N-alkyl-3β-cholesterylamine-derived molecular probe (F-Ch, 10 μmol/L from a 10 

mmol/L dimethyl sulfoxide stock solution, provided by Dr B. Peterson, University of 

Kansas). After 24 hours, cells were washed and incubated in 1% FBS medium for another 

12 hours to allow the labeled cholesterol to be distributed to various intracellular 

compartments. After washing, efflux was induced by addition of high-density lipoprotein 
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(100 μg/mL) for 1 hour. The medium was collected, and cells were lysed and centrifuged at 

13 200g for 10 minutes. The F-Ch in the medium and cell lysates was quantified relative to 

individual standard curves using excitation and emission wavelengths of 485 and 535 nm, 

respectively.36

Murine Platelet Isolation

Male B6129SF2-Lrp8tm1Her/J mice (6 to 8 weeks, Jackson Laboratory, Bar Harbor, ME) 

and heterozygotes were mated to generate LRP8+/+ and LRP8−/− littermates. LRP8−/− mice 

have 2 exons deleted from the cytoplasmic domain of the LRP8 receptor, resulting in a DNA 

sequence that is 100 base pairs shorter than full-length gene sequence in wild-type mice. 

Platelets from mice were isolated as previously described to obtain platelet-rich plasma 

(PRP) and platelet-poor plasma.37 Gel filtration of PRP on columns of Sepharose 2B was 

performed, and 2×108/mL of platelets was used in experiments.

Competitive Binding Assay Between HNPs and Recombinant Human LRP8

HNPs were preincubated with recombinant human LRP8 (R&D Systems Inc, Minneapolis, 

MN) at a 10:1 molar ratio for 30 minutes at 37°C. Murine and human platelets were 

stimulated at room temperature for 5 minutes with HNPs (10 μg/mL), vehicle, or the mixture 

of HNPs and recombinant human LRP8. Platelets were stained with anti-mouse CD62P-

FITC antibody (BD Biosciences, Mississauga, ON) or anti-human CD62P-FITC antibody 

(R&D Systems), respectively, for 25 minutes and fixed for analysis by flow cytometry.

Platelet Aggregation Assay

Human and murine gel-filtered platelets and PRP were stimulated with HNPs, and 

aggregation was assessed at 37°C using an aggregometer. For priming experiments, murine 

and human PRP were incubated with HNPs or vehicle for 2 minutes before the addition of 

ADP. At the end of the aggregation experiment, an aliquot of 30 μL of PRP from each 

condition was placed on coverslips for examination of thrombus formation under a confocal 

microscope.

Murine Pulmonary Endothelial Cell Isolation

Male LRP8−/− and age (2 to 3 weeks) and background strain-matched mice (Jackson 

Laboratory) were used for endothelial cell isolation by using rat anti-mouse CD31 antibody 

(PECAM-1, Bio-legend, San Diego, CA) followed by a magnetic separation (Dynal MPC-S, 

Invitrogen Dynal AS, Oslo, Norway) (see supplemental material for details). FITC rat anti-

mouse CD54/ICAM-1 monoclonal antibody (1:50, Biolegend), PE rat anti-mouse CD106/

vascular cell adhesion molecule-1 monoclonal antibody (1:50, GenWay Biotech, Inc, San 

Diego, CA), and DAPI (Molecular Probe, Molecular Probes, Inc, Eugene, OR) were used for 

immunostaining, followed by quantitative analysis using ImageJ software (NIH, http://

imagej.nih.gov/ij/download.html).

Mouse Monocyte Isolation and Flow Cytometry

Male LRP8−/− and age (2 to 3 weeks) and background strain-matched mice (Jackson 

Laboratory) were euthanized by overdose anesthesia for monocyte isolation from bone 
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marrow (Mouse Monocyte Enrichment Kit, Stemcell Technologies Inc, Vancouver, British 

Columbia, Canada). Monocytes (2×105) were suspended in RPMI-1640 in 24-well plates for 

2 hours and then incubated without or with HNPs 10 μg/mL for 1 hour. The cells were 

stained with unlabeled or PE rat anti-mouse CD11b monoclonal antibody (Biolegend) for 30 

minutes at room temperature and then were analyzed using a BD FACSCanto with BD 

FACSDiva software (BD Biosciences, Mountain View, CA).

Measurements

Concentrations of reactive nitrogen species, HNPs, MPO, chemokines, and adhesion 

molecules were measured (see supplemental material).

Intravital Microscopy

Leukocyte Adhesion—Male B6129SF2 and age-matched (6 to 8 weeks) and background 

strain–matched Ldlrtm1Her/Lrpap1tm1Her/J, and LRP8−/− mice (Jackson Laboratory) were 

anesthetized and received intravenously HNPs (10 mg/kg body weight corresponding to 

approximately 10 μg/mL)38 or vehicle control solution. In additional experiments, platelets 

were depleted in mice who received intraperitoneal injection of rat anti-mouse CD41 

monoclonal antibody at 2 μg per mouse (from a 500 μg/mL PBS stock solution provided by 

Dr A. Lazarus, the University of Toronto) 24 hours before HNP injection. This dose and 

timing of application of anti-CD41 resulted in 80% platelet depletion in the whole blood. An 

equal volume of PBS was used as for vehicle control.

To label circulating leukocytes,39 rhodamine 6G at 200 μL (20 μg/μL, Sigma-Aldrich, St. 

Louis, MO) was injected intravenously. The carotid artery was exposed and monitored under 

an upright microscope (Axiotechvario 100HD, Zeiss, Jena, Germany) on a custom-built, 

computer-controlled warmed stage. The percentage of rolling leukocytes was calculated as 

previously described.39

Platelet Aggregation—Male LRP8−/− and age (6 to 8 weeks) and background strain-

matched mice (Jackson Laboratory) were anesthetized and received intravenously HNPs (10 

mg/kg body weight)38 or vehicle control solution. Ex vivo–labeled platelets (250×106 to 

300×106) were infused intravenously into the tail vein for real-time visualization by using 

the intravital fluorescence microscope setup described above. The thrombus formation was 

recorded during the first 15 minutes after FeCl3 administration to determine the time 

required for reaching maximal vessel occlusion.

Statistical Analysis

Data are presented as a means±SE. Statistical significance was determined using a 1-way 

ANOVA followed by a Dunnett comparison. Analyses were performed using GraphPad 

Prism, version 5.00c (GraphPad Software Inc, San Diego, CA). A probability value <0.05 

was considered statistically significant.
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Results

HNPs Induce Monocyte-Endothelial Interaction and Chemokine Production

When the HCAECs were incubated with HNPs, monocyte adhesion to HCAECs increased at 

10 μg/mL compared with the vehicle control group (Figure 1A). In addition, HNPs induced 

significant monocyte transmigration through the HCAEC monolayer in a dose-dependent 

manner (Figure 1B). The expression of ICAM-1 but not vascular cell adhesion molecule-1 

increased in HCAECs, and CD11b increased in human monocytes after stimulation with 

HNPs, compared with the vehicle control groups (Figure 1C and 1D). An increase in the 

production of interleukin-8 was observed in the cultural supernatants of both HCAECs and 

monocytes after HNP stimulation at 10 μg/mL (Figure 1E) and monocyte chemotactic 

protein-1 in HCAECs at both 1 μg/mL and 10 μg/mL (Figure 1F).

HNPs Increase Oxidative Stress and Accelerate Foam Cell Formation

The macrophage scavenger receptors CD36 and CD68 are major receptors responsible for 

uptake of modified LDL contributing to foam cell formation. We observed an increase in 

macrophage surface expression of CD36 and CD68 after stimulation with HNPs, as 

compared with the vehicle control group (Figure 2A and 2B). An enhanced oxidative stress 

as reflected by nitrotyrosine formation was observed in macrophages after HNP stimulation 

at 10 μg/mL (Figure 2C).

Incubation of macrophages with oxLDL resulted in increased Oil Red O staining, indicative 

of foam cell formation (Figure 2D and 2E). A combined stimulation of oxLDL and HNPs 

did not result in any further increase in Oil Red O staining. A similar increase in intracellular 

Oil Red O staining as seen with oxLDL incubation was observed after macrophages were 

incubated together with LDL and HNPs but not with HNP vehicle control buffer (Figure 2D 

and 2E). The HNP-induced foam cell formation (Figure 2D and 2E) and cholesterol efflux 

(Figure 2F) were largely attenuated by the treatment with superoxide dismutase and anti-

CD36 blocking antibody, respectively.

HNPs Activate Platelets

Incubation of platelets with HNPs induced a dose-dependent increase in CD62P expression 

in human PRP (Figure 3A). Similar results were seen in murine PRP (Figure 3B). The HNP-

induced platelet activation was associated with an increase in aggregation in human platelets 

(Figure 3C), but not in murine platelets (data not shown). The HNP-induced human platelet 

aggregation resulted in thrombus formation detected in culture supernatants (Figure 3D).

We then examined whether HNPs sensitize the weak agonist ADP for platelet aggregation. 

When human and murine platelets were primed with HNPs or vehicle control followed 2 

minutes later by incubation with ADP (1.25 μmol/L for human, 5 μmol/L for murine cells), a 

significantly prolonged aggregation was observed in both human (Figure 3E) and murine 

(Figure 3G) platelets as compared with a transient aggregation after ADP stimulation alone. 

The increased platelet aggregation by HNP priming was associated with greater thrombus 

formation as compared with ADP alone (Figure 3F and 3H).
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HNPs Mediate Cellular Inflammatory Responses Through LRP Signaling

To understand the signaling mechanisms by which HNPs induced cell adhesion, we repeated 

the leukocyte adhesion experiments in wild-type and the LDLR and LRP double-gene 

knockout mice by using an intravital microscopy setup. We observed a dramatic increase in 

leukocyte rolling in carotid artery 4 hours after HNP challenge in wild-type control mice 

(Figure 4A and 4B). In contrast, there was a significant decrease in leukocyte rolling in the 

LDLR−/−/LRP−/− mice (Figure 4C) despite the observation that the plasma level of HNPs 

and MPO activity were identical in both the wild-type and the gene knockout mice (Figure 

4D and 4E). These results suggest a role of LRP signaling in mediating the HNP-induced 

leukocyte adhesion in vivo.

To identify the specific phenotype of LRP in mediating the HNP-induced inflammation, we 

went further, to examine the role of LRP8 in leukocyte rolling and platelet activation, 

because LRP8 is the only LRP family member expressed on platelets.40 We first observed a 

significant decrease in leukocyte rolling in the LRP8−/− mice as compared with the wild-

type mice (Figure 4C) given that the plasma level of HNPs and MPO activity were identical 

in both the wild-type and the gene knockout mice (Figure 4D and 4E).

We then conducted a competitive binding assay in which recombinant human LRP8 was 

incubated with HNPs at a 1:10 molar ratio 30 minutes before stimulation of human platelets. 

HNPs alone induced an increase in CD62P expression that was dramatically reduced in the 

presence of recombinant human LRP8 (Figure 5A). We observed a decrease in CD62P 

expression in platelets isolated from LRP8−/− mice after HNP stimulation as compared with 

the wild-type mice, whereas stimulation with thrombin (5 U/mL) resulted in a similar 

increase in CD62P expression in both groups (Figure 5B). This phenomenon suggests a 

specific role for LRP8 in mediating the HNP-induced platelet activation.

Under in vivo conditions in which mice received intravenous injection of HNPs, the platelet 

intensity/area representing platelet aggregation was significantly greater in the wild-type 

mice but remained low in the LRP8−/− mice (Figure 5C and 5D). The time to reach maximal 

occlusion of carotid artery prolonged significantly in the LRP8−/− mice compared with the 

wild-type mice (Figure 5E).

To verify whether endothelial, monocytic, or platelet LRP8 is required for increased 

monocyte adhesion in vivo, we examined leukocyte rolling under intravital microscope in 

the presence and absence of platelets after HNP stimulation in LRP8−/− mice. Our results 

show that the absence of platelets slightly reduced leukocyte rolling in the wild-type mice, 

whereas platelet LRP8 is not required for leukocyte adhesion (Figure 5F).

To examine the exact role of endothelial and monocytic LRP8 in contributing to leukocyte 

rolling, we went further, to measure cell surface markers of activation in vitro endothelial 

cells and monocytes isolated from wild-type and LRP8−/− mice. We demonstrated that the 

expression of vascular cell adhesion molecule-1 and ICAM-1 by endothelial cells decreased 

(Figure 5G), whereas CD11b expression was not significantly altered (Figure 5H) in the 

absence of LRP8 after HNP stimulation.
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Discussion

Several recent advances have suggested that PMNs play a functional role in atherosclerotic 

progression. By using a small-molecule antagonist to increase peripheral PMNs, Zernecke et 

al demonstrated a close correlation between murine PMN counts and atherosclerotic lesion 

size.3 Furthermore, depletion of PMNs significantly reduced plaque formation, confirming a 

role for PMNs in their formation.3,41 Rotzius et al have shown substantial numbers of PMNs 

in aortic plaques, especially in the shoulder regions.14

One of the criticisms against the involvement of PMNs in atherosclerosis has been their lack 

of direct detection within lesions in human atherosclerosis. It has been suggested that the 

short life span and high turnover of emigrated PMNs coupled with technical limitations in 

accurately identifying them could account for this discrepancy. Hence, even low numbers of 

plaque PMNs may represent significant recruitment of cells that have undergone decay, 

leaving behind only “footprints” revealing their presence. Indeed, it has been shown that the 

abundant content of HNPs released from activated PMNs are located in luminal site of 

human atherosclerotic coronary arteries23 and around intimal and medial smooth muscle 

cells within human atherosclerotic carotid and coronary arteries.20,23 HNPs were found in 

lesions in which intimal thickening was minimal, suggesting that HNP deposition occurs 

early in the disease process.20,23 Furthermore, a significant correlation was revealed between 

HNP skin deposition and the severity of coronary artery diseases, as evaluated by the 

number of blood vessels associated with focal lesions and stenosis.25

We demonstrated that HNPs may act not only as a biomarker like MPO to predict coronary 

diseases, as previously reported,42 but also function as an effector to induce or deteriorate 

inflammatory cardiac events by inducing endothelium-monocyte interaction through 

increasing the conventional receptor-ligand interaction between ICAM-1 and CD11b, 

oxidative stress and foam cell formation. In a previous study, we also showed that the 

stimulation of HUVECs with HNPs dose-dependently increases COX-2 expression.28 The 

latter is required for integrin-dependent endothelial cell activation and migration.43

On adhesion to the endothelial wall, the monocytes being recruited to the lesion-prone sites 

play a critical role in the development of atherosclerosis. This process is governed by 

inflammatory molecules, such as monocyte chemotactic protein-1, endothelin-1, and 

interleukin-8.44 We demonstrate that HNPs can activate endothelial cells to increase the 

production of monocyte chemotactic protein-1, a powerful inducer of monocyte chemotaxis. 

The presence of monocyte chemotactic protein-1 is likely responsible for potentiating 

monocyte chemotaxis through the endothelium in our in vitro assays. However, there may be 

other mechanisms contributing to the observed monocyte chemotaxis. We have previously 

shown in primary human endothelial cells that HNPs increase the production of 

endothelin-1, another known monocyte chemoattractant,28 and induce the expression of 

leukocyte function-associated antigen-1 in lymphocytes.33 Besides the chemoattractive 

properties of HNPs through secondary production of chemokines, HNPs have also 

demonstrated direct chemotactic activity toward monocytes and dendritic cells at nanomolar 

concentrations.45
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Once trapped in the arterial wall, monocytes can undergo phenotypic differentiation into 

macrophages and contribute to atherosclerosis-associated inflammation through formation of 

foam cells. The oxidation of LDL by reactive oxygen species is a well-known mechanism of 

the formation of foam cells, a characteristic feature of atherosclerosis at all stages of disease 

progression. We and others have previously demonstrated the production of reactive oxygen 

species and reactive nitrogen species, including superoxide anion, H2O2, and nitrotyrosine,
27,28 on HNP stimulation in endothelial and epithelial cells. In the present study, we 

observed a significant production of nitrotyrosine, reflecting peroxynitrite formation when 

macrophages are stimulated with HNPs. Nitrotyrosine is a known molecule contributing to 

the oxidation of LDL and thus is likely to contribute to increased foam cell formation in the 

presence of HNPs. This concept is further supported by the observation that the use of the 

reactive oxygen species scavenger superoxide dismutase significantly decreases the foam 

cell formation. In addition, macrophage scavenger receptors CD36 and CD68 are the major 

receptors for macrophages to internalize oxLDL to become lipid engorged foam cells. Our 

results suggest that the HNP-induced increase in the surface expression of CD36 has 

contributed to the further enhancement in foam cell formation.

Platelets play a central role in physiological hemostasis but also contribute to 

atherothrombosis in pathological conditions. We have identified the ability of HNPs to dose-

dependently enhance CD62P expression on human and murine platelets. CD62 is not only a 

marker of platelet α-degranulation but also is responsible for mediating various 

inflammatory responses through interactions with P-selectin glycoprotein ligand-1 on 

monocytes and endothelial cells.46 Furthermore, CD62P is elevated in patients with acute 

coronary syndrome47 and has been found to promote atherosclerosis in apolipoprotein E−/− 

mouse models.48 The functional consequence of HNP-mediated platelet activation is 

demonstrated by the ability of HNPs to independently induce human platelet aggregation 

and sensitize both murine and human aggregation in response to ADP. The relatively modest 

response in human platelets, compared with murine platelets, in response to HNP 

stimulation may be donor specific, and a larger cohort of carefully screened subjects may be 

required to define maximal response.

We examined the role of LRP in initiating the HNP-induced cell-cell interaction for several 

reasons: (1) LRP has been shown to regulate integrin CD11b/CD18-mediated adhesion 

between monocytes and the endothelium49; (2) inhibition of LRP decreases leukocyte 

pulmonary infiltration and the acid-induced lung injury in a mouse model overexpressing 

HNPs50; (3) HNPs have been reported to bind to LRP, resulting in HNP internalization by 

smooth muscle cells31; and (4) the HNP-induced inhibition of aortic contractility was 

abolished by the use of anti-LRP antibodies and the LRP antagonist receptor-associated 

protein.31 Furthermore, HNPs and LDL formed stable complexes in solution and on the 

endothelial cell surface,30 the interaction between HNPs and LDL resulted in LDL retention 

and slowed LDL degradation in endothelium,24,30 and anti-LDLR antibodies that block LDL 

binding inhibited the binding of HNPs to HUVECs.30 We thus chose the LRP and LDLR 

double-gene knockout mice to keep the potential binding background as clean as possible. 

Our results suggest that LRP is required for HNP signaling by demonstrating a reduced 

leukocyte flux after HNP stimulation in LRP−/−/LDLR−/− mice and decreased foam cell 

formation in the macrophages isolated from LRP−/−/LDLR−/− mice. This observation 
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suggests that the LRP family plays an important role in the HNP-induced inflammatory 

events.

LRP is a large family consisting of several members.49 To identify the specific phenotype of 

LRP in mediating the HNP-induced inflammation, we examined the effects of HNP8 in 

leukocyte rolling and platelet activation because only LRP8 is expressed in platelets.40 

HNPs alone induce an increase in CD62P expression that was dramatically reduced in the 

presence of recombinant human LRP8, indicating competitive inhibitory effects between the 

recombinant human LRP8 and HNPs in platelet activation. Our results also suggest that the 

HNP-induced platelet activation is independent of the thrombin pathway. The requirement of 

LRP8 signaling in mediating the HNP-induced inflammatory responses is further supported 

by using LRP8−/− mice, where reduced leukocyte rolling, platelet activation, and thrombus 

formation are seen after stimulation with HNPs. The endothelial but not monocyte LRP8 

appears to play a major role in mediating the HNP-induced cell-cell interaction, which is 

supported by our in vitro data following direct stimulation of HNPs on these cell types 

isolated from wild-type and LRP8−/− mice. Interestingly, our data also suggest that platelet 

LRP8 is not required for leukocyte adhesion, although platelets have been reported to 

contribute to leukocyte rolling.51,52

It is noteworthy that LRP8−/− mice do not experience hypercholesterolemia as LDLR 

knockout mice do53; thus, the HNP-induced platelet activation is likely independent of 

modification of lipid metabolism, although this issue is not addressed in the present study. 

Furthermore, LRP8−/− mice have been shown to have decreased platelet activation and 

prolonged carotid artery occlusion time in response to ADP and thrombin stimulation, 

compared with littermate controls.54 Our study examining platelet responses to HNPs in 

LRP8−/− may provide novel ligand-membrane protein interaction in addition to conventional 

ADP and thrombin pathways.

In summary, HNPs can initiate the interaction between the endothelium and monocytes, 

induce leukocyte transendothelial migration, and increase foam cell formation and platelet 

activation and aggregation through LRP8 signaling pathways. The role of HNPs in the 

pathogenesis of inflammatory cardiovascular diseases warrants further investigation to 

confirm their potential as a therapeutic target.
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Figure 1. 
Human neutrophil peptides (HNPs) induce leukocyte-monocyte interaction. A, Human 

monocyte adhesion on human coronary artery endothelial cells (HCAECs) after stimulation 

with HNPs for 4 hours. V indicates vehicle. B, Monocyte (defined by CD33 as surface 

marker) transmigration through HCAECs after stimulation with HNPs. C, Expression of 

intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 

(VCAM-1) in HCAECs after stimulation with HNPs for 4 hours. D, CD11 expression 1 hour 

after HNP stimulation in primary human monocytes. E, Interleukin-8 (IL-8) production in 

coculture supernatants of HCAECs and monocytes stimulated with HNPs for 4 hours (n=5 

experiments). F, Monocyte chemotactic protein-1 (MCP-1) production in HCAECs 

stimulated with HNPs for 4 hours (n=5 experiments). *P<0.05 vs V under identical 

conditions.
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Figure 2. 
Human neutrophil peptides (HNPs) increase oxidative stress and foam cell formation. A and 

B, Surface expression of CD36 and CD68 on human acute monocytic leukemia cell line 

(THP-1) derived macrophages stimulated with HNPs or vehicle (V) control for 8 hours. C, 

Concentration of nitrotyrosine measured in human THP-1 derived macrophage lysates after 

HNP stimulation. n=5 experiments. D, Foam cell formation, quantified by Oil Red O (ORO) 

staining. Human macrophages were incubated with HNPs (10 μg/mL) in the presence of 

low-density lipoprotein (LDL) or oxidized LDL (oxLDL) for 16 hours. In additional 

experiments, superoxide dismutase (SOD) or anti-CD36 blocking antibody was added 30 

minutes before the stimulation with HNPs. n=10 experiments. E, Representative cells with 

ORO staining in different groups described in D. F, Cholesterol efflux. ‡P<0.05 vs V, 

*P<0.05 vs LDL alone, †P<0.05 vs the LDL+HNP group.
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Figure 3. 
Human neutrophil peptides (HNPs) induce platelet activation. A and B, Surface expression 

of CD62P in human and murine platelet-rich plasma (PRP) stimulated with either HNPs (1, 

10 μg/mL), vehicle control (V), or human α-thrombin (Thr) (5 U/mL). C, Dose-dependent 

increase in platelet aggregation in human PRP after stimulation with HNPs at 10 or 100 

μg/mL. D, Thrombus formation after the HNP stimulation shown in C. E, HNP-induced 

human platelet aggregation and synergy with ADP. Human PRP was primed with HNPs (10 

μg/mL) or vehicle control followed 2 minutes later by incubation with ADP (1.25 μmol/L). 

Platelet aggregation is illustrated by representative actual traces (top) and by average traces 

(bottom, n=7 experiments). F, Thrombus formation after the HNP stimulation shown in E. G, 

HNP-induced murine platelet aggregation and synergy with ADP. Murine PRP was primed 

with HNPs (10 μg/mL) or vehicle control followed 2 minutes later by incubation with ADP 

(5 μmol/L). Platelet aggregation is illustrated by representative actual traces (top) and by 

average traces (bottom, n=7 experiments). H, Thrombus formation after the HNP stimulation 

shown in G. *P<0.05 vs V group under identical conditions.
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Figure 4. 
Human neutrophil peptides (HNPs) induce leukocyte adhesion mediated by low-density 

lipoprotein receptor (LDLR)–related protein 8 (LRP8) in vivo. A and B, Leukocyte rolling 

in carotid artery was monitored by intravital microscopy in wild-type (WT) mice 4 hours 

after receiving intravenous injection of vehicle (V) or HNPs (10 mg/kg). C, Mean values of 

leukocyte rolling in WT, LRP8−/−, or LDLR−/−/LRP−/− mice 4 hours after injection with 

HNPs. D and E, Mean plasma levels of HNPs and myeloperoxidase (MPO) activity 

measured in WT, LRP8−/−, or LDLR−/−/LRP−/− mice 4 hours after injection with HNPs. 

*P<0.05 vs V under identical conditions, †P<0.05 vs WT under identical conditions.
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Figure 5. 
Low-density lipoprotein receptor–related protein 8 (LRP8) plays a role in the human 

neutrophil peptide (HNP)–induced platelet activation and leukocyte rolling. A, Surface 

expression of CD62P in human platelet-rich plasma (PRP) after stimulation with vehicle 

control (V) or HNPs (10 μg/mL) in the presence or absence of recombinant human LRP8 

(rhLRP8) (n=7 experiments). B, Surface expression of CD62P in murine PRP isolated from 

wild-type (WT) or LRP8−/− mice after incubation with HNPs (1 or 10 μg/mL) or thrombin 

(5 U/mL) (n=7 experiments). C, Representative images of platelet aggregation under 

fluorescence intravital microscope in WT and LRP8−/− mice 4 hours after intravenous 

injection of HNPs. Low-dose FeCl3 was topically dropped on carotid artery to stimulate 

platelet aggregation. D, Mean values of fluorescent density of platelets deposited on the 

vessel wall 5 minutes after FeCl3. E, Time required reaching maximal vessel occlusion after 

FeCl3 stimulation in mice treated with HNPs. F, Platelet LRP8 is not required for increasing 

leukocyte rolling. Platelets were depleted by intraperitoneal injection of rat anti-mouse 

CD41 monoclonal antibody (2 μg per mouse) in WT and LRP8−/− mice 24 hours before 

intravenous injection of HNPs. Leukocyte rolling in carotid artery was monitored by 

intravital microscopy 4 hours after receiving HNPs. G, Expression of intercellular adhesion 

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in response to HNP 
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stimulation (10 μg/mL) for 4 hours by primary endothelial cells isolated from WT and 

LRP8−/− mice (n=5). H, Expression of CD11b in response to HNP stimulation (10 μg/mL) 

for 1 hour by primary monocytes isolated from bone marrow of WT and LRP8−/− mice 

(n=5). *P<0.05 vs WT under identical conditions, †P<0.05 vs unstained, ‡P<0.05 vs stained.
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