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Abstract
Toxin–antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses,

including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from

interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavor-

able conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both

regulation and activation of toxin–antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides

an overview of the current knowledge regarding type II toxin–antitoxin systems along with their clinical and environmental

implications.
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Introduction

Toxin–antitoxin (TA) modules are bacterial operons that are
part of the mobilome, moving from one organism to another
via horizontal gene transfer,1,2 and these loci are important
for facilitating a state of dormancy in bacteria under stress-
ful conditions. Multiple TA loci have been found in hun-
dreds of sequenced bacterial genomes to date, including
clinical isolates of Mycobacterium tuberculosis, Pseudomonas
spp., methicillin-resistant Staphylococcus aureus, uropatho-
genic Escherichia coli, Vibrio cholerae, and Yersinia pestis.3–6

These systems consist of a co-transcribed gene pair which
encodes both a toxin that acts within the bacterium itself to
arrest growth, and an antitoxin that interferes with the toxin
activity. Five families of TA modules have been identified to
date and are characterized by the nature of the associated
antitoxins. Type I systems consist of an antisense RNA anti-
toxin that binds to the toxin mRNA, preventing ribosome
binding and likely targeting the resulting RNA duplex for
degradation by RNase III.7 Type II TA modules encode a
protein antitoxin and toxin that form a tight non-toxic com-
plex upon translation.8,9 Type III systems consist of a protein
toxin bound by an RNA pseudoknot antitoxin formed from
a tandem array of repeats.10–12 Type IV TA systems are char-
acterized by a protein antitoxin that does not bind the toxin,
but instead interferes with the binding between the toxin
and its target.13,14 One representative of a type V toxin–anti-
toxin system has been described, in which an antitoxin

protein specifically cleaves the mRNA of the toxin.15 In
this minireview, we will focus on the type II TA systems,
which have been the most extensively studied among the
five families.

Toxin–antitoxin loci were first identified on plasmids and
thought to be merely addiction systems that ensured plas-
mid stability.16 However, with advances in DNA sequen-
cing came the ability to sequence and analyze numerous
bacterial chromosomes, and investigators discovered that
these gene pairs were nearly ubiquitous and found in the
genomes of archaea, as well as Gram-negative and Gram-
positive bacteria, often in multiple copies. Because bacterial
chromosomes had no need for an addiction system, the
principle of parsimony suggested that maintaining these
operons must confer some sort of benefit to the organism.
Although researchers were not certain why these modules
were so highly conserved, the evidence strongly favored the
notion that the maintenance of TA loci in bacterial genomes
supported important biological functions. It was an exciting
time for scientists, as the number of reports of new and
heretofore unknown types of TA systems (and TA-like
genes) started to increase rapidly.

The first goal was to determine the mechanisms of these
modules, which would suggest how the systems might
benefit the bacterial host. These early investigations were
initially performed in vitro, because it was much easier to
control conditions and there were numerous validated
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protocols and reagents available. However, it was impera-
tive to eventually employ in vivo models to determine the
biological relevance of the in vitro findings to clinical iso-
lates. This led to the discovery that TA loci were important
for bacterial survival in a mammalian host, including
Salmonella enterica serovar Typhimurium, E. coli, M. tubercu-
losis, and Haemophilus influenzae infections.5,17–20 In add-
ition, some loci have since been shown to be active in
bacteria during infections of plant hosts.21,22

Clinical importance of toxin–antitoxin modules

One of the roles of TA systems is to increase bacterial
survival under stressful environmental conditions, which
includes antibiotic, oxidative, nutrient, pH or heat stress,
and attack by bacteriophages or the host immune
response.8,17,19,23–26 For type II TA modules, the microbial
general stress response induces bacterial cellular proteases,
such as Lon and ClpXP, that degrade the labile antitoxin
portion of the TA protein complex, freeing the more stable
toxin protein to exert its effects (Figure 1).27 Many type II TA
toxins are ribonucleases that degrade bacterial mRNA in a
sequence-specific or non-specific fashion, causing the
organism to enter a state of bacteriostasis.3,28–34 This is bene-
ficial to a pathogenic bacterium, particularly during an
infection, as growth arrest significantly decreases its meta-
bolic burden, accumulation of DNA damage from reactive
oxygen species, as well as minimizing the production of
molecular patterns that signal receptors of the host’s
immune response. Further, because TA complexes are pre-
formed, activation of this mechanism does not require tran-
scription and translation of effectors, allowing the organism
to mount an immediate response to its microenvironment.35

Also, because most antimicrobials disrupt an essential

function for replicating cells (i.e. DNA, RNA, and protein
synthesis), treatment with these compounds is not effective
when the bacterium is in a non-replicative state.36 However,
if stress is removed from the microenvironment, surviving
cells can resume growth and again display their natural
antibiotic susceptibilities.37 These findings highlight the
importance of TA modules in facilitating this rapid, effect-
ive and highly conserved survival mechanism.

Bigger38 was the first to provide empirical evidence that
bacterial pathogens (in this case, S. aureus) formed tolerant
cells which he termed ‘‘persisters’’ that survived treatment
with penicillin. Following this ground-breaking study,
McDermott39 reported that persister cells could also be
formed upon starvation, and that at least some species dis-
played differences in morphology upon entering a persister
state. Further, he hypothesized that the ability of a bacter-
ium to ‘‘play dead’’ was important for its survival in the
host, and that dormant infections resulted from alterations
in the host environment, whereas latent infections required
a change in the pathogen itself. Finally, he coined the term
‘‘drug indifference’’ to describe the ability of persisters to
survive antibiotic treatment in vivo, but display susceptibil-
ity to the same drug when grown in vitro.39

Most clinically relevant bacteria cannot form endo-
spores, which are tough seed-like structures that allow the
organism to exist in a suspended animation state for many
years, decades, or even longer. These constructs are resist-
ant to environmental conditions that are normally lethal,
such as nutrient deprivation, desiccation, and the presence
of noxious chemicals and ionizing radiation. A few medic-
ally important Gram-positive human pathogens can form
spores, including Bacillus anthracis (anthrax), Clostridium
tetani (tetanus), Clostridium botulinum (botulism), and
Clostridium difficile (antibiotic treatment-induced colitis).40,41

Figure 1 Canonical type II TA module expression and stress-induced degradation of the antitoxin, leading to an active toxin. A number of targets are shown (arrows),

along with the names of representative toxins displaying similar activities. See text for details and references
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In non-spore-forming bacteria, TA loci facilitate entry into a
bacteriostatic state upon stressful conditions.37 However, a
recent study has implicated TA systems in the possible
facilitation of recurrent infections with C. difficile, a spore-
forming pathogen,40 so these modules might be functional
and affect virulence in both groups. Holberger et al.42 pro-
vided evidence that the PF04740 proteins found in both
pathogenic and non-pathogenic Bacillus species represented
a new class of type II TA toxins, in which the N-terminal
regions defined the protein family, whereas the C-terminal
portion (CT) of each toxin assayed was responsible for its
ribonuclease activity. The organization of these modules is
reversed compared to canonical TA modules, such that the
toxin preceded its antitoxin, reminiscent of the higBA locus.
Although the CT portions were highly divergent, the
N-terminal regions were conserved and contained an
ESAT-6/WXG100 motif, a putative secretion signal in
Bacillus. Two purposes were proposed for these modules:
that the RNase toxins could be released into the environ-
ment to scavenge nucleosides prior to sporulation, or that
release of the toxins could enhance competition for envir-
onmental niches.

Structural and mechanistic characterizations of
type II TA systems

Type II toxins have been shown to target ribonucleic acid
by: (a) cleaving free RNA (VapC from Haemophilus strains,
MazF, Kid/PemK, HicA, and MqsR),5,28,43–45 (b) cleaving
RNA in the context of a ribosome during translation
(YafO, RelE, HigB, and YoeB),34,46–48 and (c) cleaving
tRNAfMet (VapC from S. enterica serovar Typhimurium).49

Other targets include DNA gyrase (CcdB and ParE);16 uri-
dine diphosphate-N-acetylglucosamine, a peptidoglycan
precursor (PezT and Zeta toxins);25 decreasing membrane
potential (HokB);50 and phosphorylating glutamyl-tRNA
synthetase (HipA)51,52 or EF-Tu (Doc).53 The obg gene,
which encodes a conserved P-loop GTPase, has been impli-
cated in persistence using antisense RNA (asRNA), because
the gene is essential for viability in E. coli. The Obg protein
was shown to increase persistence in both E. coli and
P. aeruginosa via the mechanism of inducing expression of
the HokB toxin, which results in membrane depolarization
leading to both dormancy and antibiotic tolerance.50 While
a substantial number of type II TA systems have been char-
acterized by structural and mechanistic studies,54–56 several
selected examples are highlighted below and organized
according to the mechanism of toxicity.

Ribosome-independent ribonuclease TA systems

Toxins of the VapBC (virulence associated proteins) TA
family contain a PIN (PilT N-terminus) domain, which is
associated with Mg2þ or Mn2þ-dependent ribonuclease
activity.30 Indeed, purified VapC from Mycobacterium smeg-
matis was shown to cleave RNA preferentially at AUAU
and AUAA sites in vitro and in vivo.57 The VapC-1 toxin of
non-typeable H. influenzae (NTHi) was also shown to func-
tion as a ribonuclease with no activity against DNA.28

Similarly, in vitro studies with VapC-5 from M. tuberculosis
suggested that the toxin acts on free RNA as both an

endo- and exo-ribonuclease.58 While VapC toxin homo-
logues from Shigella flexneri and S. enterica serovar
Typhimurium were found to cleave initiator tRNA between
the anticodon stem and loop,49 VapC20 of M. tuberculosis
cleaves the sarcin-ricin loop of 23S ribosomal RNA, based
on secondary structural recognition rather than sequence
recognition.59 Although VapC-mt4 from M. tuberculosis
demonstrated sequence-specific endo-ribonuclease activity
against ACGC or AC(A/U)GC motifs, the activity was rela-
tively weak and translational inhibition and growth arrest
preceded RNA cleavage, suggesting that toxin activity
might be mediated primarily by RNA binding rather than
cleavage.60 Recent crystallographic studies of the VapC30
toxin from M. tuberculosis reveal a homodimer with a
canonical a/b/a sandwich fold containing four parallel
b-strands flanked on both sides by six a-helices.61

Overall, the structure shared similar architecture with
VapC from S. flexneri, VapC2 from Rickettsia felis, VapC15
from M. tuberculosis, and VapC3 from P. aerophilum (Table
1). The structure of the VapB30 antitoxin is distinct from
other VapB family members, aside from the N-terminal a-
helix. Interestingly, the C-terminal region of VapB30 blocks
the activity of the distal dimeric toxin through a swapped
inactivation process,61 whereas the structures of M. tuber-
culosis VapBC362 and VapBC558 show individual antitoxins
bound with a cognate toxin to directly block the
active site.63

The mazEF TA family, encoding the MazE antitoxin and
MazF toxin, has been studied extensively and MazF homo-
logues have been identified in archaea and bacteria, with
the majority of studies focusing on the E. coli system.64 The
first crystallographic structures reported were of the E. coli
chromosomal MazEF complex, which form a linear hetero-
hexamer of alternating toxin and antitoxin homodimers
(MazF2-MazE2-MazF2).65 The MazF toxin is an endo-
ribonuclease that cleaves single-stranded mRNA, with
specificity for ACA sequences, to reduce overall protein
synthesis through rapid degradation of bulk mRNA.65

MazF also targets the 50 untranslated region among a dis-
tinct subset of transcripts, sometimes removing the Shine-
Dalgarno sequence to generate leaderless mRNA.
Additionally, MazF cleaves 16S rRNA to remove the anti-
Shine-Dalgarno sequence, thereby generating specific ribo-
somes that allow translation of MazF-processed
mRNAs.66,67 Operons for mazEF in M. tuberculosis were
shown to encode endo-ribonucleases that target sequence-
specific regions of the era mRNA, with MazF-mt1 cleaving
U*AC triplet sequences (* indicates the cleavage site) and
MazF-mt6 cleaving U-rich regions.68 Similarly, MazF-mt3
demonstrates specific cleavage of RNA at UU*CCU or
CU*CCU and MazF-mt7 cleaves at U*CGCU. It was pro-
posed that MazF toxins might alter protein expression via
differential cleavage of mRNA.69 Recently, MazF-mt6 was
reported to cleave 23S rRNA at a single UU*CCU sequence
in the ribosomal aminoacyl (A) site which contacts tRNA
and ribosome recycling factor. MazF-mt6-mediated cleav-
age of rRNA was demonstrated to inhibit protein synthesis
even in the absence of mRNA cleavage. Additionally, MazF-
mt6 was found to destabilize the 50S-30S ribosomal subunit
association.70 Similarly, another mechanism of toxicity was
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discovered for MazF-mt7, based on interactions with topo-
isomerase I that inhibit the activity of both enzymes.71

Collectively, these results suggest a variety of ways that
MazF proteins might mediate toxicity. Studies with MazF
from Bacillus subtilis demonstrated sequence-specific cleav-
age at U*ACAU.72 Crystal structures were determined of
B. subtilis MazF, including complexes of MazF with MazE
(Figure 2(a)) or mRNA containing the uncleavable
dUACAU sequence (Figure 2(b)).73 The MazF-mRNA
complex showed dUACAU bound to MazF with the
bases projecting towards the dimer interface of the toxin
and the phosphate backbone moieties projecting away
from the surface. Residues R25 and T48, which are
highly conserved among MazF homologues, form hydro-
gen bonds with the oxygen atoms of the scissile phosphate
between dU3 and A4 of the mRNA and either R25A or
T48A mutations resulted in a loss of toxicity.73 The
mRNA binding and cleavage by MazF are blocked through
the positioning of the MazE C-terminal helical region
within the RNA binding channel of the MazF dimer
(Figure 2(a)).73

Ribosome-dependent ribonuclease TA systems

The relBE TA family toxin, RelE, has been extensively
studied both in vitro and in vivo and has been shown to
function as a ribosome-dependent endonuclease.79 Under
normal conditions, RelE is inhibited by forming a complex
with the antitoxin, RelB, which has been revealed at the
atomic level by structural studies of RelBE from E. coli, M.
tuberculosis, Methanocaldococcus jannaschii, and Pyrococcus
horikoshii (Table 1). Both in vitro and in vivo studies
showed that the overall RelB:RelE ratio regulates transcrip-
tional repression. Binding to the relO operator is enhanced

by RelE up to a RelB:RelE ratio of 2:1, beyond which the
affinity for DNA is reduced, which has been described as
‘‘conditional cooperativity.’’80–82 Following degradation of
RelB by Lon protease, one of the bacterial stress-induced
proteases, RelE binds to the ribosome and cleaves mRNA
in the A site.79,83 Crystal structures were determined of E.
coli RelE bound to Thermus thermophilus 70S ribosomes in
complex with mRNA and tRNAfMet before and after mRNA
cleavage.84 The structures show that binding of RelE to
the A site on the 30S subunit significantly reorganizes the
mRNA, leading to 20-OH-induced hydrolysis between the
second and third codon positions.84 Although RelE was
shown to cleave codons preferentially in vitro,79 recent stu-
dies suggest that RelE specificity might be broader than
originally thought.85,86

Another well-studied ribosome-dependent ribonuclease
TA system is the higBA (host inhibition of growth) family,
which is related to the relBE family.34 In contrast to many
other TA families, including relBE, the higBA operon has an
inverted gene structure with the toxin gene preceding the
antitoxin gene.87 Crystallographic structures of a tetrameric
HigB-(HigA)2-HigB TA complex from Proteus vulgaris have
been reported.88 The overall tertiary fold of the HigB toxin
is similar to the RelE family; however, the structures
revealed some unusual molecular details about the HigBA
TA system. Interestingly, the HigA antitoxin makes minimal
interactions with HigB and does not block the active site,
which is solvent-exposed.88 Additionally, HigA monomers
contain a DNA-binding helix-turn-helix motif that binds an
individual operator sequence, which is unlike antitoxins of
other superfamilies that require dimerization to form DNA-
binding motifs.88 The tetrameric complex was critical for
binding the DNA operator, as HigBA heterodimers were
unable to bind.88 Recently, crystal structures were

Figure 2 Cartoon representations of selected toxin and antitoxin structures deposited in the PDB database.63 The selection includes toxins with different mech-

anisms, including ribonuclease, DNA gyrase inhibitor and kinase (from left). (a) MazF toxin homodimers from B. subtilis (red and gold) are inhibited when bound to the C-

terminal region of MazE antitoxin proteins (blue and cyan) (PDB ID: 4ME7).73 (b) A dimeric structure of MazF from B. subtilis (red and gold) is in complex with RNA (cyan

sticks) (PDB ID: 4MDX).73 (c) A homodimer of the DNA gyrase subunit A dimerization domain (green and light green) is bound to a CcdB homodimer (red and gold) from

E. coli (PDB ID: 1X75).74 (d) A ParE toxin homodimer from Caulobacter vibrioides (red and gold) is inhibited by a ParD antitoxin homodimer (blue and cyan) (PDB ID:

3KXE).75 (e) A multi-molecular complex of E. coli HipA toxin homodimers (red and gold) and HipB antitoxin homodimers (blue and cyan) bound to DNA operator sites O1

and O2 (orange) (PDB ID: 4YG7).76 (f) The ribbon diagram of a HipA toxin structure is colored as a rainbow from blue (N-terminus) to red (C-terminus) and shows two

bound Mg2þ ions (blue spheres) and ATP (orange sticks) (PDB ID: 3DNT).77 All cartoon diagrams were generated with the program PYMOL.78
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determined of P. vulgaris HigB bound to the T. thermophilus
70S ribosome containing either an AAA or ACA codon in
the A site.89 The structures revealed that a microbial RNase-
like nucleotide loop of HigB is able to recognize either
cytosine or adenosine at the second A-site position. The
residue N71 of HigB along with nucleotide C1054 of 16S
rRNA contributes to a pocket at the third A-site nucleotide
that is specific for adenosine at the þ6 position.89 Toxin
recognition of mRNA substrates through the third nucleo-
tide of the codon is in contrast to the way tRNAs utilize an
anticodon stem loop to recognize A site codons.89 Together,
these studies provide a mechanistic explanation for the way
ribosomes enable HigB and possibly other ribosome-
dependent ribonucleases to achieve substrate specificity.

TA systems that target DNA gyrase

DNA gyrase is an essential bacterial topoisomerase that
hydrolyzes ATP to introduce negative supercoils into
DNA and is also a target of the quinolone family of anti-
biotics. The active enzyme is a heterotetramer of two sub-
units, GyrA, which cleaves DNA, and GyrB that hydrolyzes
ATP.74 The ccd (coupled cell division) system of the E. coli F
plasmid, comprises a CcdB toxin and a CcdA antitoxin.16

The CcdB toxin is a 101 amino acid residue protein that
binds to GyrA with strong affinity90 and inhibits DNA
gyrase by either poisoning a covalent DNA-gyrase complex
or binding free gyrase, both of which involve identical inter-
actions between CcdB and GyrA (Figure 2(c)).91 Inhibition
of gyrase by CcdB is reversible, as the CcdA antitoxin can
compete with gyrase to bind and sequester CcdB, thereby
allowing DNA gyrase to regain function.92 The CcdA anti-
toxin is a protein of 72 amino acid residues and two inde-
pendent domains. The N-terminal domain contains a
ribbon-helix-helix fold that facilitates DNA binding and
dimerization, whereas the C-terminal domain, which is
intrinsically unstructured, binds and inhibits the CcdB
toxin.93 The high flexibility of the C-terminal region is
thought to increase the susceptibility of CcdA to cleavage
by the Lon protease.93 Structural studies of the CcdB toxin
and the CcdA antitoxin proteins by both nuclear magnetic
resonance (NMR) and X-ray crystallography have been
reported (Table 1).

Similar to CcdB, the ParE toxin also blocks DNA repli-
cation through inhibition of DNA gyrase.94 A crystal struc-
ture of the ParD-ParE complex from Caulobacter crescentus
was reported and reveals an a2b2 heterotetrameric complex
(Figure 2(d)), which is supported by solution studies.75 The
ParD antitoxin contains an N-terminal ribbon-helix-helix
DNA binding motif, which facilitates dimerization, as
well as an extended a2 helix and an a3 helix towards the
C-terminus that both interact with ParE.75 Interestingly,
structural comparisons between toxins revealed hydropho-
bic grooves for antitoxin recognition and binding that are
conserved between the parDE and relBE families.75

Although ParE shares both primary and tertiary structural
homology with the RelE toxin, ParE lacks the three catalytic
residues required for mRNA cleavage on the ribosome.75,84

TA systems that encode kinases

Within the hipBA (high persistence) family of E. coli, hipA
encodes the 440-residue toxin protein, HipA, which is co-
transcribed with a smaller upstream gene, hipB, that
encodes an 88-residue antitoxin protein, HipB. The HipA
toxin is a member of the phosphatidylinositol 3/4-kinase
superfamily95 and structural studies by multiple groups
have confirmed that HipA has a eukaryotic serine/threo-
nine kinase-like fold that is most similar to human CDK2/
cyclin A kinase.77,96 Initially, HipA was reported to
phosphorylate the transcription factor, EF-Tu;77,97 however,
more recent results indicate that the target is S239 of gluta-
myl-tRNA synthetase, which is located near the enzyme
active site.51,52 The kinase activity of HipA is regulated by
phosphorylation of the residue S150, which forms part of
the ATP-binding P loop motif and inactivates the kinase by
disrupting the ATP binding pocket.97 Previously, mutations
in the E. coli HipA protein had been associated with a sub-
stantial increase in persister cells.98 Recent structural stu-
dies showed that these mutations localize to the HipA
N-subdomain-1, which is distal to the toxin active site and
HipB binding site; however, this region facilitates HipA
dimerization within higher order complexes of
HipA-HipB and multiple operators in hipBA promoters
(Figure 2(e)).76 The HipA–HipA interface blocks the
kinase active sites (Figure 2(f)), so persister-associated
mutations in the N-subdomain-1 are thought to release
HipA from the inactive state.76

The phd-doc TA module encodes the 126-residue toxin,
Doc (death on curing), and 73-residue antitoxin, Phd (pre-
vent host death), to maintain the plasmid-prophage P1 in E.
coli.99 Regulation of the phd/doc operon involves conditional
cooperativity that is regulated by complexes of Phd and
Doc.100 Doc is a member of the Fic (filamentation induced
by cyclic AMP) family of AMPylation enzymes, which are
found in all kingdoms of life.101 The toxicity of Doc was
initially reported to be inhibition of translation elongation
through interactions with the 30S ribosomal subunit, simi-
lar to the aminoglycoside antibiotic hygromycin B.53 More
recently, it was discovered that Doc is a new type of kinase
that phosphorylates the translation elongation factor EF-Tu
on the conserved threonine, T382, thereby preventing EF-Tu
from binding aminoacylated tRNAs.102

Microbial dormancy

Dormancy is the state of most of the prokaryotes on Earth,
whose total numbers are estimated to be in the range of 4.0–
6.0� 1030 cells in three enormous habitats: soil, seawater,
and the marine sediment or terrestrial subsurface.103

Microbes in these environments display extremely low
metabolic activity, but are not completely inactive due to
the need to maintain their DNA integrity.104,105 Price and
Sowers105 estimated that the energy demands of a cell in a
dormant state were three orders of magnitude lower than
that of a replicating organism. However, a bacterium in a
dormant state must maintain not only an intact genome, but
also an energized membrane to allow ATP synthesis, both
of which are requirements for successful regrowth upon
improved conditions. Resuscitation triggers, such as
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nutrient upshift or specific biomolecules,106,107 as well as
stochastic processes of transcriptional regulation and the
‘‘microbial scout’’ hypothesis,108–110 have been implicated
in the ability of these dormant bacteria to awaken. For
example, this might entail a mechanism of the spontaneous
resuscitation of random cells in a population, which subse-
quently produce a protein known as ‘‘resuscitation promot-
ing factor’’ (Rpf) if conditions are conducive for growth.
This molecule then binds to and signals the remaining dor-
mant population to resuscitate.107

Geomicrobiologists have found that conditions in
Siberian permafrost soil, which are hundreds of thousands
of years old,111 and in deep sub-seafloor sediments, which
are millions of years old,112–114 harbor a diverse community
of microorganisms at 103 to 108 cells/cm3.115–117 D’Hondt
et al.115 found that the sediments in the South Pacific Gyre
were characterized by extremely low biomass and meta-
bolic activity. Sub-seafloor sediments harbor between 55%
and 85% of all the microbes on the planet,103,112 and
Schippers et al.118 provided direct evidence that many of
these microbes are alive and capable of metabolism (i.e.
not in endospores) by determining the presence of ribo-
somes using catalyzed reporter deposition-fluorescence in
situ hybridization (CARD-FISH). Given the amount of
carbon availability and usage, the estimated average turn-
over rate of organisms in such sediments is on the order of
1000 years, and might be as long as several thousand
years.103,119

These surprising findings have been shown to be char-
acteristic of microbial life on Earth. Inagaki et al.120 hypothe-
sized the existence of a ‘‘paleome,’’ microbial fossil
biomolecules encased in black shale identified in deep sub-
surface sediments. In an intriguing study, these investiga-
tors utilized molecular genetic culture-independent
analyses to demonstrate that the preserved DNA from
deep sections of terrestrial core sediment (250 to 300 cm
below the surface) corresponding to the Cretaceous lower
Albian period (�100 million years old) contained phylo-
types that were consistent with those found in extant
marine environments.120 Interestingly, another careful
study found that the bacterial community in deep marine
sediment east of Japan (>2 km below the seafloor) harbored
a group of microorganisms that resembled a terrestrial com-
munity, while those in the shallow sediment at the same
sample site reflected a marine population.121 This suggests
that at least some microbes have survived for tens of mil-
lions of years after burial in the sediment, which challenges
our notions of the longevity of prokaryotes and the stability
of nucleic acid in such an environment.

The dormant state induced by TA systems can be
achieved by spontaneous switching under stable environ-
mental conditions, creating a subpopulation of persister
cells that can respond quickly to a changing environ-
ment.122,123 Lennon and Jones113 have described the benefit
of these persisters as being microbial ‘‘seed banks’’ that
ensure the long-term viability of the bacterial population
by providing for genetic diversity. Indeed, Ayrapetyan
et al.37 suggested that the viable but non-culturable
(VBNC) state identified in non-sporulating bacteria and
the drug-tolerant bacterial persister cell are both part of a

shared ‘‘dormancy continuum.’’ Their hypothesis was that
the persister state is a gateway into the VBNC state, and this
is why persisters both (a) occur in lower numbers, and (b)
resume growth more rapidly upon antibiotic removal,
because the so-called VBNC cells can resuscitate, but
require more time to do so than persister cells.24 These stu-
dies have therefore raised concerns about the validity of
measuring viability via CFU counts. Type II TA loci have
been linked to both states in various organisms.

Future outlook

It is likely that new types of TA modules will continue to be
discovered as the genomes of novel organisms are
sequenced. It is also possible that coordinate regulation of
various loci and groups of modules might be identified.
Currently, unanswered questions of importance to the
field include (but are not limited to) the following: are
there specific triggers for various TA loci, and can groups
be identified? How do the different TA types interact with
one another (e.g. type II ribonucleases are activated by pro-
tein antitoxin degradation, which might then degrade the
RNA antitoxins of type III toxins), and does the threshold
level of response to various stresses differ when the organ-
ism is infecting a host? Does the specific stressor correlate
with the activation of certain TA loci? Further, are all the loci
activated simultaneously, or is there a hierarchy in the cas-
cade of toxin activation across types in response to stress?
When are these systems induced during the formation of a
biofilm? Helaine and Kugelberg124 noted a need for new
methods that will allow the study of the multifactorial pro-
cesses that result in dormant persister cells. However, a
related issue is whether advanced techniques, such as the
examination of the behavior of single cells in a microfluidics
model, can be reflective of actual conditions within an
infecting population.

The number of TA systems in the genome has been
shown to correlate with the virulence capacity of the organ-
ism.125 For example, M. tuberculosis strains encode at least
79 TA modules, whereas the non-pathogenic species M.
smegmatis maintains only four.126 Targeting bacterial TA
systems might be an effective strategy for the development
of novel antibiotics. Indeed, the deletion of a VapBC module
in NTHi significantly decreased its virulence in primary
human tissues and in an animal model of otitis media.19

Wen et al.127 recently highlighted the remarkable overlap
between the targets of TA toxins and antibiotics. Likewise,
many investigators have proposed that TA modules have
therapeutic potential as novel antimicrobials.55,128–130 In a
comprehensive recent review, Chan et al.130 discussed the
‘‘druggability’’ of various type II systems, with a view
toward disrupting the protein–protein interactions of the
toxin–antitoxin complex in order to free the toxin.
However, this tactic also has the potential to induce persis-
ter cells that are difficult to treat.131 Furthermore, the redun-
dancy of TA systems and other pathways to persistence
presents significant challenges that must be
addressed.132,133 In the final analysis, it is possible that tar-
geting multiple TA modules using a range of approaches
might result in the most successful antimicrobial strategy.
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Concluding remarks

Given the ubiquity of toxin–antitoxin systems among bac-
teria and their critical roles in adaptation to adverse condi-
tions, we anticipate that future studies will reveal
additional complexities in the way these systems operate
and function together to sustain life and optimize survival
within a range of environments (Figure 3). Knowledge
obtained from the study of TA systems has already enabled
the development of novel antiviral strategies and biotech-
nology applications, such as positive selection plasmids
and biosensors.130 Therefore, further studies to elucidate
the molecular details underlying these important systems
will likely continue to drive advancements in biotechnol-
ogy, synthetic biology and medicine.
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