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Abstract

Background and Purpose—Thoracic (chemo)radiation therapy is increasingly administered 

with tyrosine kinase inhibitors (TKI). While TKI have adverse effects on the heart, it is unknown 

whether combination with other cancer therapies causes enhanced toxicity. We used an animal 

model to investigate whether radiation and sunitinib interact in their effects on the heart.

Material and Methods—Male Sprague-Dawley rats received local heart irradiation (9 Gy per 

day, 5 days). Oral sunitinib (8 or 15 mg/kg bodyweight per day) started on day 1 of irradiation and 

continued for 2 weeks. Cardiac function was examined with echocardiography. Cardiac 

remodeling, cell death, left ventricular (LV) oxidative stress markers, mitochondrial morphology 

and membrane permeability transition pore (mPTP) opening were assessed.
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Results—Cardiac diameter, stroke volume, and LV volume, mass and anterior wall thickness 

increased in time, but only in the vehicle group. Sunitinib reduced LV inner diameter and volume 

in systole, which were counteracted by radiation. Sunitinib and radiation showed enhanced effects 

on mitochondrial morphology and mPTP opening, but not on cardiac troponin I, mast cell numbers 

or markers of oxidative stress.

Conclusions—This study found no early enhanced effects of radiation and sunitinib on cardiac 

function or structure. Long-term effects remain to be determined.
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Introduction

Long-term survivors of thoracic cancers whose heart was exposed during radiation therapy, 

may present with cardiac side effects such as conduction abnormalities, accelerated 

atherosclerosis, myocardial and pericardial fibrosis and injury to cardiac valves [1–3]. 

Radiation therapy has undergone many improvements in treatment planning and radiation 

delivery. Nonetheless, a significant subset of patients with thoracic cancers, including those 

of the lung, esophagus, and proximal stomach, still receive considerable doses of radiation to 

the heart [4–6].

Tyrosine kinase inhibitors (TKI) have emerged as a new class of targeted cancer treatments. 

By inhibiting tyrosine kinases, these agents target pathways involved in tumor angiogenesis, 

proliferation, and metastasis [7]. Several TKIs have been approved or are in clinical 

development for the treatment of thoracic cancers (e.g., breast, esophagus, and lung) [8–11] 

and metastatic cancers [12–15]. TKIs are commonly administered concurrently with 

(chemo)radiation therapy, and continuous dosing of the TKI follows for several months to 

years afterward. Unfortunately, TKI have shown cardiac side effects in about 1% to 30% of 

patients [16–18]. Since radiation and several common chemotherapeutic agents have their 

own adverse effects on the heart, there is a concern about potential additive or synergistic 

cardiac toxicity of these treatments [19;20]. Here, we start to investigate potential 

interactions by examining the early effects of TKI in combination with radiation in a 

preclinical animal model.

Sunitinib malate is an orally active inhibitor of multiple receptor tyrosine kinases [21]. 

Because of its broad targeting, sunitinib is an effective anti-cancer agent, but it also carries a 

possibility of side effects that may result from inhibition of off-target kinases. Sunitinib is 

currently in use for the treatment of several solid tumors, including gastrointestinal stromal 

tumors, and is tested in clinical trials for breast cancer and non–small cell lung cancer 

[9;10;13]. Since the cardiotoxic effects of sunitinib have been studied in previous animal 

models [22–24] that may provide results for comparison, we selected sunitinib as our model 

TKI.
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Materials and Methods

Animal model and local heart irradiation

All procedures were approved by the Institutional Animal Care and Use Committee of the 

University of Arkansas for Medical Sciences (UAMS), in accordance with the Guide for the 

Care and Use of Laboratory Animals (eighth edition) under protocol number 3405. Male 

Sprague-Dawley rats (Harlan Laboratories) were maintained in our Division of Laboratory 

Animal Medicine on a 12:12 light-to-dark cycle with free access to food and water.

At a weight of 250–290 grams, rats received local heart irradiation with the Small Animal 

Conformal Radiation Therapy Device developed at UAMS as described before [25] and in 

Supplementary Materials. The heart was exposed in 19 mm-diameter fields, one anterior-

posterior and two lateral, at 3 Gy each (225 kV, 13 mA, 0.5 mm Cu-filtration resulting in 

1.92 Gy/min at 1 cm tissue depth) to a total of 9 Gy per day for 5 consecutive days.

Sunitinib treatment

Oral administration of sunitinib (R&D Systems) or vehicle started on the first day of 

irradiation and continued once a day for 2 weeks. Two separate experiments were 

performed. Because the cardiac toxicity of radiation in combination with sunitinib was 

unknown, local heart irradiation was first combined with sunitinib at a relatively low dose of 

8 mg/kg bodyweight per day. When no severe signs of toxicity were observed, a second 

experiment was performed with sunitinib at 15 mg/kg bodyweight per day. An oral dose of 

15 mg/kg bodyweight is required for rats to reach sunitinib plasma levels comparable to 

those in patients at 24 hours after clinical doses of sunitinib [26]. Sunitinib was dissolved to 

50 mg/ml in DMSO, diluted in saline, and a total volume of 500 μl was administered by 

gavage. The rats were weighed every 2–3 days, and the ratio of sunitinib in DMSO and 

saline was adjusted every 6 days to correct for an increase in average rat weight. Each 

experiment contained 4 experimental groups: sham-irradiation + vehicle, sham-irradiation + 

sunitinib, 5x9 Gy + vehicle, and 5x9 Gy + sunitinib (5–6 animals per group). Every day, the 

vehicle group received oral DMSO and saline in the same ratio (total volume 500 μl) as the 

sunitinib group.

Echocardiography

Echocardiography was performed as described before [27], using a Vevo 2100 imaging 

system (VisualSonics) with the MS250 transducer (13–24 MHz). Short axis M-mode 

recordings at the mid left ventricular (LV) level were used to obtain echocardiographic 

parameters.

Tissue and plasma preparation

At 2 weeks after local heart irradiation, rats were anesthetized with 3% isoflurane and 

injected i.v. with 100 U/kg heparin. Peripheral blood samples were collected into EDTA 

coated tubes and spun down to prepare plasma. The hearts were collected and cut 

longitudinally. One half, containing LV, right ventricle, and the interventricular septum, was 

placed in 10% formalin (8 mg/kg sunitinib experiment) or 5% formalin (15 mg/kg sunitinib 

experiment) for histological analysis. The remaining cardiac tissue was dissected to obtain 
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the LV, and a total of 180–200 mg was immediately used to isolate mitochondria. The 

remainder of the LV was divided and snap-frozen, to ensure that for each animal the 

glutathione analyses and Western-Blots described below were performed on cardiac tissue of 

the same anatomical location.

Ex vivo analysis of mitochondria

Isolation of mitochondria and measurements of mitochondrial permeability transition pore 

(mPTP) opening were performed as described before [28]. Freshly isolated mitochondria 

were resuspended in a swelling buffer and exposed to vehicle, 250 μM CaCl2, or 250 μM 

CaCl2 in combination with the mPTP opening inhibitor cyclosporine A (CsA). MPTP 

opening in response to calcium leads to mitochondrial swelling as detected by a reduction in 

optical density at 540 nm (OD540). OD540 was measured with a Synergy 4 microplate 

reader (BioTek), immediately before the assay and every 2 minutes thereafter for a total of 

20 minutes.

High-performance liquid chromatography quantification of glutathione

Approximately 50 mg of snap-frozen LV tissue was weighed and homogenized to evaluate 

levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) by high-performance 

liquid chromatography (HPLC), as described before [29].

Western-Blots

Western-Blots were performed on LV tissue samples as described before [30;31]. Primary 

and HRP conjugated secondary antibodies are listed in Table 1S in the Supplementary 

Materials. Antibody binding was visualized with the Immobilon detection system (EMD 

Millipore) on CL-Xposure Film (Thermo Scientific). Films were scanned using an 

AlphaImager® gel documentation system (Protein Simple) and protein bands were 

quantified with ImageJ.

Histology

Apoptotic nuclei were detected in formalin-fixed tissue sections using the CardioTACSTM 

Kit (Trevigen), based on DNA end-labeling with terminal deoxynucleotidyl transferase. To 

stain for mast cells, sections were incubated in 0.5% Toluidine Blue in 0.5 N HCl for 72 

hours, followed by 0.7 N HCl for 10 minutes. Apoptotic nuclei and mast cells in both 

ventricles were counted by an observer who was blinded to the treatment groups.

Collagen deposition was determined by incubating sections in Sirius Red (American 

MasterTech) supplemented with Fast Green (Fisher Scientific). Stained sections were 

scanned with a ScanScope CS2 slide scanner and analyzed with ImageScope 12 software 

(Aperio) to determine the percentage tissue area positive for collagens.

Electron microscopy

Tissue specimens of LV were fixed and processed for electron microscopy using a method 

described by Cocchiaro et al [32]. Sections were analyzed with a Tecnai F20 200 keV 

electron microscope (FEI).
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Cardiac troponin I

The concentration of cardiac troponin I (cTnI) in plasma samples was measured with a 

commercial ELISA kit (rat cTnI Ultra Sensitive, Life Diagnostics).

Mitochondrial membrane potential in cultured cardiomyocytes

Rat cardiomyocyte H9c2 cells (kindly provided by Nukhet Aykin-Burns) were used to 

determine mitochondrial membrane potential. H9c2 cells were maintained in DMEM (4.5 

g/L D-glucose, 4.0 mM L-glutamine, 110 mg/L sodium pyruvate, 10% fetal bovine serum, 

Life Technologies) at 37°C in a 4% CO2 incubator. Cells were irradiated using a 137Cs 

source (Mark I model 68A, JL Shepherd, 5.1 Gy/min) at a dose of 9 Gy. Immediately after 

irradiation, 10 μM sunitinib or vehicle (DMSO) was added to the culture media, and cells 

were incubated at 37°C for 24 hours. Then, media were replaced with HBSS (1.4 mg/ml 

CaCl2, 1 mg/ml MgCl2) containing 10 μg/ml JC-1 (Life Technologies). The mitochondrial 

uncoupler carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP, 50 μM, Sigma) 

was used as a positive control. After a 30-minute incubation in JC-1 +/− FCCP, cells were 

rinsed with HBSS and visualized with a fluorescence microscope (Axiovert 200M, Zeiss).

Statistical analysis

Data are presented as average ± standard error of the mean (sem). The two experiments 

(sunitinib at 8 and 15 mg/kg bodyweight) were analyzed separately. Ultrasound data were 

assessed with split-plot analysis of variance (ANOVA) with three fixed factors: radiation, 

sunitinib, and time (Proc GLM in SAS software), using Type III sums of squares with 

appropriately defined error terms [33]. All other data were analyzed with two-way ANOVA 

or repeated measures ANOVA (mitochondrial swelling assay), followed by Newman-Keuls 

individual comparisons (NCSS 8). A 5% significance level was set for main effects and 

interactions, with no adjustment for multiple testing.

Results

Echocardiography

Echocardiography was performed 1 week before and at 2 weeks after the start of radiation 

and sunitinib (15 mg/kg bodyweight per day). Because time alone had an effect on some 

parameters, we first determined whether there were significant interactions between the 

factors time and radiation, or time and sunitinib. Of the 15 parameters tested, 5 exhibited a 

significant sunitinib-by-time interaction. For all parameters, in the absence of sunitinib an 

increase was shown over time, and the increase was diminished by sunitinib (Figure 1S in 

Supplementary Materials, and Figure 1A). None of the parameters showed a significant 

radiation-by-time interaction. Finally, there was a significant sunitinib-by-radiation 

interaction in LV inner diameter and volume in systole. Here, radiation seemed to counteract 

the effects of sunitinib (Figure 1B). Ejection fraction is one of the main cardiac parameters 

that is altered by sunitinib in patients [18]. We observed no significant effects of radiation or 

sunitinib on ejection fraction in our rat model (Figure 2S in Supplementary Materials).
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Cardiac cell death

Because tyrosine kinase pathways are involved in cardiomyocyte survival, TKI are 

sometimes thought to cause cardiac toxicity by inducing cell death. We therefore examined 

whether apoptosis had occurred. We discovered that the number of apoptotic nuclei detected 

was dependent on the tissue fixation, with higher numbers of positive nuclei in 5% 

compared to 10% formalin. We here show the results of the 5% formalin fixation (the 15 

mg/kg bodyweight sunitinib experiment). Radiation caused an increase in number of 

apoptotic nuclei in interstitial cells (Figure 3S in Supplementary Materials), which was 

counteracted by sunitinib (Table 1).

Plasma cTnI

Plasma cTnI was measured as an indication of cardiac damage (Table 1). Local heart 

irradiation caused an increase in plasma cTnI, which was not modified by sunitinib.

Cardiac remodeling

We previously observed that cardiac mast cell numbers are significantly reduced up to 1 

month after local heart irradiation [34]. While sunitinib alone did not modify cardiac mast 

cell numbers, at both dose levels there was a non-significant trend towards an exacerbation 

of the effects of radiation (Table 1). We found no significant changes in LV collagen 

deposition in any of the treatment groups (data not shown).

Oxidative stress

Radiation caused a significant reduction in LV GSH levels, leading to a decrease in GSH/

GSSG, together with an increase in protein 4-hydroxynonenal (4-HNE) adducts (Figure 4S 

and 5S in Supplementary Materials). Sunitinib caused similar alterations, especially at the 

higher dose, but did not potentiate the effects of radiation. Radiation caused an increase in 

LV expression of glutathione peroxidase 1/2 (GPX-1/2), superoxide dismutase 2 (SOD2), 

peroxiredoxin 5 (PRX5), and heme oxygenase 1 (HO-1). Sunitinib inhibited the effects of 

radiation on GPX-1/2 and SOD2, but enhanced the effects on PRX5 and HO-1 (Figure 6S in 

Supplementary Materials).

Mitochondrial alterations

Electron microscopy was performed after sunitinib at 15 mg/kg bodyweight per day (Figure 

2). Mitochondria with concentric cristae were observed in irradiated hearts. Sunitinib caused 

a different pattern of mitochondrial damage dominated by disorganized and thinning cristae. 

Mitochondrial damage seemed most severe in the combined treatment group. In addition, 

disorganization of myofibrils was observed, most prominently after sunitinib.

We performed a swelling assay with isolated mitochondria to determine their tendency 

towards mPTP opening. Ex vivo incubation with calcium induced mPTP opening in 

mitochondria isolated from irradiated hearts. Sunitinib caused the same effects as local heart 

irradiation. Moreover, when administered at a dose of 15 mg/kg/bodyweight per day, 

sunitinib potentiated the effects of local heart irradiation (Figure 3).
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Rat cardiomyocytes were used to identify the effects of radiation and sunitinib on 

mitochondrial membrane potential (Figure 7S in Supplementary Materials). JC-1 taken up in 

vehicle treated, sunitinib treated, and irradiated H9c2 cells was mostly red fluorescent, 

indicating that these cells had mitochondria with a normal membrane potential. Radiation in 

combination with sunitinib increased green fluorescence, suggesting that the two treatments 

combined caused a reduction in the mitochondrial membrane potential.

Discussion

This study examined the effects of local heart irradiation combined with 2 weeks of sunitinib 

treatment on cardiac function and structure in a rat model. While sunitinib alone had some 

effects on echocardiographic parameters, most effects on cardiac function seemed 

diminished in the combined treatment group. The apparent antagonistic effects of radiation 

and sunitinib on cardiac function are interesting and deserve further investigation. On the 

other hand, sunitinib enhanced the effects of radiation on mitochondrial morphology and 

swelling. An increase in plasma cTnI may only occur after higher doses of sunitinib [35].

Local heart irradiation in our rat model causes an increase in the number of apoptotic nuclei 

at time points up to 2 weeks [36]. While the exact nature of the apoptotic nuclei is unclear, 

their appearance suggests that they are not of cardiomyocytes. Instead, interstitial cells such 

as fibroblasts or infiltrating inflammatory cells may have undergone apoptosis in response to 

radiation. This could have possibly been in response to a secondary signals as part of an 

active process of cell removal [37]. Sunitinib alone did not induce an increase in apoptotic 

nuclei. Moreover, sunitinib counteracted the effects of radiation. Hence, apoptotic cell death 

may not be the main mechanism of cardiac toxicity from sunitinib.

Cardiomyocytes carry large numbers of mitochondria and are highly dependent on them for 

survival. We observed severe changes in mitochondrial morphology after irradiation and 

sunitinib treatment in vivo and a reduced mitochondrial membrane potential when radiation 

and sunitinib were combined in vitro. However, because of differences in model 

characteristics and follow-up times, the in vivo and in vitro results must be compared with 

caution. Alterations in mitochondrial membrane properties have been observed in other 

animal models of sunitinib treatment [22] and local heart irradiation [38], and mitochondria 

isolated from the irradiated rat heart are more prone to mPTP opening as observed within 

hours up to several months after irradiation [36]. Here, radiation and sunitinib combined had 

the most severe effect on mPTP opening. On the other hand, while radiation and sunitinib 

both caused indications of cardiac oxidative stress, they did not potentiate each other. The 

mitochondrial parameters included in the current study are no indication of mitochondrial 

function. Additional studies are required to determine the role of mitochondria in cardiac 

effects of radiation and sunitinib.

In our rat model, increased collagen deposition in the heart occurs at about 3 months after 

irradiation and gets progressively worse after that. Together with tissue degeneration and 

fibrosis, electrophysiological disturbances are observed, such as those indicative of a third-

degree heart block [30]. Because of the early time point in this study, radiation-induced 

fibrosis or conduction abnormalities were not observed. Sunitinib did not cause fibrosis 
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either, alone or in combination with radiation. Indeed, TKI do not always aggravate cardiac 

remodeling. For instance, lapatinib did not modify radiation-induced cardiac toxicity in a 

mouse model [39]. Moreover, sunitinib reduced right ventricular remodeling in pulmonary 

hypertension [40]. Since radiation is known to cause late cardiac fibrosis, the long-term 

effects of radiation and sunitinib still need to be investigated.

In our rat model, cardiac mast cell numbers are significantly reduced within 1 month after 

local heart irradiation, followed by a time-dependent increase that coincides with collagen 

deposition [34]. Sunitinib inhibits several tyrosine kinases involved in mast cell 

development, survival, and proliferation [41]. Because the effects of radiation alone on 

cardiac mast cell number was strong, a further reduction of mast cell numbers by sunitinib 

was not statistically significant.

While the cardiac effects of localized irradiation are likely due to a direct effect on the heart, 

TKIs have effects on other organs, such as the liver [42], which may affect the heart. Also, 

sunitinib may modify the vasculature by inhibiting vascular endothelial growth factor 

receptors, or by altering pericyte function via inhibition of platelet derived growth factor 

receptors [22]. Because of the relative newness of TKIs, the number of reported studies into 

mechanisms by which they may cause cardiac toxicity is still somewhat limited.

In conclusion, this preclinical study suggests that cardiac radiation exposure combined with 

sunitinib treatment may not cause severe acute toxicity. Long-term effects remain to be 

determined.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effects of local heart irradiation and sunitinib on echocardiography parameters
A) Box plots of two of the M-mode parameters that showed a significant interaction between 

sunitinib and time: Diameter in diastole (p=0.02) and Stroke Volume (p=0.0001). Box plots 

of all five parameters with a significant interaction between sunitinib and time are shown in 

Figure 1S in Supplementary Materials. B) Box plots of the two M-mode parameters that 

showed a significant interaction between radiation and sunitinib: LV inner diameter in 

systole (p=0.02) and LV volume in systole (p=0.02). Box: 25th – 75th percentiles, whiskers: 

minimum – maximum, horizontal line: median, +: average, n=10.
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Figure 2. Effects of local heart irradiation and sunitinib on mitochondrial morphology
Electron microscopy was performed after local heart irradiation and sunitinib at 15 mg/kg 

bodyweight per day. Images at magnification 3,500× reveal disorganization of myofibrils in 

the sunitinib treatment group (arrow).
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Figure 3. Effects of local heart irradiation and sunitinib on the tendency for mitochondria to 
swell
The graphs indicate the OD540 of isolated mitochondria when in the swelling assay, relative 

to OD540 of each sample immediately before the assay. Incubation of mitochondria with 

CaCl2 + CsA, or no CaCl2 caused no swelling (data not shown). Average ± sem (n=4–5). 

*p<0.05 vs. sham + vehicle; φp<0.05 vs. sham + sunitinib.
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Table 1

Effects of local heart irradiation and sunitinib on cardiac apoptosis, cardiac mast cell numbers, and plasma 

cTnI. Average ± sem (n=5–6).

Experimental group Number of apoptotic nuclei Number of mast cells Plasma cTnI (ng/ml)

Experiment 1: sunitinib at 8 mg/kg bodyweight per day

5x0 Gy + vehicle ND 210 ± 14 0.08 ± 0.004

5x0 Gy + sunitinib ND 203 ± 41 0.09 ± 0.003

5x9 Gy + vehicle ND 22 ± 6*# 0.12 ± 0.001*#

5x9 Gy + sunitinib ND 11 ± 3*# 0.13 ± 0.004*#

Experiment 2: sunitinib at 15 mg/kg bodyweight per day

5x0 Gy + vehicle 827 ± 61 182 ± 13 0.08 ± 0.002

5x0 Gy + sunitinib 904 ± 97 155 ± 20 0.09 ± 0.001

5x9 Gy + vehicle 1631 ± 97*# 20 ± 3*# 0.13 ± 0.002*#

5x9 Gy + sunitinib 1053 ±70† 4 ± 1*# 0.14 ± 0.007*#

ND: not determined.

*
p<0.05 vs. sham + vehicle;

#
p<0.05 vs. sham + sunitinib.

†
p<0.05 vs. radiation + vehicle
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