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Abstract

Epidemiological studies demonstrate robust correlations between green tea consumption and 

reduced risk of type 2 diabetes and its cardiovascular complications. However, underlying 

molecular, cellular, and physiological mechanisms remain incompletely understood. Health 

promoting actions of green tea are often attributed to epigallocatechin gallate (EGCG), the most 

abundant polyphenol in green tea. Insulin resistance and endothelial dysfunction play key roles in 

the pathogenesis of type 2 diabetes and its cardiovascular complications. Metabolic insulin 

resistance results from impaired insulin-mediated glucose disposal in skeletal muscle and adipose 

tissue, and blunted insulin-mediated suppression of hepatic glucose output that is often associated 

with endothelial/vascular dysfunction. This endothelial dysfunction is itself caused, in part, by 

impaired insulin signaling in vascular endothelium resulting in reduced insulin-stimulated 

production of NO in arteries, and arterioles that regulate nutritive capillaries. In this review, we 

discuss the considerable body of literature supporting insulin-mimetic actions of EGCG that 

oppose endothelial dysfunction and ameliorate metabolic insulin resistance in skeletal muscle and 

liver. We conclude that EGCG is a promising therapeutic to combat cardiovascular complications 

associated with the metabolic diseases characterized by reciprocal relationships between insulin 

resistance and endothelial dysfunction that include obesity, metabolic syndrome and type 2 

diabetes. There is a strong rationale for well-powered randomized placebo controlled intervention 

trials to be carried out in insulin resistant and diabetic populations.
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1. INTRODUCTION

Accumulating laboratory and clinical studies suggest that polyphenol-rich plants have 

health-promoting effects with respect to cardiovascular and metabolic health [1–9], cancer 

prevention [10–13], and neurodegenerative diseases [14, 15].Within polyphenol-rich plants, 

green tea and its flavan-3-ols are among the most extensively studied for their putative health 

benefits.

Tea comes from the Camellia sinensis plant. Tea leaves are categorized into different classes 

based on the degree of fermentation (or leaf oxidation) during processing. During 

fermentation, flavan-3-ols, the bioactive polyphenols in tea leaves, undergo polyphenol 

oxidase-dependent oxidative polymerisation, resulting in the formation of theaflavins and 

thearubigins [16]. Green tea is unfermented and contains the highest concentration of 

flavan-3-ols. Oolong tea is a partially fermented product and therefore contains a mixture of 

flavan-3-ols, theaflavins, and thearubigins. Black tea is the most fermented tea, and as a 

result, contains abundant theaflavins and thearubigins, and limited or no flavan-3-ols. There 

are five major types of flavan-3-ols in green tea including catechin, epicatechin, epicatechin 

gallate, epigallocatechin, and epigallocatechin gallate (EGCG).

EGCG is a polyphenol belonging to the catechin family, a group of polyphenolic compounds 

(see chemical structure). Catechins are found in a variety of foods including fruits, 

vegetables, chocolate, wine, and tea. However, EGCG is predominantly found in tea and is 

the most abundant polyphenol accounting for as much as 50% of green tea polyphenols [16, 

17]. In recent years, extensive research has investigated potential health-promoting effects as 

well as underlying molecular mechanisms of green tea or purified EGCG relevant to 

cardiovascular and metabolic diseases [2, 4, 7, 9, 18–21] including type 2 diabetes.

Insulin resistance plays a key role in the pathogenesis of type 2 diabetes and precedes the 

onset of diabetes. Insulin resistance is characterized by impaired insulin-mediated glucose 

disposal in skeletal muscle and is often associated with endothelial dysfunction. The 
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conventional treatments available for type 2 diabetes are not sufficient to adequately control 

the disease which is increasing in prevalence and incidence as a result of the obesity 

epidemic in the developed world. Therefore, novel complementary therapeutic approaches 

including green tea and purified EGCG that oppose endothelial dysfunction and ameliorate 

metabolic insulin resistance in skeletal muscle and liver may augment current conventional 

treatments. There is growing public interest in the use of complementary and alternative 

approaches (such as green tea and its flavan-3-ols), for treating insulin resistance and type 2 

diabetes because of unmet medical needs and the inherent safety benefits with functional 

foods including green tea.

2. EPIDEMIOLOGICAL STUDIES

Epidemiological studies show a positive relationship between tea consumption and reduced 

risk for type 2 diabetes [5–9, 22]. In 2009, two meta-analyses by Huxley et al. [23] and Jing 

et al. [24] report that, compared to non-tea drinkers, tea (green and black tea) consumption 

of >3 cups per day is associated with a 17 – 35 % lower risk of type 2 diabetes. Furthermore, 

in a British cohort [6] tea (green and black tea) consumption of >3 cups per day was 

associated with a 34% lower risk of diabetes. Whether theaflavins and thearubigins have 

similar bioactivities with EGCG, relevant to cardiovascular and metabolic diseases, is not 

known. Among Japanese adults, Iso et al. [9] report an inverse and dose-dependent 

association between green tea consumption and risk for type 2 diabetes. This study 

suggested that high green tea consumption (≥6 cups.d−1) lowers risk for developing type 2 

diabetes by 33% compared to those who drink < 1 cup per week. More recently, a meta-

analysis by Zheng et al. [25] demonstrates green tea catechin treatment for ≥ 12 weeks, but 

not shorter term (< 12 weeks), is associated with lower fasting blood glucose levels. Large 

epidemiologic studies have also shown green tea consumption is associated with decreased 

cardiovascular and all-cause mortality [26, 27]. In this same study there was no effect on 

cancer risk demonstrating the specificity of green tea for metabolic and cardiovascular 

disease [26]. However, not all studies report these positive associations. Studies in Japanese 

[28] and Singapore Chinese [29] populations failed to uncover an association between green 

tea consumption and reduced risk of type 2 diabetes.

3. CELLULAR ACTIONS OF EGCG

The classical metabolic actions of insulin on glucose homeostasis include glucose uptake by 

skeletal muscle and adipose tissue, and suppression of hepatic glucose production. There is 

evidence from in vitro studies that EGCG has insulin-mimetic metabolic actions on 

myocytes [30–32], adipocytes [33–36] and hepatocytes [37, 38] (see Fig. 1)

Skeletal muscle is the major site for insulin-mediated glucose utilization and thereby 

contributes to postprandial blood glucose levels. In isolated myocytes, green tea or EGCG 

stimulates GLUT4 translocation and results in increased glucose uptake [30, 31, 39]. Similar 

to insulin, EGCG has been reported to stimulate muscle glucose uptake via the PI3-K/Akt 

signaling pathway in cultured myotubes [31, 32, 40]. Although it has been proposed that 

EGCG has insulin-mimetic actions on glucose uptake in myocytes [30–32, 39, 40], there is 

no evidence of EGCG directly activating the insulin receptor tyrosine kinase [31]. In 
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addition to the insulin-mimetic pathway, EGCG can also stimulate muscle glucose uptake by 

alternative pathways such as the adenosine monophosphate-activated protein kinase (AMPK, 

with doses > 20 μM) [40]. Therefore, it is likely that EGCG-mediated muscle glucose uptake 

in vitro involves multiple signaling pathways some of which are insulin-mimetic.

Chronic green tea supplementation (4–12 weeks) increases glucose uptake [33–35], and 

promotes GLUT4 translocation [34, 35] in isolated adipocytes, however the molecular 

pathway leading to glucose uptake is unknown. Interestingly, green tea catechins (especially 

EGCG) augment insulin-stimulated glucose metabolism in adipose cells using an in vitro 
assay that assesses insulin-dependent breakdown of glucose to CO2 [36].

EGCG suppresses gluconeogenesis in cultured hepatocytes. At high doses (> 25 μM), 

EGCG suppresses hepatic gluconeogenesis through the same pathway as insulin, wherein 

EGCG promotes signaling through IRS-1/PI3-K/Akt, resulting in inhibition of PEPCK and 

G6Pase gluconeogenic enzyme activity [38]. However, we have demonstrated in isolated 

hepatocytes that EGCG, at relatively low concentrations (1 μM), inhibits glucose production 

via inhibition of gluconeogenesis and expression of key gluconeogenic genes [37]. This 

involves activation of AMPK through reactive oxygen species and the Ca2+/calmodulin-

dependent protein kinase kinase β (CaMKK β) pathway [37].

The microsomal enzyme 11β-hydroxysteroiddeydrogenase type 1 (11β-HSD1) catalyzes the 

interconversion of cortisone to cortisol. Strong evidence exists for an important etiological 

role of 11β-HSD1 in various metabolic disorders including insulin resistance, type 2 

diabetes, hypertension, dyslipidemia and obesity. EGCG strongly inhibits 11β-HSD1 activity 

[41] thus implicating another potential mechanism for EGCG to ameliorate metabolic 

diseases.

In summary, the glucose lowering effects of EGCG may involve pathways that directly 

supress hepatic glucose production while simultaneously stimulating glucose uptake in 

skeletal muscle and adipose tissue. However, the direct metabolic or cellular actions of 

EGCG on glucose metabolism have only been assessed in vitro and the effect of EGCG in 
vivo or in a vascularly intact model needs to be confirmed. In addition to these classical 

metabolic actions, EGCG also has vascular actions that may directly contribute to muscle 

glucose uptake (detailed below).

4. VASCULAR ACTIONS OF EGCG

4.1. Endothelial Cell Culture

EGCG stimulates nitric oxide (NO) production from vascular endothelial cells similar to 

insulin (see Figs. 2 and 3). Both insulin- and EGCG-mediated NO production is dependent 

on the activation of PI3-K, since wortmannin blocks NO production by both insulin and 

EGCG [20]. Furthermore, like insulin, EGCG requires the activation of Akt and endothelial 

nitric oxide synthase (eNOS) for NO production. Fig. (2) shows the time-course for EGCG 

on activation of Akt and eNOS. Thus, low micromolar concentrations of EGCG (achievable 

with consumption of 5 cups of green tea) can stimulate Akt and eNOS within 15 minutes in 

bovine aortic endothelial cells. Interestingly, these results also highlight that EGCG-
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mediated signaling pathways share features in common with the insulin signaling pathway 

that lead to activation of eNOS and NO production in endothelial cells [42–44]. However, 

EGCG does not activate the insulin receptor or VEGF receptor tyrosine kinase, suggesting 

that the insulin and EGCG pathways converge at a point downstream from the insulin 

receptor.

It has been proposed that the laminin receptor is a specific cell surface receptor for EGCG 

that mediates some of its biological actions [45]. However, we have shown that EGCG-

mediated activation of the laminin receptor does not play a significant role in the vascular 

endothelium relating to NO production [20]. Instead, EGCG-mediated signaling requires 

low level production of reactive oxygen species such as H2O2 [20]. EGCG-mediated 

production of intracellular H2O2 can be abrogated by N-acetylcysteine, a scavenger of 

reactive oxygen species [20]. Reactive oxygen species activate Fyn, a member of the Src 
family tyrosine kinases that is required for activation of PI3-K, eNOS and NO production in 

vascular endothelial cells. Again, pre-treatment with N-acetylcysteine blocks EGCG-

mediated activation of Fyn [20]. The importance of these overlapping pathways highlight the 

possibility that EGCG may have insulin-mimetic and/or insulin-potentiating effects in the 

vascular system.

Insulin stimulates production of both NO and endothelin-1 (ET-1) from the endothelium. 

Insulin stimulates NO production (vasodilator) via a PI3-K dependent pathway and ET-1 

production (vasoconstrictor) via a MAP kinase dependent pathway [46]. These agents have 

opposing vasoactive actions that are in balance under normal healthy conditions. In the 

presence of insulin, NO production dominates favoring vasodilation. Disruption of the 

balance between NO and ET-1 production is believed to contribute to the development of 

hypertension, type 2 diabetes and atherosclerosis [47]. Importantly, EGCG-stimulated 

phosphorylation of FoxO1, downstream from PI3-K/Akt inhibits both insulin and EGCG-

stimulated synthesis and secretion of ET-1 [48, 49]. These data provide a second mechanism 

that involves PI3-K-dependent pathways to impair ET-1 secretion and favor vasodilator 

conditions. During insulin resistance, the PI3-K pathway is impaired [50] and the MAP 

kinase pathway is upregulated [51]. Ultimately this decreases NO production, while 

increasing ET-1 production. Thus, EGCG, which promotes NO while simultaneously 

inhibiting ET-1 production, may have a significant advantage as a therapeutic agent in the 

treatment of insulin resistance. The NO-favoring actions of EGCG have a primary benefit in 

improving cardiovascular homeostasis, while also improving the metabolic actions of insulin 

by allowing greater hormone and substrate access to metabolic targets including skeletal 

muscle. Fig. (3) details the proposed molecular pathways EGCG uses to promote 

vasodilation.

4.2. Isolated Vessels

Studies have shown that EGCG is a potent vasodilator in isolated aortic rings [52, 53], 

bovine ophthalmic arteries [54], coronary artery rings [55], and mesenteric vascular beds [4]. 

Green tea catechins and EGCG have been reported to improve endothelial function in the 

spontaneous hypertensive rat [4, 56], pre-diabetic OLETF rat [57, 58] and the high fat-fed 

mouse [59]. These actions are PI3-K- and Fyn-dependent.
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4.3. Skeletal Muscle

Our research implicates vascular dysfunction in skeletal muscle as one major cause of 

muscle insulin resistance. Insulin stimulates both total blood flow to skeletal muscle [60, 61] 

and increases microvascular perfusion of myocytes [62–67]. However, insulin’s 

macrovascular and microvascular actions are temporally distinct events, and insulin-

mediated glucose uptake is significantly altered by changes in microvascular rather than 

macrovascular responses [63, 68].

Systemic and local hindleg infusion of the NOS inhibitor L-NAME blocks most, if not all, of 

insulin-mediated microvascular perfusion in muscle and inhibits 30–40% of insulin-

mediated muscle glucose uptake [62, 63, 69]. Therefore, insulin-mediated microvascular 

recruitment in muscle is, at least in part, NOS-dependent and plays an integral role in 

regulating muscle glucose uptake. We have demonstrated that insulin, whether infused 

intravenously or secreted from the pancreas following a mixed meal, stimulates 

microvascular blood flow in skeletal muscle in both experimental animals [62–65, 67–73] 

and human subjects [74–76]. This action of insulin to enhance microvascular recruitment in 

skeletal muscle facilitates delivery of glucose and insulin to the myocytes and enhances 

glucose disposal. Previously, we have demonstrated that insulin resistant rats [68, 70, 73] 

and humans [74, 75] have impaired insulin-mediated microvascular and metabolic responses 

in muscle, suggesting that the loss of microvascular insulin action may contribute to insulin 

resistance. We recently reported that high fat-induced insulin resistance can originate from 

impaired microvascular insulin responses and that this microvascular defect precedes the 

development of myocyte insulin resistance [68]. As mentioned previously, an imbalance 

between the vasodilator NO, and the vasoconstrictor ET-1, contributes to endothelial 

dysfunction. We have shown that acute ET-1 infusion inhibits insulin-mediated 

microvascular recruitment and muscle glucose uptake in vivo [77]. This further highlights 

that disruption of the balance between NO and ET-1 results in reduced insulin-stimulated 

muscle glucose uptake, indicative of muscle insulin resistance.

The above findings demonstrate a strong link between insulin resistance and endothelial 

dysfunction, positioning insulin’s microvascular action as a critical factor in the 

development of insulin resistance and type 2 diabetes. Finding novel treatments that have 

insulin-mimetic and/or insulin-potentiating actions on these vascular targets is a novel 

approach for treating insulin resistance, endothelial dysfunction as well as type 2 diabetes 

and its cardiovascular complications.

Serotonin infusion induces muscle insulin resistance in both the perfused rat hindlimb 

preparation [78] and in vivo [67] via vascular actions. We have preliminary data 

(unpublished) demonstrating that EGCG vasodilates in the presence of serotonin in the 

constant flow perfused rat hindlimb. Thus, EGCG can oppose vasoconstriction associated 

with insulin resistance and impaired muscle nutrient exchange. Importantly, we have 

unpublished data demonstrating EGCG-mediated vasodilation in this preparation is NOS-

dependent at low doses (≤ 10 μM), and at least in part NOS-independent at high doses (100 

μM).
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The dependency of EGCG-induced vasodilation on NOS varies with the dose/concentration 

of EGCG. EGCG-mediated vasodilation in rat thoracic aorta is NOS dependent at low 

concentrations (0.01 – 10 μM), but not at higher doses of EGCG [52]. Some [52, 53], but not 

all [20, 54] studies have reported that high concentration of EGCG (100 μM) can induce 

vasodilation through different pathways by acting directly on vascular smooth muscle cells 

[52] or by activating the cAMP-dependent protein kinase pathway [53]. EGCG has also been 

shown to increase PGI2 production in bovine aortic endothelial cells [79]. Together, these 

data are supportive of our unpublished studies that high dose EGCG-induced vasodilation 

involves NO-independent mechanisms.

As described above, insulin has important microvascular actions in skeletal muscle. Acute 

infusion of EGCG in rats in vivo (to raise the plasma EGCG level to 10 μM) does not alter 

femoral artery blood flow, but stimulates microvascular recruitment in muscle (unpublished 

observations). This suggests that these differential vascular actions of EGCG (macro- vs. 

micro-vascular) may be concentration-dependent. The magnitude of the increase in 

microvascular recruitment was similar in effect to raising plasma insulin concentrations to 

1.5 nM. However, the microvascular actions of EGCG and insulin did not appear to be 

additive, i.e. EGCG has insulin-mimetic but not synergistic actions in muscle 

microvasculature. If similar effects are observed in human studies, this would suggest that 

daily chronic green tea consumption may promote enhanced microvascular function and 

oppose endothelial dysfunction.

5. ANIMAL STUDIES

Most of the compelling evidence for the anti-diabetic actions of green tea have come from 

animal studies including normal healthy [30, 33, 39], insulin resistant [2, 34, 39, 57–59, 80–

82], type 2 diabetic [83–85] and hypertensive [4] rodent models (detailed in Table 1).

In healthy rats, green tea treatment for 3 weeks (raising plasma EGCG levels to ~40 nM) 

significantly reduces adiposity and circulating lipids; while increasing (~25%) muscle 

glucose uptake and GLUT-4 translocation in vitro [30]. In rats, Wu and colleagues [33] 

showed that 12 weeks of green tea treatment (containing mixed catechins 56 mg.d−1; EGCG 

38 mg.d−1) significantly lowered fasting plasma glucose, insulin, and circulating lipids while 

concurrently improving glucose tolerance and insulin sensitivity. In mice, green tea (EGCG 

610 mg.L−1 in drinking water) supplementation for 14 weeks lowers fasting blood glucose 

levels. However, no concomitant changes in serum lipid levels were observed [39]. 

Interestingly, glucose tolerance and muscle glucose uptake in these mice were not altered by 

green tea therapy while adipose tissue glucose uptake was significantly impaired [39]. Thus, 

the effects of green tea or EGCG in healthy animals are inconclusive due to a limited 

number of studies. It should be noted, however, that it is extremely difficult to demonstrate 

improvement in these parameters, even with conventional drugs, if the animal start out with 

values in the normal range. The more compelling work indicating positive benefits of ECGC 

has been conducted in insulin resistant or diabetic animals.

Green tea, green tea extract or EGCG treatment have been reported to ameliorate diet-

induced insulin resistance in a number of rodents studies [2, 34, 39, 59, 80–82] and also 
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studies involving genetic rodent models of insulin resistance and type 2 diabetes [4, 57, 58, 

83–85]. Green tea (EGCG 1 g.L−1 in drinking water) treatment for 12 weeks improves 

glucose tolerance, GLUT4 content and glucose uptake in adipocytes in vitro from fructose-

fed rats [34]. Green tea treatment (EGCG 150 or 300 mg.kg−1.d−1) of fructose-fed hamsters 

dose-dependently improves glucose tolerance, increases serum adiponectin levels and 

reduces fasting serum insulin levels [80]. Similarly, Bose et al. [81] reported that 4 weeks of 

EGCG (3.2 g.kg−1 diet) treatment to high fat-fed mice, significantly reduced fasting blood 

glucose and plasma insulin levels. However, the food intake of the mice was not reported, 

and therefore it is unclear how much food (or EGCG) was consumed by the mice each day. 

Chronic green tea treatment in high fat-fed mice for 14 weeks (EGCG 610 mg.L−1) [39] 

significantly improves glucose tolerance, GLUT4 translocation in muscle, and in vitro 
muscle glucose uptake, and reduces fasting plasma glucose. Similarly, EGCG treatment for 

16 weeks (3.2 g.kg−1 diet) [81] or 22 weeks (EGCG 2 mg.kg−1.d−1) [82] in high fat-fed 

mice reduces fasting plasma glucose, insulin, and the homeostasis model assessment of 

insulin resistance (HOMA-IR; a surrogate index of insulin resistance). In addition EGCG 

(50 mg.kg−1.d−1) treatment for 10 weeks in high fat-fed mice [59] lowers fasting serum 

glucose and insulin, thus improving quantitative insulin sensitivity check index (QUICKI, a 

surrogate index of insulin sensitivity) [86].

The db/db mouse is a commonly used genetic model of type 2 diabetes. One study showed 

that db/db mice treated with EGCG (at 100 mg.kg−1.d−1 but not at 30 mg.kg−1.d−1) for 2 

weeks improves glucose tolerance [84]. Wolfram et al. [84] also showed that EGCG 

treatment for 7 weeks (EGCG 0.25 – 1 g.kg−1 diet) improves glucose tolerance and reduces 

blood glucose in this diabetic mouse model in a dose-dependent manner. Another study [85] 

reports that db/db mice treated with EGCG (1 g.kg−1 diet) for 10 weeks significantly 

improves glucose tolerance and reduces fasting blood glucose with an effect size comparable 

to the anti-diabetic insulin sensitizer rosiglitazone. Interestingly, this study also shows 

EGCG intake reduces the number of pathologically altered islets of Langerhans, while 

increasing the number and the size of islets, thereby increasing beta cell mass and 

presumably insulin secretory capacity [85]. These effects correlated with a reduction in islet 

endoplasmic reticulum stress [85]. Acute green tea treatment (mixed catechins 22 mg.kg−1, 

EGCG 17 mg.kg−1) lowers fasting blood glucose levels in db/db mice, but not wild type 

mice [83]. In pre-diabetic OLETF rats, treatment with green tea catechins (25 – 30 

mg.kg−1.d−1) for 12 weeks lowers blood pressure and fasting plasma glucose and insulin 

levels [57, 58]. EGCG treatment (200 mg.kg−1.d−1) for 3 weeks prevents development of 

insulin resistance and reduces systolic blood pressure significantly in spontaneously 

hypertensive rats [4].

The similar metabolic effects of green tea and EGCG in the above studies suggest that 

improvements in insulin sensitivity by green tea treatment might be attributable to the 

actions of EGCG, given that EGCG makes up such a large percentage of green tea 

polyphenols. However, there are multiple components in green tea that may have synergistic 

actions.
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6. CLINICAL INVESTIGATIONS

Numerous clinical studies have been undertaken to investigate the effects of green tea or 

green tea extracts on glucose tolerance, insulin sensitivity, glucose homeostasis and other 

cardiometabolic outcomes in people ranging from normal and healthy to insulin resistant 

individuals and those with type 2 diabetes [18, 83, 87–107] (detailed in Table 1). The effect 

of green tea/EGCG consumption in healthy subjects appears to be heterogeneous with some 

reporting improved insulin sensitivity [105] and glucose tolerance [83], while others show 

no relationship [92, 98]. Again, as with the animal studies, determining differences in these 

metabolic parameters in healthy people is challenging even with conventional therapeutic 

agents.

In postmenopausal women with impaired glucose tolerance, EGCG treatment (300 mg.d−1) 

for 12 weeks reduces fasting plasma glucose by 5% [93]. Green tea extract treatment 

(EGCG 208 mg.d−1) for 12 weeks significantly reduces fasting blood glucose and insulin 

[107] levels in obese insulin resistant subjects. In contrast to these aforementioned studies, 

EGCG treatment (800 mg.d−1) for 8 weeks had no effects on glucose tolerance, fasting 

glucose and insulin levels in overweight and obese men [88].

In patients with type 2 diabetes, green tea extract (EGCG 860 mg.d−1 for 16 weeks) 

significantly reduces HOMA-IR, HbA1c, and fasting insulin levels [97]. Conversely, Ryu et 
al. [104] showed that metabolic markers including blood lipids, glucose, insulin, and 

adiponectin levels were not altered following 4 weeks of green tea treatment (polyphenol 

content not reported). Similarly, another study [95] shows green tea treatment (540 mg.d−1 

polyphenols, EGCG content unknown) for 2 months has no apparent effect on metabolic 

markers such as fasting serum glucose and insulin, HbA1c, and HOMA-IR.

Some studies have assessed the metabolic effects of oolong tea in patients with type 2 

diabetes. As previously mentioned, oolong tea is partially fermented and contains moderate 

amounts of EGCG. Shimada et al. [108] reported that oolong tea treatment for 4 weeks (45 

mg.day−1 of EGCG) significantly increases plasma adiponectin levels by 9.9% and lowers 

HbA1c levels by 3.3% in patients with various coronary risk factors. Additionally, there was 

a slight, but not significant, decrease in the fasting plasma glucose levels. Hosoda et al. [109] 

used a higher dose of oolong tea treatment (EGCG 390 mg.d−1) for 4 weeks and reported 

lower fasting plasma glucose levels in people with type 2 diabetes. The mechanism of the 

anti-hyperglycemic effects of the oolong tea is unclear. However, oolong tea appears to have 

a concentration-dependent effect on glycemia and this tea contains moderate amounts of 

EGCG.

Although these clinical studies are not conclusive, they suggest a relationship between green 

tea or EGCG consumption and reduced risk of type 2 diabetes. The potential of 

complementary alternative medicines as adjuncts to conventional therapy deserves further 

investigation by direct interventional studies that include biomarker and pharmacokinetic 

analyses as well as study outcomes that are clinically meaningful.
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CONCLUSION

Animal and cellular studies provide strong evidence that EGCG has beneficial actions to 

improve and/or augment insulin sensitivity. The molecular and cellular mechanisms, 

although not fully resolved, are under active investigation and likely involve signaling 

pathways that are shared with insulin as well as insulin-independent pathways (Figs. 1 and 

3). In the vascular system, ECGC stimulates NO production with resulting vasodilation and 

microvascular recruitment, and inhibits vasoconstriction by opposing ET-1 release and 

inhibiting serotonin mediated vasoconstriction. Ultimately, these favourable actions of 

EGCG in skeletal muscle may contribute to ameliorating insulin resistance by improving 

microvascular delivery of hormones and nutrients to relevant target tissues regulating 

glucose homeostasis.

Along with robust epidemiological studies related to tea consumption and cardiometabolic 

health, molecular, cellular, and physiological studies in animals and humans provide a strong 

rationale for well-powered randomized placebo controlled intervention trials to be carried 

out in insulin resistant and diabetic populations. These studies should evaluate the efficacy 

of EGCG as an insulin sensitizer and adjunct functional food treatment for diabetes and its 

cardiovascular complications. It is important that these future clinical studies of EGCG 

intervention include formal pharmacokinetic and pharmacodynamic aspects that are often 

overlooked in human studies of functional foods and nutritional supplements [21]. As for 

example, in recent clinical intervention studies of glucosamine [110], cocoa [111], and 

vitamin C [112].

Randomized controlled trials of EGCG in combination with current anti-diabetic drugs are 

also worthwhile as the vascular actions of EGCG may provide additional benefits in terms of 

overcoming cardiovascular pathophysiology associated with insulin resistance and type 2 

diabetes. These combination studies are also important because EGCG or green tea may be 

most effective as an adjunctive rather than a primary therapy.
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LIST OF ABBREVIATIONS

AKT Protein kinase B

AMPK Adenosine monophosphate-activated protein kinase

CaMKK β Ca2+/calmodulin-dependent protein kinase kinase β

DAF2-DA 4,5-diaminofluoresceine diacetate

EGCG Epigallocatechin gallate

ET-1 Endothelin-1

GLUT-4 Glucose transporter 4

HOMA-IR Homeostasis model assessment of insulin resistance

PGI2 Prostaglandin I2

QUICKI Quantitative insulin sensitivity check index

HbA1c Hemoglobin A1c

L-NAME L-NG-Nitroarginine Methyl Ester

NOS Nitric oxide synthase

NO Nitric oxide

OLETF Otsuka Long Evans Tokushima Fatty

PI3-K Phosphoinositide 3-kinase

11β-HSD1 11β-hydroxysteroiddeydrogenase type 1

VEGF Vascular endothelial growth factor
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Fig. 1. Schematic of proposed metabolic actions of EGCG in myocytes, adipocytes and 
hepatocyes
Arrows indicate activation ⊥ while indicate inhibition. Dotted line represents an unknown 

pathway.
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Fig. 2. Stimulation of NO from endothelial cells via a PI3-K/Akt/eNOS pathway
Bovine aortic endothelial cells were loaded with 4,5-diaminofluoresceine diacetate (DAF2-

DA). In the presence of NO, DAF2-DA emits green fluorescence. Both insulin (100 nM, 5 

min) and EGCG (50 μM, 5 min) stimulates NO production in endothelial cells. This effect 

was inhibited by the presence of the NOS inhibitor L-NAME [20].
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Fig. 3. Schematic of proposed vasoactive pathways of EGCG in the vasculature
Arrows indicate activation while ⊥ indicate inhibition.
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Table 1

Summary of acute and chronic effects of green tea and EGCG in humans and animals.

Treatment Subjects Effects References

Human

Acute Healthy

↑ GTT
↑ Insulin sensitivity

↔ GTT
↔ Fasting blood/plasma glucose

↔ Fasting seruminsulin
↑ Post-prandial plasma glucose
↔ Post-prandial serum insulin

[83]
[105]
[105]

[83, 105]
[105]
[98]
[98]

Chronic (a3wks)

Healthy ↔ Fasting plasma glucose [92]

Overweight/Obese/Insulin Resistant

↓ Fasting plasma/serum glucose
↓ Fasting serum insulin

↓ HOMA-IR
↔ HOMA-IR

↔ GTT
↔ Fasting blood/plasma glucose

↔ Fasting plasma insulin

[93, 107]
[107]
[107]
[88]
[88]

[87–89, 94, 99, 100, 102, 106]
[88, 89, 94, 99, 102]

Type 2 diabetes

↓ Fasting insulin
↓ HOMA-IR

↓ HbA1c
↓ Fasting plasmaglucose

↔ Fasting blood/plasma glucose
↔ Fasting plasma insulin

↔ HOMA-IR
↔ HbA1c

[97]
[97]

[97, 108]*

[109]*
[95, 101, 104]

[95, 104]
[95, 104]

[95]

Animal

Acute (≤2hrs)

Healthy

↔ Blood glucose
↓ GTT

↓ Insulin sensitivity

[83]
[113]
[113]

Insulin resistant

↑ GTT
↑ Insulin sensitivity
↓ Plasma glucose
↓ Plasma insulin

[113]
[113]
[113]
[113]

Type 2 diabetes ↓ Blood glucose [83]

Chronic (≥2wks)

Healthy

↓ Fasting blood/plasma glucose
↓ Fasting plasma insulin

↔ GTT
↑ insulin sensitivity

[33, 39]
[33]

[33, 39]
[33]

Insulin resistant

↓ Fasting blood/plasma glucose
↓ Fasting plasma/serum insulin

↑ GTT
↔ GTT

↑ QUICKI
↓ HOMA-IR

↑ Endothelial function

[39, 57, 58, 81, 82]
[57–59, 80–82]
[2, 34, 39, 80]

[82]
[4, 59]
[81, 82]

[4, 57–59]

Type 2 diabetes
↓ Fasting blood glucose

↑ GTT

[84, 85]
[84, 85]

GTT: glucose tolerance test;
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↑
: improve;

↓
: reduce;

↔
: no effects;

*
:oolong tea.
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